1
|
Farmand S, Aydin SE, Wustrau K, Böhm S, Ayuk F, Escherich G, Skokowa J, Müller I, Lehmberg K. Case report: Granulocyte-macrophage colony-stimulating factor sargramostim did not rescue the neutrophil phenotype in two patients with JAGN1-mutant severe congenital neutropenia. Front Immunol 2024; 15:1373495. [PMID: 39286252 PMCID: PMC11404322 DOI: 10.3389/fimmu.2024.1373495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024] Open
Abstract
Background Homozygous or compound heterozygous mutations in JAGN1 cause severe congenital neutropenia. JAGN1-mutant patients present with severe early-onset bacterial infections and most have been described as low-responders to recombinant granulocyte colony-stimulating factor (G-CSF) therapy. In a murine, hematopoietic JAGN1 knockout model, which displays susceptibility to Candida albicans infection in the absence of neutropenia, treatment with granulocyte-macrophage-CSF (GM-CSF) was able to restore the functional defect of neutrophils. Patients We present two unrelated patients with biallelic JAGN1 mutations, who were both treated with subcutaneous GM-CSF (sargramostim) after treatment failure to G-CSF. The first patient was an 18-year-old pregnant woman who received GM-CSF at 12 weeks of gestation up to a dose of 10 µg/kg/d for 7 days. The second patient was a 5-month-old girl who received GM-CSF for a total of 9 days at a dose of up to 20 µg/kg/d. GM-CSF did not increase neutrophil counts in our patients. Treatment was stopped when neutrophil numbers declined further, no beneficial effect was noticed, and patients presented with infections. No adverse effects were observed in either patient and the fetus. Both patients ultimately underwent successful hematopoietic stem cell transplantation. Discussion Both patients showed a high recurrence rate of severe infections on G-CSF treatment. GM-CSF therapy did not ameliorate the clinical phenotype, in contrast to the improvement of neutrophil function observed in the JAGN1 mouse model. No major additional extra-hematopoietic manifestations were evident in our patients. Conclusion In two unrelated patients, GM-CSF did not have any beneficial effect on neutrophil counts. Patients with JAGN1-mutant SCN with reduced G-CSF responsiveness and elevated infection rate should be evaluated early for stem cell transplantation.
Collapse
Affiliation(s)
- Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Eva Aydin
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Wustrau
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Svea Böhm
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Escherich
- Clinic of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University Hospital Tübingen, Tübingen, Germany
| | - Ingo Müller
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Lehmberg
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Walker N, Shaukat R, Benzar T, Ramadas P. Cytopenias to Polycythemia Vera: An Unusual Case. Am J Med 2023; 136:e222-e223. [PMID: 37481016 DOI: 10.1016/j.amjmed.2023.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/24/2023]
Affiliation(s)
- Nakoma Walker
- Louisiana State University Health Sciences Center, Shreveport.
| | - Rimsha Shaukat
- Louisiana State University Health Sciences Center, Shreveport
| | - Taras Benzar
- Louisiana State University Health Sciences Center, Shreveport
| | | |
Collapse
|
3
|
Pogozhykh D, Yilmaz Karapinar D, Klimiankou M, Gerschmann N, Ebetsberger-Dachs G, Palmblad J, Carlsson G, Masmas T, Kinsey S, Bartels M, Mellor-Heineke S, Welte K, Skokowa J, Zeidler C. HAX1-related congenital neutropenia: Long-term observation in paediatric and adult patients enrolled in the European branch of the Severe Chronic Neutropenia International Registry (SCNIR). Br J Haematol 2023. [PMID: 37193639 DOI: 10.1111/bjh.18840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
