1
|
Zhang H, Luan S, Wang F, Yang L, Chen S, Li Z, Wang X, Wang WP, Chen LQ, Wang Y. The Role of Exosomes in Central Immune Tolerance and Myasthenia Gravis. Immunol Invest 2025; 54:412-434. [PMID: 39680429 DOI: 10.1080/08820139.2024.2440772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
BACKGROUND Immune homeostasis plays a crucial role in immunology andis dependent on both central and peripheral tolerance. Centraltolerance and peripheral tolerance occur in the thymus and thesecondary lymphoid tissues, respectively. Tolerance breakdown andimmune regulation defects can lead to autoimmune disorders. In thisreview article, we aimed to describe the role of exosomes inregulating central tolerance and provide a summary of their effectson the pathogenesis, diagnosis, and therapeutic potential inmyasthenia gravis (MG). METHODS Articles for this review wereidentified using the PubMed database. RESULTS As the primarylymphoid organ, the thymus is responsible for building an immunecompetent, yet self-tolerant of T-cell population. Thymic statesinclude thymoma, thymic hyperplasia, and thymic atrophy, which canexert a significant influence on the central immune tolerance andrepresent specific characteristics of MG. Previous studies have foundthat exosomes derived from human thymic epithelial cells carryantigen-presenting molecules and a wide range of tissue restrictedantigens, which may indicate a vital role of thymic exosomes in MG.Besides, exosomal miRNAs and lncRNAs may also play a critical role inthe pathophysiology of MG. CONCLUSION This review provides thetherapeutic and diagnostic potential of exosomes in MG patients.
Collapse
Affiliation(s)
- Hanlu Zhang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Siyuan Luan
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Yang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Sicheng Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyang Li
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xuyang Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Wen-Ping Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Long-Qi Chen
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yun Wang
- Department of thoracic surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Sun L, Ye X, Wang L, Yu J, Wu Y, Hua Y, Dai L. Dysregulated Long Non-coding RNAs in Myasthenia Gravis- A Mini-Review. Curr Mol Med 2025; 25:2-12. [PMID: 38192147 DOI: 10.2174/0115665240281531231228051037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
Myasthenia gravis (MG) is an acquired autoimmune disease that is mediated by humoral immunity, supplemented by cellular immunity, along with participation of the complement system. The pathogenesis of MG is complex; although autoimmune dysfunction is clearly implicated, the specific mechanism remains unclear. Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with lengths greater than 200 nucleotides, with increasing evidence of their rich biological functions and high-level structure conservation. LncRNAs can directly interact with proteins and microRNAs to regulate the expression of target genes at the transcription and post-transcription levels. In recent years, emerging studies have suggested that lncRNAs play roles in the differentiation of immune cells, secretion of immune factors, and complement production in the human body. This suggests the involvement of lncRNAs in the occurrence and progression of MG through various mechanisms. In addition, the differentially expressed lncRNAs in peripheral biofluid may be used as a biomarker to diagnose MG and evaluate its prognosis. Moreover, with the development of lncRNA expression regulation technology, it is possible to regulate the differentiation of immune cells and influence the immune response by regulating the expression of lncRNAs, which will provide a potential therapeutic option for MG. Here, we review the research progress on the role of lncRNAs in different pathophysiological events contributing to MG, focusing on specific lncRNAs that may largely contribute to the pathophysiology of MG, which could be used as potential diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Liying Sun
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Xuhui Ye
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Linlin Wang
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Junping Yu
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Yan Wu
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| | - Yun Hua
- Department of Neurology, Shidong Hospital, Yangpu District, Shanghai, China
| | - Lihua Dai
- Intensive Care Unit, Shidong Hospital, Yangpu District, Shanghai, China
| |
Collapse
|
3
|
Yasumizu Y, Kinoshita M, Zhang MJ, Motooka D, Suzuki K, Nojima S, Koizumi N, Okuzaki D, Funaki S, Shintani Y, Ohkura N, Morii E, Okuno T, Mochizuki H. Spatial transcriptomics elucidates medulla niche supporting germinal center response in myasthenia gravis-associated thymoma. Cell Rep 2024; 43:114677. [PMID: 39180749 DOI: 10.1016/j.celrep.2024.114677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024] Open
Abstract
Myasthenia gravis (MG) is etiologically associated with thymus abnormalities, but its pathology in the thymus remains unclear. In this study, we attempt to narrow down the features associated with MG using spatial transcriptome analysis of thymoma and thymic hyperplasia samples. We find that the majority of thymomas are constituted by the cortical region. However, the small medullary region is enlarged in seropositive thymomas and contains polygenic enrichment and MG-specific germinal center structures. Neuromuscular medullary thymic epithelial cells, previously identified as MG-specific autoantigen-producing cells, are enriched in the cortico-medullary junction. The medulla is characterized by a specific chemokine pattern and immune cell composition, including migratory dendritic cells and effector regulatory T cells. Similar germinal center structures and immune microenvironments are also observed in the thymic hyperplasia medulla. This study shows that the medulla and junction areas are linked to MG pathology and provides insights into future MG research.
Collapse
Affiliation(s)
- Yoshiaki Yasumizu
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
| | - Makoto Kinoshita
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Martin Jinye Zhang
- Ray and Stephanie Lane Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daisuke Motooka
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Koichiro Suzuki
- BIKEN-RIMD NGS Laboratory, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Biomedical Science Center, The Research Foundation for Microbial Diseases of Osaka University (BIKEN), Suita, Japan
| | - Satoshi Nojima
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naoshi Koizumi
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Soichiro Funaki
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Naganari Ohkura
- Department of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; Department of Frontier Research in Tumor Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Wang F, Mei X, Yang Y, Zhang H, Li Z, Zhu L, Deng S, Wang Y. Non-coding RNA and its network in the pathogenesis of Myasthenia Gravis. Front Mol Biosci 2024; 11:1388476. [PMID: 39318549 PMCID: PMC11420011 DOI: 10.3389/fmolb.2024.1388476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Myasthenia Gravis (MG) is a chronic autoimmune disease that primarily affects the neuromuscular junction, leading to muscle weakness in patients with this condition. Previous studies have identified several dysfunctions in thymus and peripheral blood mononuclear cells (PBMCs), such as the formation of ectopic germinal centers in the thymus and an imbalance of peripheral T helper cells and regulatory T cells, that contribute to the initiation and development of MG. Recent evidences suggest that noncoding RNA, including miRNA, lncRNA and circRNA may play a significant role in MG progression. Additionally, the network between these noncoding RNAs, such as the competing endogenous RNA regulatory network, has been found to be involved in MG progression. In this review, we summarized the roles of miRNA, lncRNA, and circRNA, highlighted their potential application as biomarkers in diagnosing MG, and discussed their potential regulatory networks in the abnormal thymus and PBMCs during MG development.
