1
|
Demuytere J, Ernst S, Ceelen W. Pathophysiology of Peritoneal Metastasis. J Surg Oncol 2024. [PMID: 39400354 DOI: 10.1002/jso.27890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal metastasis is the result of a complex, stepwise process that involves multiple, spatially and temporally distinct interactions between the primary cancer, disseminated cancer cells or clusters, and the mesothelial lining of the peritoneal cavity and intraperitoneal organs. The biology of peritoneal metastasis, long a neglected field of research, is now increasingly being unraveled. Here, we provide an update on the mechanisms that drive the journey that eventually leads to widespread peritoneal metastatic disease.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
2
|
Szabó K, Makkai G, Konkoly J, Kormos V, Gaszner B, Berki T, Pintér E. TRPA1 Covalent Ligand JT010 Modifies T Lymphocyte Activation. Biomolecules 2024; 14:632. [PMID: 38927036 PMCID: PMC11202300 DOI: 10.3390/biom14060632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/28/2024] Open
Abstract
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in sensitivity to a plethora of irritating agents and endogenous mediators of oxidative stress. TRPA1 influences neuroinflammation and macrophage and lymphocyte functions, but its role is controversial in immune cells. We reported earlier a detectable, but orders-of-magnitude-lower level of Trpa1 mRNA in monocytes and lymphocytes than in sensory neurons by qRT-PCR analyses of cells from lymphoid organs of mice. Our present goals were to (a) further elucidate the expression of Trpa1 mRNA in immune cells by RNAscope in situ hybridization (ISH) and (b) test the role of TRPA1 in lymphocyte activation. RNAscope ISH confirmed that Trpa1 transcripts were detectable in CD14+ and CD4+ cells from the peritoneal cavity of mice. A selective TRPA1 agonist JT010 elevated Ca2+ levels in these cells only at high concentrations. However, a concentration-dependent inhibitory effect of JT010 was observed on T-cell receptor (TcR)-induced Ca2+ signals in CD4+ T lymphocytes, while JT010 neither modified B cell activation nor ionomycin-stimulated Ca2+ level. Based on our present and past findings, TRPA1 activation negatively modulates T lymphocyte activation, but it does not appear to be a key regulator of TcR-stimulated calcium signaling.
Collapse
Affiliation(s)
- Katalin Szabó
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Géza Makkai
- Nano-Bio-Imaging Core Facility, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - János Konkoly
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Viktória Kormos
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| | - Balázs Gaszner
- Research Group for Mood Disorders, Department of Anatomy, University of Pécs Medical School, H-7624 Pécs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, University of Pécs Clinical Center, H-7624 Pécs, Hungary
| | - Erika Pintér
- Institute of Pharmacology and Pharmacotherapy, University of Pécs Medical School, H-7624 Pécs, Hungary (E.P.)
| |
Collapse
|
3
|
Smirnova NF, Riemondy K, Bueno M, Collins S, Suresh P, Wang X, Patel KN, Cool C, Königshoff M, Sharma NS, Eickelberg O. Single-cell transcriptome mapping identifies a local, innate B cell population driving chronic rejection after lung transplantation. JCI Insight 2022; 7:156648. [PMID: 36134664 PMCID: PMC9675462 DOI: 10.1172/jci.insight.156648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bronchiolitis obliterans syndrome (BOS) is the main reason for poor outcomes after lung transplantation (LTx). We and others have recently identified B cells as major contributors to BOS after LTx. The extent of B cell heterogeneity and the relative contributions of B cell subpopulations to BOS, however, remain unclear. Here, we provide a comprehensive analysis of cell population changes and their gene expression patterns during chronic rejection after orthotopic LTx in mice. Of 11 major cell types, Mzb1-expressing plasma cells (PCs) were the most prominently increased population in BOS lungs. These findings were validated in 2 different cohorts of human BOS after LTx. A Bhlhe41, Cxcr3, and Itgb1 triple-positive B cell subset, also expressing classical markers of the innate-like B-1 B cell population, served as the progenitor pool for Mzb1+ PCs. This subset accounted for the increase in IgG2c production within BOS lung grafts. A genetic lack of Igs decreased BOS severity after LTx. In summary, we provide a detailed analysis of cell population changes during BOS. IgG+ PCs and their progenitors — an innate B cell subpopulation — are the major source of local Ab production and a significant contributor to BOS after LTx.