HAX1-related congenital neutropenia (HAX1-CN) is a rare autosomal recessive disorder caused by pathogenic variants in the HAX1 gene. HAX1-CN patients suffer from bone marrow failure as assessed by a maturation arrest of the myelopoiesis revealing persistent severe neutropenia from birth. The disorder is strongly associated with severe bacterial infections and a high risk of developing myelodysplastic syndrome or acute myeloid leukaemia. This study aimed to describe the long-term course of the disease, the treatment, outcome and quality of life in patients with homozygous HAX1 mutations reported to the European branch of the Severe Chronic Neutropenia International Registry. We have analysed a total of 72 patients with different types of homozygous (n = 68), compound heterozygous (n = 3), and digenic (n = 1) HAX1 mutations. The cohort includes 56 paediatric (<18 years) and 16 adult patients. All patients were initially treated with G-CSF with a sufficient increase in absolute neutrophil counts. Twelve patients required haematopoietic stem cell transplantation for leukaemia (n = 8) and non-leukaemic indications (n = 4). While previous genotype-phenotype reports documented a striking correlation between two main transcript variants and clinical neurological phenotypes, our current analysis reveals novel mutation subtypes and clinical overlaps between all genotypes including severe secondary manifestations, e.g., high incidence of secondary ovarian insufficiency.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Maksim Klimiankou
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Natali Gerschmann
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Georg Ebetsberger-Dachs
- Department of Paediatrics and Adolescent Medicine, Kepler University Hospital, Linz, Austria
| | - Jan Palmblad
- Departments of Medicine and Hematology, The Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Carlsson
- Childhood Cancer Research Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tania Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sally Kinsey
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Marije Bartels
- Department of Paediatric Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sabine Mellor-Heineke
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Karl Welte
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Cornelia Zeidler
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Fioredda F, Skokowa J, Tamary H, Spanoudakis M, Farruggia P, Almeida A, Guardo D, Höglund P, Newburger PE, Palmblad J, Touw IP, Zeidler C, Warren AJ, Dale DC, Welte K, Dufour C, Papadaki HA. The European Guidelines on Diagnosis and Management of Neutropenia in Adults and Children: A Consensus Between the European Hematology Association and the EuNet-INNOCHRON COST Action. Hemasphere 2023; 7:e872. [PMID: 37008163 PMCID: PMC10065839 DOI: 10.1097/hs9.0000000000000872] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 04/03/2023] Open
Abstract
Neutropenia, as an isolated blood cell deficiency, is a feature of a wide spectrum of acquired or congenital, benign or premalignant disorders with a predisposition to develop myelodysplastic neoplasms/acute myeloid leukemia that may arise at any age. In recent years, advances in diagnostic methodologies, particularly in the field of genomics, have revealed novel genes and mechanisms responsible for etiology and disease evolution and opened new perspectives for tailored treatment. Despite the research and diagnostic advances in the field, real world evidence, arising from international neutropenia patient registries and scientific networks, has shown that the diagnosis and management of neutropenic patients is mostly based on the physicians' experience and local practices. Therefore, experts participating in the European Network for the Innovative Diagnosis and Treatment of Chronic Neutropenias have collaborated under the auspices of the European Hematology Association to produce recommendations for the diagnosis and management of patients across the whole spectrum of chronic neutropenias. In the present article, we describe evidence- and consensus-based guidelines for the definition and classification, diagnosis, and follow-up of patients with chronic neutropenias including special entities such as pregnancy and the neonatal period. We particularly emphasize the importance of combining the clinical findings with classical and novel laboratory testing, and advanced germline and/or somatic mutational analyses, for the characterization, risk stratification, and monitoring of the entire spectrum of neutropenia patients. We believe that the wide clinical use of these practical recommendations will be particularly beneficial for patients, families, and treating physicians.