Collapse
Affiliation(s)
- Fuqiang Wang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Mei
- Department of Thoracic Surgery, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, China
| | - Yunhao Yang
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlu Zhang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyang Li
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Lei Zhu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Senyi Deng
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Wang
- Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Kong X, Wu T, Cai H, Chen Z, Wang Y, He P, Liu P, Li L, Peng S, Xu F, Wang J, Zhang H, Wang L. Construction of ceRNA network mediated by circRNAs screening from microarray and identification of novel biomarkers for myasthenia gravis. Gene 2024; 918:148463. [PMID: 38631652 DOI: 10.1016/j.gene.2024.148463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Recent studies have revealed that circRNA can serve as ceRNA to participate in multiple autoimmune diseases. Our study aims to explore the key circRNA as ceRNA and biomarker for MG. METHODS We used circRNA microarray to explore differentially expressed circRNAs (DECs) from MG and compare with control. Then, we predicted the target miRNA associated with DECs and screened miRNAs by the algorithm of random walk with restart (RWR). Next, we constructed the circRNA-miRNA-mRNA ceRNA regulated network (CMMC) to identify the hub objects. Following, we detected the expression of hub-circRNAs by RT-PCR. We verify has_circ_0004183 (circFRMD4) sponging miR-145-5p regulate cells proliferation using luciferase assay and CCK-8. RESULTS We found that the expression level of circFRMD4 and has_circ_0035381 (circPIGB) were upregulated and has_circ_0089153(circ NUP214) had the lowest expression level in MG. Finally, we proved circFRMD4 sponging miR-145-5p regulate Jurkat cells proliferation. CircFRMD4 take part in the genesis and development of MG via circFRMD4/miR145-5p axis. CONCLUSIONS We found that circFRMD4, circPIGB and circNUP214 can be considered as valuable potential novel biomarkers for AchR + MG. CircFRMD4 participate in the development of AchR + MG via targeting binding with miR-145-5p.
Collapse
Affiliation(s)
- Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Tao Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hanlu Cai
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zhimin Chen
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Neurology, The Second Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Yu Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ping He
- Department of Neurology, The First Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Peifang Liu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Shanshan Peng
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanfan Xu
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
6
|
Kaminski HJ, Kusner LL, Cutter GR, Le Panse R, Wright CD, Perry Y, Wolfe GI. Does Surgical Removal of the Thymus Have Deleterious Consequences? Neurology 2024; 102:e209482. [PMID: 38781559 PMCID: PMC11226319 DOI: 10.1212/wnl.0000000000209482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/28/2024] [Indexed: 05/25/2024] Open
Abstract
The role of immunosenescence, particularly the natural process of thymic involution during aging, is increasingly acknowledged as a factor contributing to the development of autoimmune diseases and cancer. Recently, a concern has been raised about deleterious consequences of the surgical removal of thymic tissue, including for patients who undergo thymectomy for myasthenia gravis (MG) or resection of a thymoma. This review adopts a multidisciplinary approach to scrutinize the evidence concerning the long-term risks of cancer and autoimmunity postthymectomy. We conclude that for patients with acetylcholine receptor antibody-positive MG and those diagnosed with thymoma, the removal of the thymus offers prominent benefits that well outweigh the potential risks. However, incidental removal of thymic tissue during other thoracic surgeries should be minimized whenever feasible.
Collapse
Affiliation(s)
- Henry J Kaminski
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Linda L Kusner
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Gary R Cutter
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Rozen Le Panse
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Cameron D Wright
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Yaron Perry
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| | - Gil I Wolfe
- From the Department of Neurology & Rehabilitation Medicine (H.J.K.), George Washington University, DC; Department of Pharmacology & Physiology (L.L.K.), and Department of Biostatistics (G.R.C.), University of Alabama at Birmingham; INSERM (R.L.P.), Institute of Myology, Center of Research in Myology, Sorbonne University, Paris, France; Department of Surgery (C.D.W.), Harvard Medical School, Boston, MA; and Department of Surgery (Y.P.), and Department of Neurology (G.I.W.), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo/SUNY, NY
| |
Collapse
|
7
|
Truffault F, Auger L, Dragin N, Vilquin JT, Fadel E, Thomas de Montpreville V, Mansuet-Lupo A, Regnard JF, Alifano M, Sharshar T, Behin A, Eymard B, Bolgert F, Demeret S, Berrih-Aknin S, Le Panse R. Comparison of juvenile and adult myasthenia gravis in a French cohort with focus on thymic histology. Sci Rep 2024; 14:13955. [PMID: 38886398 PMCID: PMC11183198 DOI: 10.1038/s41598-024-63162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle fatigability due to acetylcholine receptor (AChR) autoantibodies. To better characterize juvenile MG (JMG), we analyzed 85 pre- and 132 post-pubescent JMG (with a cutoff age of 13) compared to 721 adult MG patients under 40 years old using a French database. Clinical data, anti-AChR antibody titers, thymectomy, and thymic histology were analyzed. The proportion of females was higher in each subgroup. No significant difference in the anti-AChR titers was observed. Interestingly, the proportion of AChR+ MG patients was notably lower among adult MG patients aged between 30 and 40 years, at 69.7%, compared to over 82.4% in the other subgroups. Thymic histological data were examined in patients who underwent thymectomy during the year of MG onset. Notably, in pre-JMG, the percentage of thymectomized patients was significantly lower (32.9% compared to more than 42.5% in other subgroups), and the delay to thymectomy was twice as long. We found a positive correlation between anti-AChR antibodies and germinal center grade across patient categories. Additionally, only females, particularly post-JMG patients, exhibited the highest rates of lymphofollicular hyperplasia (95% of cases) and germinal center grade. These findings reveal distinct patterns in JMG patients, particularly regarding thymic follicular hyperplasia, which appears to be exacerbated in females after puberty.