Collapse
Affiliation(s)
- Natalia F Smirnova
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Institut des Maladies Métaboliques et Cardiovasculaires (I2MC) - INSERM U1297, University of Toulouse III, Toulouse, France
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marta Bueno
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Susan Collins
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Pavan Suresh
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xingan Wang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kapil N Patel
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA
| | - Carlyne Cool
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nirmal S Sharma
- Center for Advanced Lung Disease and Lung Transplantation, University of South Florida/Tampa General Hospital, Tampa, Florida, USA.,Division of Pulmonary & Critical Care, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Wong JB, Hewitt SL, Heltemes-Harris LM, Mandal M, Johnson K, Rajewsky K, Koralov SB, Clark MR, Farrar MA, Skok JA. B-1a cells acquire their unique characteristics by bypassing the pre-BCR selection stage. Nat Commun 2019; 10:4768. [PMID: 31628339 PMCID: PMC6802180 DOI: 10.1038/s41467-019-12824-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/24/2019] [Indexed: 12/23/2022] Open
Abstract
B-1a cells are long-lived, self-renewing innate-like B cells that predominantly inhabit the peritoneal and pleural cavities. In contrast to conventional B-2 cells, B-1a cells have a receptor repertoire that is biased towards bacterial and self-antigens, promoting a rapid response to infection and clearing of apoptotic cells. Although B-1a cells are known to primarily originate from fetal tissues, the mechanisms by which they arise has been a topic of debate for many years. Here we show that in the fetal liver versus bone marrow environment, reduced IL-7R/STAT5 levels promote immunoglobulin kappa gene recombination at the early pro-B cell stage. As a result, differentiating B cells can directly generate a mature B cell receptor (BCR) and bypass the requirement for a pre-BCR and pairing with surrogate light chain. This 'alternate pathway' of development enables the production of B cells with self-reactive, skewed specificity receptors that are peculiar to the B-1a compartment. Together our findings connect seemingly opposing lineage and selection models of B-1a cell development and explain how these cells acquire their unique properties.
Collapse
MESH Headings
- Animals
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bone Marrow/immunology
- Bone Marrow/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Immunoglobulin Light Chains, Surrogate/genetics
- Immunoglobulin Light Chains, Surrogate/immunology
- Immunoglobulin Light Chains, Surrogate/metabolism
- Liver/embryology
- Liver/immunology
- Liver/metabolism
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Pre-B Cell Receptors/genetics
- Pre-B Cell Receptors/immunology
- Pre-B Cell Receptors/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Interleukin-7/genetics
- Receptors, Interleukin-7/immunology
- Receptors, Interleukin-7/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/immunology
- STAT5 Transcription Factor/metabolism
Collapse
Affiliation(s)
- Jason B Wong
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Susannah L Hewitt
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Lynn M Heltemes-Harris
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Malay Mandal
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Kristen Johnson
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Klaus Rajewsky
- Max Delbrück Center for Molecular Medicine, 13092, Berlin, Germany
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Michael A Farrar
- Department of Laboratory Medicine and Pathology, Center for Immunology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York University, New York, NY, USA.
| |
Collapse
|
5
|
CD3+ B-1a Cells as a Mediator of Disease Progression in Autoimmune-Prone Mice. Mediators Inflamm 2018; 2018:9289417. [PMID: 30670930 PMCID: PMC6323491 DOI: 10.1155/2018/9289417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/16/2018] [Indexed: 12/21/2022] Open
Abstract
B-1a cells are distinguishable from conventional B cells, which are designated B-2 cells, on the basis of their developmental origin, surface marker expression, and functions. In addition to the unique expression of the CD5 antigen, B-1a cells are characterized by the expression level of CD23. Although B-1a cells are considered to be independent of T cells and produce natural autoantibodies that induce the clinical manifestations of autoimmune diseases, there is much debate on the role of B-1a cells in the development of autoimmune diseases. We examined the involvement of B-1a cells in autoimmune-prone mice with the lpr gene. MRL/lpr and B6/lpr mice exhibited lupus and lymphoproliferative syndromes because of the massive accumulation of CD3+CD4-CD8-B220+ T cells. Interestingly, the B220+CD23-CD5+ (B-1a) cell population in the peripheral blood and peritoneal cavity increased with age and disease progression. Ninety percent of B-1a cells were CD3 positive (CD3+ B-1a cells) and did not produce tumor necrosis factor alpha, interferon gamma, or interleukin-10. To test the possible involvement of CD3+ B-1a cells in autoimmune disease, we tried to eliminate the peripheral cells by hypotonic shock through repeated intraperitoneal injections of distilled water. The fraction of peritoneal CD3+ B-1a cells decreased, and symptoms of the autoimmune disease were much milder in the distilled water-treated MRL/lpr mice. These results suggest that CD3+ B-1a cells could be mediators of disease progression in autoimmune-prone mice.