Collapse
Affiliation(s)
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, Rheumatology, and Clinical Immunology, University Hospital Tübingen, Germany
| | - Hannah Tamary
- The Rina Zaizov Hematology/Oncology Division, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Israel
| | - Michail Spanoudakis
- Department of Hematology, Warrington and Halton Teaching Hospitals NHS foundation Trust, Warrington, United Kingdom
| | - Piero Farruggia
- Pediatric Onco-Hematology, ARNAS Civico Di Cristina Benfratelli Hospital, Palermo, Italy
| | - Antonio Almeida
- Department of Hematology, Hospital da Luz Lisboa, Portugal
- Faculdade de Medicina, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Daniela Guardo
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Petter Höglund
- Clinical Immunology and Transfusion Medicine Clinic, Karolinska University Hospital, Stockholm, Sweden
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jan Palmblad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Ivo P. Touw
- Department of Hematology and Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, Hannover, Germany
| | - Alan J. Warren
- Department of Hematology, University of Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, United Kingdom
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom
| | | | - Karl Welte
- University Children’s Hospital Tübingen, Germany
| | - Carlo Dufour
- Unit of Hematology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete, Heraklion, Greece
- Department of Hematology, University Hospital of Heraklion, Crete, Greece
| |
Collapse
|
5
|
Dannenmann B, Klimiankou M, Oswald B, Solovyeva A, Mardan J, Nasri M, Ritter M, Zahabi A, Arreba-Tutusaus P, Mir P, Stein F, Kandabarau S, Lachmann N, Moritz T, Morishima T, Konantz M, Lengerke C, Ripperger T, Steinemann D, Erlacher M, Niemeyer CM, Zeidler C, Welte K, Skokowa J. iPSC modeling of stage-specific leukemogenesis reveals BAALC as a key oncogene in severe congenital neutropenia. Cell Stem Cell 2021; 28:906-922.e6. [PMID: 33894142 DOI: 10.1016/j.stem.2021.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 01/15/2021] [Accepted: 03/30/2021] [Indexed: 01/26/2023]
Abstract
Severe congenital neutropenia (CN) is a pre-leukemic bone marrow failure syndrome that can evolve to acute myeloid leukemia (AML). Mutations in CSF3R and RUNX1 are frequently observed in CN patients, although how they drive the transition from CN to AML (CN/AML) is unclear. Here we establish a model of stepwise leukemogenesis in CN/AML using CRISPR-Cas9 gene editing of CN patient-derived iPSCs. We identified BAALC upregulation and resultant phosphorylation of MK2a as a key leukemogenic event. BAALC deletion or treatment with CMPD1, a selective inhibitor of MK2a phosphorylation, blocked proliferation and induced differentiation of primary CN/AML blasts and CN/AML iPSC-derived hematopoietic stem and progenitor cells (HSPCs) without affecting healthy donor or CN iPSC-derived HSPCs. Beyond detailing a useful method for future investigation of stepwise leukemogenesis, this study suggests that targeting BAALC and/or MK2a phosphorylation may prevent leukemogenic transformation or eliminate AML blasts in CN/AML and RUNX1 mutant BAALC(hi) de novo AML.
Collapse
Affiliation(s)
- Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Maksim Klimiankou
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Benedikt Oswald
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Anna Solovyeva
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Jehan Mardan
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Masoud Nasri
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Malte Ritter
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Azadeh Zahabi
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Patricia Arreba-Tutusaus
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Perihan Mir
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Frederic Stein
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Siarhei Kandabarau
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology (IKP), 70376 Stuttgart, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Tatsuya Morishima
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Martina Konantz
- Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Claudia Lengerke
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany; Department of Biomedicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, 30625 Hannover, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, 79106 Freiburg, Germany; German Cancer Consortium (DKTK), 79106 Freiburg, Germany; German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Cornelia Zeidler
- Department of Oncology, Hematology, Immunology and Bone Marrow Transplantation, Hannover Medical School, 39625 Hannover, Germany
| | - Karl Welte
- University Children's Hospital Tuebingen, 72074 Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, 72074 Tuebingen, Germany.
| |
Collapse
|
6
|
Germline predisposition in myeloid neoplasms: Unique genetic and clinical features of GATA2 deficiency and SAMD9/SAMD9L syndromes. Best Pract Res Clin Haematol 2020; 33:101197. [PMID: 33038986 PMCID: PMC7388796 DOI: 10.1016/j.beha.2020.101197] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Increasing awareness about germline predisposition and the widespread application of unbiased whole exome sequencing contributed to the discovery of new clinical entities with high risk for the development of haematopoietic malignancies. The revised 2016 WHO classification introduced a novel category of "myeloid neoplasms with germline predisposition" with GATA2, CEBPA, DDX41, RUNX1, ANKRD26 and ETV6 genes expanding the spectrum of hereditary myeloid neoplasms (MN). Since then, more germline causes of MN were identified, including SAMD9, SAMD9L, and ERCC6L2. This review describes the genetic and clinical spectrum of predisposition to MN. The main focus lies in delineation of phenotypes, genetics and management of GATA2 deficiency and the novel SAMD9/SAMD9L-related disorders. Combined, GATA2 and SAMD9/SAMD9L (SAMD9/9L) syndromes are recognized as most frequent causes of primary paediatric myelodysplastic syndromes, particularly in setting of monosomy 7. To date, ~550 cases with germline GATA2 mutations, and ~130 patients with SAMD9/9L mutations had been reported in literature. GATA2 deficiency is a highly penetrant disorder with a progressive course that often rapidly necessitates bone marrow transplantation. In contrast, SAMD9/9L disorders show incomplete penetrance with various clinical outcomes ranging from spontaneous haematological remission observed in young children to malignant progression.