Collapse
Affiliation(s)
- Frédérique Truffault
- Center of Research in Myology, Institute of Myology, INSERM, Sorbonne University, 105, Boulevard de l'Hôpital, 75013, Paris, France
| | - Ludivine Auger
- Center of Research in Myology, Institute of Myology, INSERM, Sorbonne University, 105, Boulevard de l'Hôpital, 75013, Paris, France
| | - Nadine Dragin
- Center of Research in Myology, Institute of Myology, INSERM, Sorbonne University, 105, Boulevard de l'Hôpital, 75013, Paris, France
| | - Jean-Thomas Vilquin
- Center of Research in Myology, Institute of Myology, INSERM, Sorbonne University, 105, Boulevard de l'Hôpital, 75013, Paris, France
| | - Elie Fadel
- Marie Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | | | - Audrey Mansuet-Lupo
- Department of Pathology, Cochin University Hospital Group, AP-HP, Paris-Descartes University, Paris, France
| | - Jean-François Regnard
- Department of Pathology, Cochin University Hospital Group, AP-HP, Paris-Descartes University, Paris, France
| | - Marco Alifano
- Department of Pathology, Cochin University Hospital Group, AP-HP, Paris-Descartes University, Paris, France
| | - Tarek Sharshar
- Anesthesia and Intensive Care Department, GHU Paris Psychiatrie et Neurosciences, Pole Neuro, Sainte‑Anne Hospital, Paris, Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université Paris Cité, Paris, France
| | - Anthony Behin
- AP-HP, Referral Center for Neuromuscular Disorders, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Bruno Eymard
- AP-HP, Referral Center for Neuromuscular Disorders, Institute of Myology, Pitié-Salpêtrière Hospital, AP-HP, Paris, France
| | - Francis Bolgert
- Neuro-Intensive Care Unit, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Sophie Demeret
- Neuro-Intensive Care Unit, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne University, Paris, France
| | - Sonia Berrih-Aknin
- Center of Research in Myology, Institute of Myology, INSERM, Sorbonne University, 105, Boulevard de l'Hôpital, 75013, Paris, France
| | - Rozen Le Panse
- Center of Research in Myology, Institute of Myology, INSERM, Sorbonne University, 105, Boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
8
|
Zhang P, Liu Y, Chen S, Zhang X, Wang Y, Zhang H, Li J, Yang Z, Xiong K, Duan S, Zhang Z, Wang Y, Wang P. Distribution of multi-level B cell subsets in thymoma and thymoma-associated myasthenia gravis. Sci Rep 2024; 14:2674. [PMID: 38302676 PMCID: PMC10834956 DOI: 10.1038/s41598-024-53250-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
B-cell subsets in peripheral blood (PB) and tumor microenvironment (TME) were evaluated to determine myasthenia gravis (MG) severity in patients with thymoma-associated MG (TMG) and the distribution of B cells in type B TMG. The distribution of mature B cells, including Bm1-Bm5, CD19+ and CD20+ B cells and non-switched (NSMBCs) and switched (SMBCs) memory B cells, were determined in 79 patients with thymoma or TMG. Quantitative relationships between the T and TMG groups and the TMG-low and TMG-high subgroups were determined. NSMBCs and SMBCs were compared in TME and PB. Type B thymoma was more likely to develop into MG, with types B2 and B3 being especially associated with MG worsening. The percentage of CD19+ B cells in PB gradually increased, whereas the percentage of CD20+ B cells and the CD19/CD20 ratio were not altered. The (Bm2 + Bm2')/(eBm5 + Bm5) index was significantly higher in the TMG-high than in thymoma group. The difference between SMBC/CD19+ and NSMBC/CD19+ B cell ratios was significantly lower in the thymoma than TMG group. NSMBCs assembled around tertiary lymphoid tissue in thymomas of patients with TMG. Few NSMBCs were observed in patients with thymoma alone, with these cells being diffusely distributed. MG severity in patients with TMG can be determined by measuring CD19+ B cells and Bm1-Bm5 in PB. The CD19/CD20 ratio is a marker of disease severity in TMG patients. Differences between NSMBCs and SMBCs in PB and TME of thymomas can synergistically determine MG severity in patients with TMG.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Yuxin Liu
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Si Chen
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Xinyu Zhang
- School of Medicine, University of Dundee, Dundee, UK
| | - Yuanguo Wang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Hui Zhang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Jian Li
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Zhaoyu Yang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Kai Xiong
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Shuning Duan
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Zeyang Zhang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Yan Wang
- Department of Cardiovascular Thoracic Surgery, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China
| | - Ping Wang
- Tianjin Ruichuang Biological Technology Co. Ltd, Tianjin, China
| |
Collapse
|
9
|
Crisafulli S, Boccanegra B, Carollo M, Bottani E, Mantuano P, Trifirò G, De Luca A. Myasthenia Gravis Treatment: From Old Drugs to Innovative Therapies with a Glimpse into the Future. CNS Drugs 2024; 38:15-32. [PMID: 38212553 DOI: 10.1007/s40263-023-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease that causes debilitating muscle weakness due to impaired neuromuscular transmission. Since most (about 80-90%) MG patients present autoantibodies against the acetylcholine receptor, standard medical therapy consists of symptomatic treatment with acetylcholinesterase inhibitors (e.g., pyridostigmine). In addition, considering the autoimmune basis of MG, standard therapy includes immunomodulating agents, such as corticosteroids, azathioprine, cyclosporine A, and cyclophosphamide. New strategies have been proposed for the treatment of MG and include complement blockade (i.e., eculizumab, ravulizumab, and zilucoplan) and neonatal Fc receptor antagonism (i.e., efgartigimod and rozanolixizumab). The aim of this review is to provide a detailed overview of the pre- and post-marketing evidence on the five pharmacological treatments most recently approved for the treatment of MG, by identifying both preclinical and clinical studies registered in clinicaltrials.gov. A description of the molecules currently under evaluation for the treatment of MG is also provided.
Collapse
Affiliation(s)
| | - Brigida Boccanegra
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Massimo Carollo
- Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - Emanuela Bottani
- Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37124, Verona, Italy
| | - Paola Mantuano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| | - Gianluca Trifirò
- Department of Diagnostics and Public Health, University of Verona, P.le L.A. Scuro 10, 37124, Verona, Italy.
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
10
|
Chen X, Qiu J, Gao Z, Liu B, Zhang C, Yu W, Yang J, Shen Y, Qi L, Yao X, Sun H, Yang X. Myasthenia gravis: Molecular mechanisms and promising therapeutic strategies. Biochem Pharmacol 2023; 218:115872. [PMID: 37865142 DOI: 10.1016/j.bcp.2023.115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiayi Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
11
|
Huang X, Zhang Z, Wang Y, Xu M, Du X, Zhang Y. Circulating miRNAs drive personalized medicine based on subgroup classification in myasthenia gravis patients. Neurol Sci 2023; 44:3877-3884. [PMID: 37402938 DOI: 10.1007/s10072-023-06933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Myasthenia gravis (MG) is a classic autoimmune neuromuscular disease with strong clinical heterogeneity. The concept of subgroup classification was proposed to guide the precise treatment of MG. Subgroups based on serum antibodies and clinical features include ocular MG, early-onset MG with AchR antibodies, late-onset MG with AchR antibodies, thymoma-associated MG, MuSK-associated MG, LRP4-associated MG, and seronegative MG. However, reliable objective biomarkers are still needed to reflect the individualized response to therapy. MicroRNAs (miRNAs) are small non-coding RNA molecules which can specifically bind to target genes and regulate gene expression at the post-transcriptional level, and then influence celluar biological processes. MiRNAs play an important role in the pathogenesis of autoimmune diseases, including MG. Several studies on circulating miRNAs in MG have been reported. However, there is rare systematic review to summarize the differences of these miRNAs in different subgroups of MG. Here, we summarize the potential role of circulating miRNAs in different subgroups of MG to promote personalized medicine.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhouao Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yingying Wang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Mingming Xu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Xue Du
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China
| | - Yong Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Quanshan Distric, Xuzhou, Jiangsu, China.