Collapse
|
6
|
Li J, Luo Y, Wang X, Feng G. Regulatory B cells and advances in transplantation. J Leukoc Biol 2018; 105:657-668. [PMID: 30548970 DOI: 10.1002/jlb.5ru0518-199r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The effects of B cell subsets with regulatory activity on the immune response to an allograft have evoked increasing interest. Here, we summarize the function and signaling of regulatory B cells (Bregs) and their potential effects on transplantation. These cells are able to suppress the immune system directly via ligand-receptor interactions and indirectly by secretion of immunosuppressive cytokines, particularly IL-10. In experimental animal models, the extensively studied IL-10-producing B cells have shown unique therapeutic advantages in the transplant field. In addition, adoptive transfer of B cell subsets with regulatory activity may reveal a new approach to prolonging allograft survival. Recent clinical observations on currently available therapies targeting B cells have revealed that Bregs play an important role in immune tolerance and that these cells are expected to become a new target of immunotherapy for transplant-related diseases.
Collapse
Affiliation(s)
- Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongsheng Luo
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Age (autoimmunity) associated B cells (ABCs) and their relatives. Curr Opin Immunol 2018; 55:75-80. [DOI: 10.1016/j.coi.2018.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
|
8
|
Romero-Ramírez S, Navarro-Hernandez IC, Cervantes-Díaz R, Sosa-Hernández VA, Acevedo-Ochoa E, Kleinberg-Bild A, Valle-Rios R, Meza-Sánchez DE, Hernández-Hernández JM, Maravillas-Montero JL. Innate-like B cell subsets during immune responses: Beyond antibody production. J Leukoc Biol 2018; 105:843-856. [PMID: 30457676 DOI: 10.1002/jlb.mr0618-227r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 10/30/2018] [Indexed: 12/13/2022] Open
Abstract
B lymphocytes are recognized for their crucial role in the adaptive immunity since they represent the only leukocyte lineage capable of differentiating into Ab-secreting cells. However, it has been demonstrated that these lymphocytes can exert several Ab-independent functions, including engulfing and processing Ags for presentation to T cells, secreting soluble mediators, providing co-stimulatory signals, and even participating in lymphoid tissues development. Beyond that, several reports claiming the existence of multiple B cell subsets contributing directly to innate immune responses have appeared. These "innate-like" B lymphocytes, whose phenotype, development pathways, tissue distribution, and functions are in most cases notoriously different from those of conventional B cells, are crucial to early protective responses against pathogens by exerting "crossover" defensive strategies that blur the established boundaries of innate and adaptive branches of immunity. Examples of these mechanisms include the rapid secretion of the polyspecific natural Abs, increased susceptibility to innate receptors-mediated activation, cytokine secretion, downstream priming of other innate cells, usage of specific variable immunoglobulin gene-segments, and other features. As these new insights emerge, it is becoming preponderant to redefine the functionality of B cells beyond their classical adaptive-immune tasks.