Collapse
|
7
|
Castelucci BG, Pereira AHM, Fioramonte M, Carazzolle MF, de Oliveira PSL, Franchini KG, Kobarg J, Martins-de-Souza D, Joazeiro PP, Consonni SR. Evidence of macrophage modulation in the mouse pubic symphysis remodeling during the end of first pregnancy and postpartum. Sci Rep 2020; 10:12403. [PMID: 32709949 PMCID: PMC7381608 DOI: 10.1038/s41598-020-68676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 11/10/2022] Open
Abstract
In mouse pregnancy, pubic symphysis (PS) remodels into an elastic interpubic ligament (IpL) in a temporally regulated process to provide safe delivery. It restores at postpartum to assure reproductive tract homeostasis. Recently, macrophage localization in the IpL and dynamic changes in the expression of inflammatory mediators observed from the end of pregnancy (D18, D19) to early days postpartum (1dpp, 3dpp) highlighted the necessity of the identification of the key molecules involved in innate immune processes in PS remodeling. Therefore, this study uses morphological and high-sensitivity molecular techniques to identify both macrophage association with extracellular matrix (ECM) remodeling and the immunological processes involved in PS changes from D18 to 3dpp. Results showed macrophage association with active gelatinases and ECM components and 25 differentially expressed genes (DEGs) related to macrophage activities in interpubic tissues from D18 to 3dpp. Additionally, microarray and proteomic analysis showed a significant association of interpubic tissue DEGs with complement system activation and differentially expressed proteins (DEPs) with phagocytosis, highlighting the involvement of macrophage-related activities in mouse PS remodeling. Therefore, the findings suggest that PS ECM remodeling is associated with evidence of macrophage modulation that ensures both IpL relaxation and fast PS recovery postpartum for first labor.
Collapse
Affiliation(s)
- B G Castelucci
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - A H M Pereira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - M Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - M F Carazzolle
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - P S L de Oliveira
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - K G Franchini
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - J Kobarg
- School of Pharmaceutical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - D Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), State University of Campinas (UNICAMP), Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - P P Joazeiro
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil
| | - S R Consonni
- Laboratory of Cytochemistry and Immunocytochemistry, Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
8
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
9
|
Yilmaz Karapinar D, Özdemir HH, Akinci B, Yaşar AŞ, Siviş ZÖ, Onay H, Özkinay F. Management of a Patient With Congenital Biallelic CSF3R Mutation With GM-CSF. J Pediatr Hematol Oncol 2020; 42:e164-e166. [PMID: 30499904 DOI: 10.1097/mph.0000000000001359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Severe Congenital Neutropenia (SCN) is a rare inherited disease characterized by an absolute neutrophil count (ANC) lower than 500/μL. Genetic heterogeneity and biallelic CSF3R mutation has rarely been identified as an underlying genetic defect in SCN. The majority of SCN patients respond to granulocyte colony stimulating factor treatment; however, in patients with inherited CSF3R mutation, ANC cannot generally be increased with granulocyte colony stimulating factor treatment. In such cases, granulocyte macrophage colony stimulating factor presents as an effective treatment option. Herein, we report a case of a 5-year-old SCN girl with homozygous c610-611 del ins AG (p.Q204R) mutation in the CSF3R gene, who was successfully treated with granulocyte macrophage colony stimulating factor.