| |
Collapse
|
12
|
王 蕊, 陈 辉, 黄 志, 陈 勇, 钟 建. [Clinical effect of different immunosuppressive treatment regimens in children with ocular myasthenia gravis: a retrospective analysis]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:1034-1039. [PMID: 37905760 PMCID: PMC10621052 DOI: 10.7499/j.issn.1008-8830.2305114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/25/2023] [Indexed: 11/02/2023]
Abstract
OBJECTIVES To investigate the clinical effect of different immunosuppressive treatment regimens in children with ocular myasthenia gravis (OMG). METHODS A retrospective analysis was conducted on 130 children with OMG who were treated in the Department of Neurology, Jiangxi Children's Hospital, from February 2018 to February 2023. According to the treatment regimen, they were divided into four groups: glucocorticoid (GC) group (n=29), mycophenolate mofetil (MMF) group (GC+MMF; n=33), methotrexate (MTX) group (GC+MTX; n=30), and tacrolimus (FK506) group (GC+FK506; n=38). Treatment outcomes and adverse reactions were compared among the groups. RESULTS After 3 months of treatment, the FK506 group had significantly lower scores of Myasthenia Gravis Quantitative Scale and Myasthenia Gravis-Specific Activities of Daily Living than the other three groups (P<0.05). After 3 months of treatment, the FK506 group had a significantly lower dose of prednisone than the GC group, and after 6 and 9 months of treatment, the MMF, MTX, and FK506 groups had a significantly lower dose of prednisone than the GC group (P<0.05). After 12 months of treatment, the MMF, MTX, and FK506 groups had a significantly lower incidence rate of GC-related adverse reactions than the GC group (P<0.05). CONCLUSIONS For children with OMG, the addition of various immunosuppressants can reduce the dosage of GC and adverse reactions. Among them, FK506 shows superior efficacy compared to other immunosuppressants in the early treatment of OMG.
Collapse
|
13
|
Almodovar JL, Mehrabyan A. Disease-Based Prognostication: Myasthenia Gravis. Semin Neurol 2023; 43:799-806. [PMID: 37751854 DOI: 10.1055/s-0043-1775791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Myasthenia gravis (MG) is an acquired autoimmune neuromuscular junction transmission disorder that clinically presents as fluctuating or persistent weakness in various skeletal muscle groups. Neuroprognostication in MG begins with some basic observations on the natural history of the disease and known treatment outcomes. Our objective is to provide a framework that can assist a clinician who encounters the MG patient for the first time and attempts to prognosticate probable outcomes in individual patients. In this review article, we explore clinical type, age of onset, antibody status, severity of disease, thymus pathology, autoimmune, and other comorbidities as prognostic factors in MG.
Collapse
Affiliation(s)
- Jorge L Almodovar
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Anahit Mehrabyan
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
14
|
Zhu Y, Wang B, Hao Y, Zhu R. Clinical features of myasthenia gravis with neurological and systemic autoimmune diseases. Front Immunol 2023; 14:1223322. [PMID: 37781409 PMCID: PMC10538566 DOI: 10.3389/fimmu.2023.1223322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Multiple reports on the co-existence of autoimmune diseases and myasthenia gravis (MG) have raised considerable concern. Therefore, we reviewed autoimmune diseases in MG to explore their clinical presentations and determine whether the presence of autoimmune diseases affects the disease severity and treatment strategies for MG. We reviewed all the major immune-mediated coexisting autoimmune conditions associated with MG. PubMed, Embase and Web of Science were searched for relevant studies from their inception to January 2023. There is a higher frequency of concomitant autoimmune diseases in patients with MG than in the general population with a marked risk in women. Most autoimmune comorbidities are linked to AChR-MG; however, there are few reports of MuSK-MG. Thyroid disorders, systemic lupus erythematosus, and vitiligo are the most common system autoimmune diseases associated with MG. In addition, MG can coexist with neurological autoimmune diseases, such as neuromyelitis optica (NMO), inflammatory myopathy (IM), multiple sclerosis (MS), and autoimmune encephalitis (AE), with NMO being the most common. Autoimmune diseases appear to develop more often in early-onset MG (EOMG). MS coexists more commonly with EOMG, while IM coexists with LOMG. In addition, MG complicated by autoimmune diseases tends to have mild clinical manifestations, and the coexistence of autoimmune diseases does not influence the clinical course of MG. The clinical course of neurological autoimmune diseases is typically severe. Autoimmune diseases occur most often after MG or as a combined abnormality; therefore, timely thymectomy followed by immunotherapy could be effective. In addition, thymoma-associated AChR MG is associated with an increased risk of AE and IM, whereas NMO and MS are associated with thymic hyperplasia. The co-occurrence of MG and autoimmune diseases could be attributed to similar immunological mechanisms with different targets and common genetic factor predisposition. This review provides evidence of the association between MG and several comorbid autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Akbari A, Hadizadeh A, Islampanah M, Salavati Nik E, Atkin SL, Sahebkar A. COVID-19, G protein-coupled receptor, and renin-angiotensin system autoantibodies: Systematic review and meta-analysis. Autoimmun Rev 2023; 22:103402. [PMID: 37490975 DOI: 10.1016/j.autrev.2023.103402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/27/2023]
Abstract
INTRODUCTION There are an increasing number of reports of autoantibodies (AAbs) against host proteins such as G-protein coupled receptors (GPCRs) and the renin-angiotensin system (RAS) in COVID-19 disease. Here we have undertaken a systematic review and meta-analysis of all reports of AAbs against GPCRs and RAS in COVID-19 patients including those with long-COVID or post-COVID symptoms. METHODS PubMed, Embase, Web of Science, and Scopus databases were searched to find papers on the role of GPCR and RAS AAbs in the presence and severity of COVID-19 or post- COVID symptoms available through March 21, 2023. Data on the prevalence of AngII or ACE, comparing AngII or ACE between COVID-19 and non-COVID-19, or comparing AngII or ACE between COVID-19 patients with different disease stages were pooled and a meta-analysed using random- or fixed-effects models were undertaken. RESULTS The search yielded a total of 1042 articles, of which 68 studies were included in this systematic review and nine in the meta-analysis. Among 18 studies that investigated GPCRs and COVID-19 severity, 18 distinct AAbs were detected. In addition, nine AAbs were found in case reports that assessed post- COVID, and 19 AAbs were found in other studies that assessed post- COVID or long- COVID symptoms. Meta-analysis revealed a significantly higher number of seropositive ACE2 AAbs in COVID-19 patients (odds ratio = 7.766 [2.056, 29.208], p = 0.002) and particularly in severe disease (odds ratio = 11.49 [1.04, 126.86], p = 0.046), whereas AngII-AAbs seropositivity was no different between COVID-19 and control subjects (odds ratio = 2.890 [0.546-15.283], p = 0.21). CONCLUSIONS GPCR and RAS AAbs may play an important role in COVID-19 severity, the development of disease progression, long-term symptoms COVID and post- COVID symptoms.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hadizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Islampanah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ensie Salavati Nik
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, Bahrain, Adliya, PO Box 15503, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Suster D, Ronen N, Pierce DC, Suster S. Thymic Parenchymal Hyperplasia. Mod Pathol 2023; 36:100207. [PMID: 37149223 DOI: 10.1016/j.modpat.2023.100207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/08/2023]
Abstract
Thymic hyperplasia is a rare condition generally caused by lymphoid follicular hyperplasia associated with autoimmune disorders. True thymic parenchymal hyperplasia unassociated with lymphoid follicular hyperplasia is extremely rare and may give rise to difficulties in diagnosis. We have studied 44 patients with true thymic hyperplasia (38 females and 6 males) aged 7 months to 64 years (mean, 36 years). Eighteen patients presented with symptoms of chest discomfort or shortness of breath; in 20 patients, the lesions were discovered incidentally. Imaging studies demonstrated enlargement of the mediastinum by a mass lesion suspicious for malignancy. All patients were treated with complete surgical excision. The tumors measured from 3.5 to 24 cm (median, 10 cm; mean, 10.46 cm). Histologic examination showed lobules of thymic tissue displaying well-developed corticomedullary architecture, with scattered Hassall corpuscles separated by mature adipose tissue and bounded by a thin fibrous capsule. No cases showed evidence of lymphoid follicular hyperplasia, cytologic atypia, or confluence of the lobules. Immunohistochemical studies showed a normal pattern of distribution for keratin-positive thymic epithelial cells against a background rich in CD3/TdT/CD1a+ lymphocytes. Twenty-nine cases had an initial clinical or pathological diagnosis of thymoma or thymoma vs thymic hyperplasia. Clinical follow-up in 26 cases showed that all patients were alive and well between 5 and 15 years after diagnosis (mean, 9 years). Thymic parenchymal hyperplasia causing significant enlargement of the normal thymus that is sufficient to cause symptoms or worrisome imaging findings should be considered in the differential diagnosis of anterior mediastinal masses. The criteria for distinguishing such lesions from lymphocyte-rich thymoma are presented.