Collapse
Affiliation(s)
- Sandra Romero-Ramírez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Itze C Navarro-Hernandez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rodrigo Cervantes-Díaz
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Víctor A Sosa-Hernández
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Ernesto Acevedo-Ochoa
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades Centro Médico Nacional Siglo XXI, IMSS, Mexico City, Mexico
| | - Ari Kleinberg-Bild
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación de la Facultad de Medicina, Universidad Nacional Autónoma de México y Laboratorio de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - David E Meza-Sánchez
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José M Hernández-Hernández
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - José L Maravillas-Montero
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México e Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
9
|
Bai WJ, Li CG, Zhang CC, Xu LH, Zeng QZ, Hu B, Hong Z, He XH, Ouyang DY. Prolonged Deleterious Influences of Chemotherapeutic Agent CPT-11 on Resident Peritoneal Macrophages and B1 Cells. Front Immunol 2018; 8:1919. [PMID: 29354128 PMCID: PMC5760539 DOI: 10.3389/fimmu.2017.01919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
CPT-11 is a first-line chemotherapeutic agent for the treatment of colorectal cancer in clinic. Previous studies including ours have demonstrated that CPT-11 is, however, toxic to the intestinal epithelium and resident peritoneal macrophages. By interacting with B1 cells, the resident peritoneal macrophages play critical roles in the maintenance of gastrointestinal homeostasis. It remains therefore elusive whether these peritoneal innate immune cells could be rebuilt spontaneously or artificially after being impaired by CPT-11 administration. In this study, we found that mouse resident peritoneal macrophages, namely the large peritoneal macrophages (LPMs) with a CD11b+F4/80hiGATA6+ phenotype, and B1 (CD19+CD23−) cells were depleted by intraperitoneal (i.p.) CPT-11 treatment within 1 week, but reappeared from day 14 after CPT-11 treatment. However, the recovery processes of these innate immune cells were slow, as their counts could not be fully recovered even 2 months later, when compared with that of vehicle-treated control group. Interestingly, in the peritoneal cavity of the mice treated with CPT-11, the cell counts of LPMs and B1 cells were significantly increased after adoptive transfer with syngeneic peritoneal exudate cells (PECs) from healthy mice. Adoptive transfer with bone marrow cells also slightly increased, although not significantly, the cell counts of LPMs and B1 cells in CPT-11-treated mice. The survival rate of bacterial infected mice was significantly reduced by i.p. CPT-11 treatment in comparison with vehicle-treated or untreated control groups. Besides, oral administration of CPT-11 also had a delayed toxicity on the resident peritoneal macrophages. Our results suggest that CPT-11 has prolonged deleterious effects on peritoneal innate immune cells but adoptive transfer with PECs may accelerate their recovery processes, highlighting the potential of adoptive cell transfer as an avenue to counteract the adverse effects of this chemotherapeutic agent.
Collapse
Affiliation(s)
- Wen-Jing Bai
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chen-Guang Li
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Cheng-Cheng Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qiong-Zhen Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhou Hong
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Holodick NE, Rodríguez-Zhurbenko N, Hernández AM. Defining Natural Antibodies. Front Immunol 2017; 8:872. [PMID: 28798747 PMCID: PMC5526850 DOI: 10.3389/fimmu.2017.00872] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
The traditional definition of natural antibodies (NAbs) states that these antibodies are present prior to the body encountering cognate antigen, providing a first line of defense against infection thereby, allowing time for a specific antibody response to be mounted. The literature has a seemingly common definition of NAbs; however, as our knowledge of antibodies and B cells is refined, re-evaluation of the common definition of Nabs may be required. Defining Nabs becomes important as the function of NAb production is used to define B cell subsets (1) and as these important molecules are shown to play numerous roles in the immune system (Figure 1). Herein, we aim to briefly summarize our current knowledge of NAbs in the context of initiating a discussion within the field of how such an important and multifaceted group of molecules should be defined.