Collapse
Affiliation(s)
| | | | | | | | | | - Hüseyin Onay
- Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Özkinay
- Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| |
Collapse
|
10
|
Yılmaz Karapınar D, Patıroğlu T, Metin A, Çalışkan Ü, Celkan T, Yılmaz B, Karakaş Z, Karapınar TH, Akıncı B, Özkınay F, Onay H, Yeşilipek MA, Akar HH, Tüysüz G, Tokgöz H, Özdemir GN, Aslan Kıykım A, Karaman S, Kılınç Y, Oymak Y, Küpesiz A, Olcay L, Keskin Yıldırım Z, Aydoğan G, Gökçe M, İleri T, Aral YZ, Bay A, Atabay B, Kaya Z, Söker M, Özdemir Karadaş N, Özbek U, Özsait Selçuk B, Özdemir HH, Uygun V, Tezcan Karasu G, Yılmaz Ş. Homozygous c.130-131 ins A (pW44X) mutation in the HAX1 gene as the most common cause of congenital neutropenia in Turkey: Report from the Turkish Severe Congenital Neutropenia Registry. Pediatr Blood Cancer 2019; 66:e27923. [PMID: 31321910 DOI: 10.1002/pbc.27923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Severe congenital neutropenia is a rare disease, and autosomal dominantly inherited ELANE mutation is the most frequently observed genetic defect in the registries from North America and Western Europe. However, in eastern countries where consanguineous marriages are common, autosomal recessive forms might be more frequent. METHOD Two hundred and sixteen patients with severe congenital neutropenia from 28 different pediatric centers in Turkey were registered. RESULTS The most frequently observed mutation was HAX1 mutation (n = 78, 36.1%). A heterozygous ELANE mutation was detected in 29 patients (13.4%) in our cohort. Biallelic mutations of G6PC3 (n = 9, 4.3%), CSF3R (n = 6, 2.9%), and JAGN1 (n = 2, 1%) were also observed. Granulocyte colony-stimulating factor treatment was given to 174 patients (80.6%). Two patients died with infectious complications, and five patients developed myelodysplastic syndrome/acute myeloblastic leukemia. The mean (± mean standard error) follow-up period was 129.7 ± 76.3 months, and overall survival was 96.8% (CI, 94.4-99.1%) at the age of 15 years. In Turkey, severe congenital neutropenia mostly resulted from the p W44X mutation in the HAX1 gene. CONCLUSION In Turkey, mutation analysis should be started with HAX1, and if this is negative, ELANE and G6PC3 should be checked. Because of the very high percentage of consanguineous marriage, rare mutations should be tested in patients with a negative mutation screen.
Collapse
Affiliation(s)
| | - Türkan Patıroğlu
- Department of Pediatric Immunology, Erciyes University Faculty of Medicine, İzmir, Turkey
| | - Ayşe Metin
- Department of Pediatric Immunology, Ankara Children's Hematology Oncology Training and Research Hospital, Ankara, Turkey
| | - Ümran Çalışkan
- Department of Pediatric Hematology-Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Tiraje Celkan
- Department of Pediatric Hematology, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Barış Yılmaz
- Department of Pediatric Hematology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Karakaş
- Department of Pediatric Hematology-Oncology, İstanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Tuba H Karapınar
- Department of Pediatric Hematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, İzmir, Turkey
| | - Burcu Akıncı
- Department of Pediatric Hematology, Ege University Faculty of Medicine, İzmir, Turkey
| | - Ferda Özkınay
- Department of Pediatric Genetic, Ege University Faculty of Medicine, İzmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetic, Ege University Faculty of Medicine, İzmir, Turkey
| | - Mehmet Akif Yeşilipek
- Pediatric Bone Marrow Transplantation Unit, Medical Park Göztepe Hospital, Istanbul, Turkey
| | - Himmet Haluk Akar
- Department of Pediatric Immunology, Erciyes University Faculty of Medicine, İzmir, Turkey
| | - Gülen Tüysüz
- Department of Pediatric Hematology, Akdeniz University Medical School, Antalya, Turkey
| | - Hüseyin Tokgöz