Collapse
Affiliation(s)
- David Suster
- Department of Pathology, Rutgers New Jersey Medical School, Newark, New Jersey.
| | - Natali Ronen
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Douglas C Pierce
- Department of Radiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Saul Suster
- Department of Pathology, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
17
|
Ge M, Yang C, Li T, Du T, Zhang P, Li X, Dou Y, Duan R. Circulating CXCR5 + natural killer cells are expanded in patients with myasthenia gravis. Clin Transl Immunology 2023; 12:e1450. [PMID: 37223338 PMCID: PMC10202622 DOI: 10.1002/cti2.1450] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/18/2023] [Accepted: 04/18/2023] [Indexed: 05/25/2023] Open
Abstract
Objectives Myasthenia gravis (MG) is a classic autoantibody-mediated disease in which pathogenic antibodies target postsynaptic membrane components, causing fluctuating skeletal muscle weakness and fatigue. Natural killer (NK) cells are heterogeneous lymphocytes that have gained increasing attention owing to their potential roles in autoimmune disorders. This study will investigate the relationship between the distinct NK cell subsets and MG pathogenesis. Methods A total of 33 MG patients and 19 healthy controls were enrolled in the present study. Circulating NK cells, their subtypes and follicular helper T cells were analysed by flow cytometry. Serum acetylcholine receptor (AChR) antibody levels were determined by ELISA. The role of NK cells in the regulation of B cells was verified using a co-culture assay. Results Myasthenia gravis patients with acute exacerbations had a reduced number of total NK cells, CD56dim NK cells and IFN-γ-secreting NK cells in the peripheral blood, while CXCR5+ NK cells were significantly elevated. CXCR5+ NK cells expressed a higher level of ICOS and PD-1 and a lower level of IFN-γ than those in CXCR5- NK cells and were positively correlated with Tfh cell and AChR antibody levels. In vitro experiments demonstrated that NK cells suppressed plasmablast differentiation while promoting CD80 and PD-L1 expression on B cells in an IFN-γ-dependent manner. Furthermore, CXCR5- NK cells inhibited plasmablast differentiation, while CXCR5+ NK cells could more efficiently promote B cell proliferation. Conclusion These results reveal that CXCR5+ NK cells exhibit distinct phenotypes and functions compared with CXCR5- NK cells and might participate in the pathogenesis of MG.
Collapse
Affiliation(s)
- Meng‐Ru Ge
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Department of Neurology, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanChina
| | - Chun‐Lin Yang
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Tao Li
- Department of Neurology, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanChina
| | - Tong Du
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Peng Zhang
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Xiao‐Li Li
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| | - Ying‐Chun Dou
- College of Basic Medical Sciences, Shandong University of Traditional Chinese MedicineJinanChina
| | - Rui‐Sheng Duan
- Department of NeurologyThe First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan HospitalJinanChina
- Department of Neurology, Shandong Provincial Qianfoshan HospitalCheeloo College of Medicine, Shandong UniversityJinanChina
- Shandong Institute of NeuroimmunologyJinanChina
- Shandong Provincial Medicine and Health Key Laboratory of NeuroimmunologyJinanChina
| |
Collapse
|
18
|
Abstract
INTRODUCTION Myasthenia gravis (MG) is a neurological B-cell mediated autoimmune disorder affecting the neuromuscular junction. MG therapeutics have always relied on nonselective immunosuppression with oral steroids and non-steroidal immunosuppressants, mainly with good clinical response. However, clinical stabilization is often reached at the cost of many troublesome side effects and up to 15% of MG patients are deemed as refractory to conventional immunosuppression. This highlights the need of a more targeted and efficacious therapeutic approach. Results from the randomized-controlled period of the CHAMPION study demonstrate a good safety, tolerability, and efficacy profile of ravulizumab compared to placebo. Like eculizumab, ravulizumab is an anti-C5 monoclonal antibody, but with an enhanced pharmacokinetic profile, that allows dosing every 8 weeks. AREAS COVERED We provide an overview of ravulizumab biological features and results from the phase III CHAMPION MG (NCT03920293) study. EXPERT OPINION Data of the CHAMPION MG trial demonstrate that ravulizumab is effective and safe in the treatment of generalized MG. Having a rapid clinical effect, with long-term clinical response, ravulizumab could represent a selective immunosuppressive drug of choice in the future therapeutic algorithm of MG, where conventional immunosuppressants slowly leave room for newer drugs with a more targeted mechanism of action.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
19
|
Hu YZ, Li Q, Wang PF, Li XP, Hu ZL. Multiple functions and regulatory network of miR-150 in B lymphocyte-related diseases. Front Oncol 2023; 13:1140813. [PMID: 37182123 PMCID: PMC10172652 DOI: 10.3389/fonc.2023.1140813] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
MicroRNAs (miRNAs) play vital roles in the post-transcriptional regulation of gene expression. Previous studies have shown that miR-150 is a crucial regulator of B cell proliferation, differentiation, metabolism, and apoptosis. miR-150 regulates the immune homeostasis during the development of obesity and is aberrantly expressed in multiple B-cell-related malignant tumors. Additionally, the altered expression of MIR-150 is a diagnostic biomarker of various autoimmune diseases. Furthermore, exosome-derived miR-150 is considered as prognostic tool in B cell lymphoma, autoimmune diseases and immune-mediated disorders, suggesting miR-150 plays a vital role in disease onset and progression. In this review, we summarized the miR-150-dependent regulation of B cell function in B cell-related immune diseases.