Collapse
Affiliation(s)
- Nichol E Holodick
- Department of Biomedical Sciences, Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Nely Rodríguez-Zhurbenko
- Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba
| | - Ana María Hernández
- Natural Antibodies Group, Tumor Immunology Division, Center of Molecular Immunology, Havana, Cuba
| |
Collapse
|
11
|
Park S, Sim H, Kim HI, Jeong D, Wu G, Cho SY, Lee YS, Kwon HJ, Lee K. CD11b regulates antibody class switching via induction of AID. Mol Immunol 2017; 87:47-59. [DOI: 10.1016/j.molimm.2017.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/01/2022]
|
12
|
Hirose T, Tanaka Y, Tanaka A, Sakai H, Sasaki Y, Shinohara N, Ohdan H. PD-L1/PD-L2-expressing B-1 cells inhibit alloreactive T cells in mice. PLoS One 2017; 12:e0178765. [PMID: 28570665 PMCID: PMC5453578 DOI: 10.1371/journal.pone.0178765] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 05/18/2017] [Indexed: 11/19/2022] Open
Abstract
B cells constitute a complex system of antigen-presenting cells (APCs) and exist as distinct subsets that differ in their lineage affiliation, surface molecule expression, and biological function, thus potentially regulating the immune response. In this study, we investigated the immune-regulatory roles of murine B cell subsets as regulatory APCs targeting alloreactive T cells. Either splenic B cells, peritoneal cavity (PerC) B cells, or non-B cells from Balb/c mice were intravenously injected into B6 mice. Serum levels of anti-Balb/c antibodies in the recipients of PerC B cells were significantly lower than those in the recipients of splenic B cells and PerC non-B cells, as determined over a 4-week period after the injection. Mixed-lymphocyte reaction (MLR) assays using splenocytes from the B6 mice at 2 weeks after the injection revealed the significantly reduced anti-Balb/c T cell-responses in the recipients of PerC B cells, as compared to those in the recipients of splenic B cells or untreated control mice. Since PerC B cells contained MHC class II+ CD80+ CD86+ PD-L1+ PD-L2+ cells among the CD5+ B-1a cell subset, PerC B cells from Balb/c mice were pre-incubated with anti-PD-L1/PD-L2 mAbs prior to injection. This treatment abrogated their immune-regulatory effects on anti-Balb/c T cells in the MLR assays. In addition, the inoculation with Balb/c PerC B cells significantly prolonged the survival of subsequently grafted Balb/c hearts in B6 mouse recipients, whereas that with SPL B cells did not. These findings indicate that the PerC B cells, including PD-L1/PD-L2 B-1a cells, may suppress T cells responding to allostimulation, and thus may be optimal for donor lymphocyte injection.
Collapse
Affiliation(s)
- Takayuki Hirose
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Asuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hiroshi Sakai
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yu Sasaki
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Nobuo Shinohara
- Department of Renal and Genitourinary Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
13
|
Atisha-Fregoso Y, Hernández-Ramírez DF, Olivares-Martínez E, Núñez-Alvarez CA, Llorente L, Hernández-Molina G. Refractory ascites in systemic lupus erythematosus: further biological support of intraperitoneal steroid treatment as a suitable therapeutical option. Clin Rheumatol 2016; 36:707-711. [DOI: 10.1007/s10067-016-3473-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/19/2016] [Accepted: 10/27/2016] [Indexed: 11/30/2022]
|
14
|
Plasma cell alloantigen ENPP1 is expressed by a subset of human B cells with potential regulatory functions. Immunol Cell Biol 2016; 94:719-28. [PMID: 27029896 DOI: 10.1038/icb.2016.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/27/2022]
Abstract
Plasma cell alloantigen 1 (PC1), also known as ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1), is an enzyme involved primarily in hydrolysis of adenosine triphosphate at the cell surface. Although the expression pattern of PC1 is relatively broad, its expression in B cells is found at significant levels only in terminally differentiated germinal center B cells, plasma cells and a subset of B-1a cells in mice. Here we describe studies designed to determine whether expression of PC1 might define novel populations of human B cells with similarities to mouse B cells. We found that PC1 is expressed in small populations of human B lineage cells in peripheral blood, cord blood, tonsils, bone marrow and pediatric peritoneal fluid, with the highest levels in plasma cells. The characteristics of human PC1(+) B cells differ from mouse peritoneal B-1a subsets and from features of the human CD20(+)CD27(+)CD43(+)CD70(-) B-cell subset proposed to be human B-1 cells. Expression of PC1 was greatly increased in B cells stimulated with the combination of CD40 ligand, interleukin (IL)-4 and IL-21. In addition, PC1(+) B cells activated CD4(+) T regulatory cells. ENPP1 thus defines a subset of human B cells that differs significantly from mouse peritoneal B-1a and proposed human B-1 cells.
Collapse
|