- Department of Pediatric Hematology-Oncology, Meram Faculty of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Gül Nihal Özdemir
- Department of Pediatric Hematology, Cerrahpaşa Medical Faculty, İstanbul University, Istanbul, Turkey
| | - Ayça Aslan Kıykım
- Department of Pediatric Allergy and Immunology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Department of Pediatric Hematology-Oncology, İstanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Yurdanur Kılınç
- Department of Pediatric Hematology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Yeşim Oymak
- Department of Pediatric Hematology-Oncology, Dr. Behçet Uz Children Research and Training Hospital, İzmir, Turkey
| | - Alphan Küpesiz
- Department of Pediatric Hematology, Akdeniz University Medical School, Antalya, Turkey
| | - Lale Olcay
- Department of Pediatric Hematology, Başkent University Faculty of Medicine, Ankara, Turkey
| | - Zuhal Keskin Yıldırım
- Department of Pediatric Hematology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Gönül Aydoğan
- Department of Pediatric Hematology, Kanuni Sultan Süleyman Research and Training Hospital, Istanbul, Turkey
| | - Müge Gökçe
- Department of Pediatric Bone marrow Transplantation Unit, Yeni Yüzyıl Üniversitesi, Gaziosmanpaşa Hastanesi, Istanbul, Turkey
| | - Talia İleri
- Department of Pediatric Hematology, Ankara University Medical Faculty, Ankara, Turkey
| | - Yusuf Ziya Aral
- Department of Pediatric Hematology, Adnan Menderes University Faculty of Medicine, Aydın, Turkey
| | - Ali Bay
- Department of Pediatric Hematology, Gaziantep University Faculty of Medicine, Gaziantep, Turkey
| | - Berna Atabay
- Department of Pediatric Hematology, Tepecik Teaching and Research Hospital, İzmir, Turkey
| | - Zuhre Kaya
- Department of Pediatric Hematology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Murat Söker
- Department of Pediatric Hematology, Dicle University Faculty of Medicine, Diyarbakır, Turkey
| | | | - Uğur Özbek
- Department of Genetics, İstanbul University Faculty of Medicine, Istanbul, Turkey
| | - Bilge Özsait Selçuk
- Department of Genetics, İstanbul University Faculty of Medicine, Istanbul, Turkey
| | - Hamiyet Hekimci Özdemir
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Fırat University, Elazığ, Turkey
| | - Vedat Uygun
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Gülsün Tezcan Karasu
- Pediatric Bone Marrow Transplantation Unit, Medical Park Antalya Hospital, Antalya, Turkey
| | - Şebnem Yılmaz
- Department of Pediatric Hematology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
11
|
Shahrabi S, Maleknia M, Tavakolifar Y, D. Zayeri Z, Saki N. Neutropenia and leukemia development: genetic risk factors and prognosis. Leuk Lymphoma 2019; 60:3363-3374. [DOI: 10.1080/10428194.2019.1630622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohsen Maleknia
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Yousef Tavakolifar
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab D. Zayeri
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur, University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
12
|
Congenital Neutropenia Patient With Hypomorphic Biallelic CSF3R Mutation Responding to GCSF. J Pediatr Hematol Oncol 2019; 41:e190-e192. [PMID: 30028820 DOI: 10.1097/mph.0000000000001258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Congenital neutropenia (CN) is a rare disorder, and the most common gene responsible for CN is ELANE. Furthermore, the mutations of HAX1, G6PC3, and JAGN1 genes may cause CN. These patients generally find great benefit from subcutaneous administration of Granulocyte Colony Stimulating Factor (GCSF). In recent years, Biallelic Colony Stimulating Factor 3 Receptor (CSF3R) mutations have been described as an underlying defect of CN in several children. In contrast to the previous group, the patients who have a CSF3R mutation do not respond to GCSF treatment. Here, we present a CN patient with hypomorphic biallelic CSF3R mutation responding to GCSF.