Collapse
Affiliation(s)
- Yue-Zi Hu
- Clinical Laboratory, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qiao Li
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Peng-Fei Wang
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Ping Li
- Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhao-Lan Hu
- Department of Anesthesiology, The Second Affiliated Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Zhao-Lan Hu,
| |
Collapse
|
20
|
Tereshko Y, Gigli GL, Pez S, De Pellegrin A, Valente M. New-onset Myasthenia Gravis after SARS-CoV-2 infection: case report and literature review. J Neurol 2023; 270:601-609. [PMID: 36352330 PMCID: PMC9645742 DOI: 10.1007/s00415-022-11472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022]
Abstract
We report the case of a 19-year-old female patient who developed Myasthenia Gravis 13 days after SARS-CoV-2 infection with positive RT-PCR testing. Her symptoms initially involved the oculo-bulbar district, but they gradually worsened in 3 months converting into a generalized form of Myasthenia Gravis complicated with a myasthenic crisis. A high level of anti-acetylcholine receptor antibodies was found in the serum, while anti-MuSK antibodies were negative; Repetitive Nerve Stimulation and Single-fiber Electromyography were suggestive of Myasthenia Gravis. Intravenous immunoglobulin courses and specific therapy were able to improve her symptoms, but thymic resection was needed to control the disease. This is a report of new-onset Myasthenia Gravis correlated to COVID-19 in which thymic resection was described and the histologic analysis of the thymus was performed showing thymic hyperplasia despite negative thoracic Magnetic Resonance Imaging. SARS-CoV-2 infection releases inflammatory cytokines that could dysregulate the immune system and lead to Myasthenia Gravis in susceptible subjects.
Collapse
Affiliation(s)
- Yan Tereshko
- grid.411492.bClinical Neurology Unit, Department of Neuroscience, Udine University Hospital, Piazzale S. Maria Della Misericordia 15, 33100 Udine, Italy
| | - Gian Luigi Gigli
- grid.411492.bClinical Neurology Unit, Department of Neuroscience, Udine University Hospital, Piazzale S. Maria Della Misericordia 15, 33100 Udine, Italy ,grid.5390.f0000 0001 2113 062XDepartment of Medicine (DAME), University of Udine, Udine, Italy
| | - Sara Pez
- grid.411492.bClinical Neurology Unit, Department of Neuroscience, Udine University Hospital, Piazzale S. Maria Della Misericordia 15, 33100 Udine, Italy
| | - Alessandro De Pellegrin
- grid.411492.bDepartment of Pathology, Udine University Hospital, Piazzale S. maria della Misericordia 15, 33100 Udine, Italy
| | - Mariarosaria Valente
- grid.411492.bClinical Neurology Unit, Department of Neuroscience, Udine University Hospital, Piazzale S. Maria Della Misericordia 15, 33100 Udine, Italy ,grid.5390.f0000 0001 2113 062XDepartment of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
21
|
Abstract
Myasthenia gravis is an autoimmune disorder caused by antibodies against elements in the postsynaptic membrane at the neuromuscular junction, which leads to muscle weakness. Congenital myasthenic syndromes are rare and caused by mutations affecting pre- or postsynaptic function at the neuromuscular synapse and resulting in muscle weakness. MG has a prevalence of 150-250 and an annual incidence of 8-10 individuals per million. The majority has disease onset after age 50 years. Juvenile MG with onset in early childhood is more common in East Asia. MG is subgrouped according to type of pathogenic autoantibodies, age of onset, thymus pathology, and generalization of muscle weakness. More than 80% have antibodies against the acetylcholine receptor. The remaining have antibodies against MuSK, LRP4, or postsynaptic membrane antigens not yet identified. A thymoma is present in 10% of MG patients, and more than one-third of thymoma patients develop MG as a paraneoplastic condition. Immunosuppressive drug therapy, thymectomy, and symptomatic drug therapy with acetylcholine esterase inhibitors represent cornerstones in the treatment. The prognosis is good, with the majority of patients having mild or moderate symptoms only. Most congenital myasthenic syndromes are due to dysfunction in the postsynaptic membrane. Symptom debut is in early life. Symptomatic drug treatment has sometimes a positive effect.
Collapse
Affiliation(s)
- Nils Erik Gilhus
- Department of Neurology, Haukeland University Hospital and Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
22
|
Gong L, Tian J, Zhang Y, Feng Z, Wang Q, Wang Y, Zhang F, Zhang W, Huang G. Human Parvovirus B19 May Be a Risk Factor in Myasthenia Gravis with Thymoma. Ann Surg Oncol 2022; 30:1646-1655. [PMID: 36509875 PMCID: PMC9744379 DOI: 10.1245/s10434-022-12936-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Our previous studies have demonstrated that human parvovirus B19 (B19V) is involved in the pathogenesis of thymic hyperplasia-associated myasthenia gravis (MG). However, more cases need to be assessed to further elucidate the relationship between this virus and thymoma-associated MG. MATERIALS AND METHODS The clinicopathological characteristics, presence of B19V DNA, and B19V VP2 capsid protein expression of 708 cases of thymomas were investigated using nested polymerase chain reaction (PCR), TaqMan quantitative (q) PCR, immunohistochemistry, fluorescent multiplex immunohistochemistry, and electron microscopy. RESULTS Patients with MG or ectopic germinal centers (GCs) were significantly younger than those without MG (P < 0.0001) or GCs (P = 0.0001). Moreover, significantly more GCs were detected in thymomas associated with MG than in those without MG (P < 0.0001). The results of nested PCR and TaqMan qPCR were consistent, and B19V DNA positivity was only associated with presence of GCs (P = 0.011). Immunohistochemically, positive staining was primarily detected in neoplastic thymic epithelial cells (TECs) and ectopic GCs. The positive rate of B19V VP2 was significantly higher in thymoma with MG or GCs than in thymoma without MG (P = 0.004) or GCs (P = 0.006). Electron microscopy showed B19V particles in the nuclei of neoplastic TECs and B cells from GCs. CONCLUSIONS We conclude that the pathogenesis of MG is closely associated with the presence of GCs, and B19V infection is plausibly an essential contributor to formation of ectopic GCs in thymoma. To the best of the authors' knowledge, this is the first study to elucidate the role of B19V in thymoma-associated MG and provide new ideas for exploring the etiopathogenic mechanism of MG.
Collapse
Affiliation(s)
- Li Gong
- Department of Pathology, Helmholtz Sina-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Jing Tian
- Department of Pathology, Helmholtz Sina-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yan Zhang
- Department of Pathology, Helmholtz Sina-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Zheng Feng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Qiannan Wang
- Department of Pathology, Helmholtz Sina-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Yan Wang
- Department of Stomatology, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Fuqin Zhang
- Department of Pathology, Helmholtz Sina-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xi’an, People’s Republic of China
| | - Wei Zhang
- Department of Pathology, Helmholtz Sina-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xi'an, People's Republic of China.
| | - Gaosheng Huang
- Department of Pathology, Helmholtz Sina-German Research Laboratory for Cancer, Tangdu Hospital, Air Force Medical University, Xi'an, People's Republic of China. .,State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Medical University, Xi'an, People's Republic of China.