Collapse
|
13
|
Bucciol G, Moens L, Bosch B, Bossuyt X, Casanova JL, Puel A, Meyts I. Lessons learned from the study of human inborn errors of innate immunity. J Allergy Clin Immunol 2018; 143:507-527. [PMID: 30075154 DOI: 10.1016/j.jaci.2018.07.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023]
Abstract
Innate immunity contributes to host defense through all cell types and relies on their shared germline genetic background, whereas adaptive immunity operates through only 3 main cell types, αβ T cells, γδ T cells, and B cells, and relies on their somatic genetic diversification of antigen-specific responses. Human inborn errors of innate immunity often underlie infectious diseases. The range and nature of infections depend on the mutated gene, the deleteriousness of the mutation, and other ill-defined factors. Most known inborn errors of innate immunity to infection disrupt the development or function of leukocytes other than T and B cells, but a growing number of inborn errors affect cells other than circulating and tissue leukocytes. Here we review inborn errors of innate immunity that have been recently discovered or clarified. We highlight the immunologic implications of these errors.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Leen Moens
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Xavier Bossuyt
- Experimental Laboratory Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, INSERM U1163, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Necker Hospital for Sick Children, INSERM U1163, Paris, France; Paris Descartes University, Imagine Institute, Paris, France
| | - Isabelle Meyts
- Laboratory of Childhood Immunology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Zhang Y, Wang F, Chen X, Zhang Y, Wang M, Liu H, Cao P, Ma X, Wang T, Zhang J, Zhang X, Lu P, Liu H. CSF3R Mutations are frequently associated with abnormalities of RUNX1, CBFB, CEBPA, and NPM1 genes in acute myeloid leukemia. Cancer 2018; 124:3329-3338. [PMID: 29932212 DOI: 10.1002/cncr.31586] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/26/2018] [Accepted: 05/01/2018] [Indexed: 11/11/2022]
Abstract
BACKGROUND Mutations in the colony-stimulating factor 3 receptor (CSF3R) gene occur frequently in chronic neutrophilic leukemia and are rare in de novo acute leukemia. The objective of this study was to assess the incidence of CSF3R mutations in acute leukemia and their association with other genetic abnormalities. METHODS Amplicon-targeted, next-generation sequencing of 58 genes was performed retrospectively on 1152 patients (acute myeloid leukemia [AML], n = 587; acute lymphoid leukemia [ALL], n = 565). Reverse transcriptase-polymerase chain reaction analysis was used to detect 35 leukemia-specific gene fusions. RESULTS CSF3R mutations (26 patients) were detected in 3.6% (13 of 364 patients), 4.6% (8 of 175 patients), and 8.3% (4 of 48 patients) of those with de novo, relapsed, and secondary AML, respectively, and in 0.2% (1 of 565 patients) of those with ALL. In total, 9 distinct CSF3R mutations were detected. Membrane-proximal missense mutations and cytoplasmic truncations were identified as mutually exclusive. The proportion of patients who had French-American-British subtypes M2 and M4 in the CSF3R-mutated group was significantly greater than that in the CSF3R wild-type group for both the de novo AML cohort (P = .001) and the relapsed AML cohort (P = .024). All de novo and relapsed AMLs with CSF3R mutations were associated with genetic alterations in transcription factors, including RUNX1-RUNX1T1, CBFB-MYH11, double-mutated CCAAT/enhancer binding protein α (CEBPAdm), and NPM1 mutations; and core-binding factor gene abnormalities and CEBPAdm accounted for 90.5% (19 of 21 patients). CONCLUSIONS CSF3R mutations are uncommon in AML; however, when they occur, they are often associated with core-binding factor gene abnormalities and CEBPAdm. An in-depth understanding of the interaction between these genetic alterations could facilitate a clearer understanding of the role of CSF3R mutations in AML development and may be used for disease classification, prognosis, and the development of targeted therapy.