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW This review summarizes recent insights into the immunopathogenesis of autoimmune myasthenia gravis (MG). Mechanistic understanding is presented according to MG disease subtypes and by leveraging the knowledge gained through the use of immunomodulating biological therapeutics. RECENT FINDINGS The past two years of research on MG have led to a more accurate definition of the mechanisms through which muscle-specific tyrosine kinase (MuSK) autoantibodies induce pathology. Novel insights have also emerged from the collection of stronger evidence on the pathogenic capacity of low-density lipoprotein receptor-related protein 4 autoantibodies. Clinical observations have revealed a new MG phenotype triggered by cancer immunotherapy, but the underlying immunobiology remains undetermined. From a therapeutic perspective, MG patients can now benefit from a wider spectrum of treatment options. Such therapies have uncovered profound differences in clinical responses between and within the acetylcholine receptor and MuSK MG subtypes. Diverse mechanisms of immunopathology between the two subtypes, as well as qualitative nuances in the autoantibody repertoire of each patient, likely underpin the variability in therapeutic outcomes. Although predictive biomarkers of clinical response are lacking, these observations have ignited the development of assays that might assist clinicians in the choice of specific therapeutic strategies. SUMMARY Recent advances in the understanding of autoantibody functionalities are bringing neuroimmunologists closer to a more detailed appreciation of the mechanisms that govern MG pathology. Future investigations on the immunological heterogeneity among MG patients will be key to developing effective, individually tailored therapies.
Collapse
Affiliation(s)
- Gianvito Masi
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, CT 06511 USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06511 USA
| |
Collapse
|
24
|
Chen K, Li Y, Yang H. Poor responses and adverse outcomes of myasthenia gravis after thymectomy: Predicting factors and immunological implications. J Autoimmun 2022; 132:102895. [PMID: 36041292 DOI: 10.1016/j.jaut.2022.102895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Myasthenia gravis (MG) has been recognized as a series of heterogeneous but treatable autoimmune conditions. As one of the indispensable therapies, thymectomy can achieve favorable prognosis especially in early-onset generalized MG patients with seropositive acetylcholine receptor antibody. However, poor outcomes, including worsening or relapse of MG, postoperative myasthenic crisis and even post-thymectomy MG, are also observed in certain scenarios. The responses to thymectomy may be associated with the general characteristics of patients, disease conditions of MG, autoantibody profiles, native or ectopic thymic pathologies, surgical-related factors, pharmacotherapy and other adjuvant modalities, and the presence of comorbidities and complications. However, in addition to these variations among individuals, pathological remnants and the abnormal immunological milieu and responses potentially represent major mechanisms that underlie the detrimental neurological outcomes after thymectomy. We underscore these plausible risk factors and discuss the immunological implications therein, which may be conducive to better managing the indications for thymectomy, to avoiding modifiable risk factors of poor responses and adverse outcomes, and to developing post-thymectomy preventive and therapeutic strategies for MG.
Collapse
Affiliation(s)
- Kangzhi Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
25
|
Vakrakou A, Chatzistamatiou T, Koros C, Karathanasis D, Tentolouris-Piperas V, Tzanetakos D, Stathopoulos P, Koutsis G, Spyropoulou-Vlachou M, Evangelopoulos ME, Stefanis L, Stavropoulos-Giokas C, Anagnostouli M. HLA-genotyping by Next-Generation-Sequencing reveals shared and unique HLA alleles in two patients with coexisting neuromyelitis optica spectrum disorder and thymectomized myasthenia gravis: immunological implications for mutual aetiopathogenesis? Mult Scler Relat Disord 2022; 63:103858. [DOI: 10.1016/j.msard.2022.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/10/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
26
|
Novel treatment strategies for acetylcholine receptor antibody-positive myasthenia gravis and related disorders. Autoimmun Rev 2022; 21:103104. [PMID: 35452851 DOI: 10.1016/j.autrev.2022.103104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
Abstract
The presence of autoantibodies directed against the muscle nicotinic acetylcholine receptor (AChR) is the most common cause of myasthenia gravis (MG). These antibodies damage the postsynaptic membrane of the neuromuscular junction and cause muscle weakness by depleting AChRs and thus impairing synaptic transmission. As one of the best-characterized antibody-mediated autoimmune diseases, AChR-MG has often served as a reference model for other autoimmune disorders. Classical pharmacological treatments, including broad-spectrum immunosuppressive drugs, are effective in many patients. However, complete remission cannot be achieved in all patients, and 10% of patients do not respond to currently used therapies. This may be attributed to production of autoantibodies by long-lived plasma cells which are resistant to conventional immunosuppressive drugs. Hence, novel therapies specifically targeting plasma cells might be a suitable therapeutic approach for selected patients. Additionally, in order to reduce side effects of broad-spectrum immunosuppression, targeted immunotherapies and symptomatic treatments will be required. This review presents established therapies as well as novel therapeutic approaches for MG and related conditions, with a focus on AChR-MG.
Collapse
|
27
|
Zhou Y, Chen J, Li Z, Tan S, Yan C, Luo S, Zhou L, Song J, Huan X, Wang Y, Zhao C, Zeng W, Xi J. Clinical Features of Myasthenia Gravis With Antibodies to MuSK Based on Age at Onset: A Multicenter Retrospective Study in China. Front Neurol 2022; 13:879261. [PMID: 35463138 PMCID: PMC9033288 DOI: 10.3389/fneur.2022.879261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
Abstract
Introduction Antibodies to MuSK identify a rare subtype of myasthenia gravis (MuSK-MG). In western countries, the onset age of MuSK-MG peaks in the late 30's while it is unknown in Chinese population. Methods In this retrospective multicenter study, we screened 69 MuSK-MG patients from 2042 MG patients in five tertiary referral centers in China from October 2016 to October 2021 and summarized the clinical features and treatment outcomes. Then we subgrouped the patients into early-onset (<50 years old), late-onset (50–64 years old), and very-late-onset (≥65 years old) MG and compared the differences in weakness distribution, disease progression and treatment outcomes among three subgroups. Results The patients with MuSK-MG were female-dominant (55/69) and their mean age at onset was 44.70 ± 15.84 years old, with a broad range of 17–81 years old. At disease onset, 29/69 patients were classified as MGFA Type IIb and the frequency of bulbar and extraocular involvement was 53.6 and 69.6%, respectively. There was no difference in weakness distribution. Compared with early-onset MuSK-MG, very-late-onset patients had a higher proportion of limb muscle involvement (12/15 vs.16/40, p = 0.022) 3 months after onset. Six months after onset, more patients with bulbar (14/15 vs. 26/39, p = 0.044) and respiratory involvement (6/15 vs. 0/13, p = 0.013) were seen in very-late-onset than in late-onset subgroup. The very-late-onset subgroup had the highest frequency of limb weakness (86.7%, p < 0.001). One year after onset, very-late-onset patients demonstrated a higher frequency of respiratory involvement than early-onset patients (4/12 vs. 2/35, p = 0.036). 39/64 patients reached MSE. Among 46 patients who received rituximab, very-late-onset patients started earlier than late-onset patients [6 (5.5–7.5) vs. 18 (12–65) months, p = 0.039], but no difference in the time and rate to achieving MSE was identified. Conclusion MuSK-MG patients usually manifested as acute onset and predominant bulbar and respiratory involvement with female dominance. Very-late-onset patients displayed an early involvement of limb, bulbar and respiratory muscles in the disease course, which might prompt their earlier use of rituximab. The majority MuSK-MG patients can benefit from rituximab treatment regardless of age at onset.