Collapse
Affiliation(s)
- Yang Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Fang Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xue Chen
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yu Zhang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Mingyu Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hong Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Panxiang Cao
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiaoli Ma
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Tong Wang
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jianping Zhang
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xian Zhang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Peihua Lu
- International Medical Center, Hebei Yanda Lu Daopei Hospital, Langfang, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Hongxing Liu
- Division of Pathology and Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China.,Beijing Lu Daopei Institute of Hematology, Beijing, China
| |
Collapse
|
15
|
Connelly JA, Mody RJ, Wu YM, Robinson DR, Lonigro RJ, Vats P, Rabban E, Anderson B, Walkovich K. Identification of novel MECOM gene fusion and personalized therapeutic targets through integrative clinical sequencing in secondary acute myeloid leukemia in a patient with severe congenital neutropenia: a case report and literature review. Cold Spring Harb Mol Case Stud 2018; 4:a002204. [PMID: 29572239 PMCID: PMC5880254 DOI: 10.1101/mcs.a002204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 01/17/2018] [Indexed: 12/25/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare hematologic disorder characterized by defective myelopoiesis and a high incidence of malignant transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). SCN patients who develop MDS/AML have excessive toxicities to traditional chemotherapy, and safer therapies are needed to improve overall survival in this population. In this report, we outline the use of a prospective integrative clinical sequencing trial (PEDS-MIONCOSEQ) in a patient with SCN and AML to help identify oncogenic targets for less toxic agents. Integrative sequencing identified two somatic cis-mutations in the colony stimulating factor 3 receptor (CSF3R) gene, a p.T640N mutation in the transmembrane region and a p.Q768* truncation mutation in the cytoplasmic domain. A somatic mutation p.H105Y, in the runt homology domain (RHD) of runt-related transcription factor 1 (RUNX1), was also identified. In addition, sequencing discovered a unique in-frame EIF4A2-MECOM (MDS1 and ectopic viral integration site 1 complex) chromosomal translocation with high MECOM expression. His mutations in CSF3R served as potential targets for tyrosine kinase inhibition and therefore provided an avenue to avoid more harmful therapy. This study highlights the utility of integrative clinical sequencing in SCN patients who develop leukemia and outlines a strategy on how to approach these patients in a future clinical sequencing trial to improve historically poor outcomes. A thorough review of leukemia in SCN and the role of CSF3R mutations in oncologic therapy are provided to support a new strategy on how to approach MDS/AML in SCN.
Collapse
MESH Headings
- Adolescent
- Alleles
- Biomarkers
- Biopsy
- Bone Marrow/pathology
- Congenital Bone Marrow Failure Syndromes
- Gene Expression Profiling
- Genotype
- Humans
- In Situ Hybridization, Fluorescence
- Karyotype
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/therapy
- MDS1 and EVI1 Complex Locus Protein/genetics
- Male
- Neoplasms, Second Primary/diagnosis
- Neoplasms, Second Primary/etiology
- Neoplasms, Second Primary/therapy
- Neutropenia/complications
- Neutropenia/congenital
- Neutropenia/therapy
- Oncogene Proteins, Fusion/genetics
- Transcriptome
- Exome Sequencing
Collapse
Affiliation(s)
- James A Connelly
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6310, USA
| | - Rajen J Mody
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Erica Rabban
- Michigan Center for Translational Pathology, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Bailey Anderson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| | - Kelly Walkovich
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
16
|
Abstract
Severe congenital neutropenias are a heterogeneous group of rare haematological diseases characterized by impaired maturation of neutrophil granulocytes. Patients with severe congenital neutropenia are prone to recurrent, often life-threatening infections beginning in their first months of life. The most frequent pathogenic defects are autosomal dominant mutations in ELANE, which encodes neutrophil elastase, and autosomal recessive mutations in HAX1, whose product contributes to the activation of the granulocyte colony-stimulating factor (G-CSF) signalling pathway. The pathophysiological mechanisms of these conditions are the object of extensive research and are not fully understood. Furthermore, severe congenital neutropenias may predispose to myelodysplastic syndromes or acute myeloid leukaemia. Molecular events in the malignant progression include acquired mutations in CSF3R (encoding G-CSF receptor) and subsequently in other leukaemia-associated genes (such as RUNX1) in a majority of patients. Diagnosis is based on clinical manifestations, blood neutrophil count, bone marrow examination and genetic and immunological analyses. Daily subcutaneous G-CSF administration is the treatment of choice and leads to a substantial increase in blood neutrophil count, reduction of infections and drastic improvement of quality of life. Haematopoietic stem cell transplantation is the alternative treatment. Regular clinical assessments (including yearly bone marrow examinations) to monitor treatment course and detect chromosomal abnormalities (for example, monosomy 7 and trisomy 21) as well as somatic pre-leukaemic mutations are recommended.
Collapse
Affiliation(s)
- Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, University of Tübingen, Tübingen, Germany
| | - David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Ivo P Touw
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cornelia Zeidler
- Department of Hematology and Oncology, Medical School Hannover, Hannover, Germany
| | - Karl Welte
- University Children's Hospital, Department of General Pediatrics and Pediatric Hematology and Oncology, Hoppe-Seyler-Str. 1, Tübingen 72076, Germany
| |
Collapse
|