Collapse
Affiliation(s)
- Yufan Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Jialin Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zunbo Li
- Department of Neurology, Xi'an Gaoxin Hospital, Xi'an, China
| | - Song Tan
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Chong Yan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Jie Song
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Xiao Huan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Ying Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
| | - Wenshuang Zeng
- Department of Neurology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Wenshuang Zeng
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Diseases, Shanghai, China
- *Correspondence: Jianying Xi
| |
Collapse
|
28
|
Payet CA, You A, Fayet OM, Dragin N, Berrih-Aknin S, Le Panse R. Myasthenia Gravis: An Acquired Interferonopathy? Cells 2022; 11:cells11071218. [PMID: 35406782 PMCID: PMC8997999 DOI: 10.3390/cells11071218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/12/2023] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by antibodies against components of the neuromuscular junction, particularly the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG patients. In early-onset AChR-MG and thymoma-associated MG, an interferon type I (IFN-I) signature is clearly detected in the thymus. The origin of this chronic IFN-I expression in the thymus is not yet defined. IFN-I subtypes are normally produced in response to viral infection. However, genetic diseases called interferonopathies are associated with an aberrant chronic production of IFN-I defined as sterile inflammation. Some systemic autoimmune diseases also share common features with interferonopathies. This review aims to analyze the pathogenic role of IFN-I in these diseases as compared to AChR-MG in order to determine if AChR-MG could be an acquired interferonopathy.
Collapse
Affiliation(s)
- Cloé A Payet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Axel You
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Nadine Dragin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
29
|
Vanoli F, Mantegazza R. Antibody Therapies in Autoimmune Neuromuscular Junction Disorders: Approach to Myasthenic Crisis and Chronic Management. Neurotherapeutics 2022; 19:897-910. [PMID: 35165857 PMCID: PMC9294078 DOI: 10.1007/s13311-022-01181-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 02/06/2023] Open
Abstract
Myasthenia gravis (MG) is a neurological autoimmune disorder characterized by muscle weakness and fatigue. It is a B cell-mediated disease caused by pathogenic antibodies directed against various components of the neuromuscular junction (NMJ). Despite the wide range of adverse effects, current treatment is still based on non-specific immunosuppression, particularly on long-term steroid usage. The increasing knowledge regarding the pathogenic mechanisms of MG has however allowed to create more target-specific therapies. A very attractive therapeutic approach is currently offered by monoclonal antibodies (mAbs), given their ability to specifically and effectively target different immunopathological pathways, such as the complement cascade, B cell-related cluster of differentiation (CD) proteins, and the human neonatal Fc receptor (FcRn). Up to now, eculizumab, a C5-directed mAb, has been approved for the treatment of generalized MG (gMG) and efgartigimod, a FcRn inhibitor, has just been approved by the U.S. Food and Drug Administration for the treatment of anti-acetylcholine receptor (AChR) antibody positive gMG. Other mAbs are currently under investigation with encouraging preliminary results, further enriching the new range of therapeutic possibilities for MG. This review article provides an overview of the present status of mAb-based therapies for MG, which offer an exciting promise for better outcomes by setting the basis of a precision medicine approach.
Collapse
Affiliation(s)
- Fiammetta Vanoli
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Renato Mantegazza
- Neuroimmunology and Neuromuscular Disease Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
30
|
Ao YQ, Jiang JH, Gao J, Wang HK, Ding JY. Recent thymic emigrants as the bridge between thymoma and autoimmune diseases. Biochim Biophys Acta Rev Cancer 2022; 1877:188730. [DOI: 10.1016/j.bbcan.2022.188730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/27/2022]
|
31
|
Ohe R, Yang S, Yamashita D, Ichikawa C, Saito A, Kabasawa T, Utsunomiya A, Aung NY, Urano Y, Kitaoka T, Suzuki K, Takahara D, Sasaki A, Takakubo Y, Takagi M, Yamakawa M, Futakuchi M. Pathogenesis of follicular thymic hyperplasia associated with rheumatoid arthritis. Pathol Int 2022; 72:252-260. [PMID: 35147259 PMCID: PMC9304286 DOI: 10.1111/pin.13212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/22/2022] [Indexed: 11/30/2022]
Abstract
Lymphoproliferative disorders may occur in patients with rheumatoid arthritis (RA) who are treated with methotrexate. However, follicular thymic hyperplasia (FTH) associated with RA (FTH‐RA) is generally not considered a lymphoproliferative disorder. To investigate the pathogenesis of FTH‐RA, we examined 12 cases of FTH involving thymic enlargement, four of FTH involving RA and eight of FTH involving myasthenia gravis (MG). Increased numbers and larger germinal center (GC) size were observed in FTH‐RA group. The percentage of distorted GCs was 13.3% in FTH‐RA group and 3.25% in FTH associated with MG (FTH‐MG) group. A greater meshwork of follicular dendritic cells was observed in the GCs of FTH‐RA group. Positive indices of CD27+ cells and PD‐1+ cells per GC in FTH‐RA group were significantly higher than those in FTH‐MG group, though positive indices of CD68+ cells and CD163+ cells were similar. Myoid cell proliferation, as evaluated by α‐SMA, tenascin‐C, and l‐caldesmon expression, was significantly increased in the FTH‐RA group compared with the FTH‐MG group. These results suggest that FTH should be considered in patients with RA treated with methotrexate. The pathogenesis of FTH‐RA includes GC expansion and increased numbers of memory B cells, follicular helper T cells, and myoid cells, indicating humoral immunity activation.
Collapse
Affiliation(s)
- Rintaro Ohe
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Suran Yang
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan.,Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Daisuke Yamashita
- Department of Pathology, Kobe City Medical Center General Hospital, Kobe, Japan
| | - Chihiro Ichikawa
- Department of Diagnostic Pathology, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Akihisa Saito
- Department of Diagnostic Pathology, National Hospital Organization Kure Medical Center/Chugoku Cancer Center, Hiroshima, Japan
| | - Takanobu Kabasawa
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Aya Utsunomiya
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Naing Ye Aung
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuka Urano
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Takumi Kitaoka
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kazushi Suzuki
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Daiichiro Takahara
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan.,Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Akiko Sasaki
- Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Yuya Takakubo
- Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Michiaki Takagi
- Department of Orthopedic Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Mitsunori Yamakawa
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Mitsuru Futakuchi
- Department of Pathology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
32
|
Huijbers MG, Marx A, Plomp JJ, Le Panse R, Phillips WD. Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 2022; 21:163-175. [DOI: 10.1016/s1474-4422(21)00357-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 01/19/2023]
|
33
|
Ectopic germinal centers in the thymus accurately predict prognosis of myasthenia gravis after thymectomy. Mod Pathol 2022; 35:1168-1174. [PMID: 35338262 PMCID: PMC9424113 DOI: 10.1038/s41379-022-01070-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 11/08/2022]
Abstract
The ability of thymic histopathology to predict the long-term impact of thymectomy in non-thymomatous myasthenia gravis (NTMG) is mainly uncharted. We applied digital pathology to quantitatively characterize differences of thymic histology between early-onset (EOMG) and late-onset MG (LOMG) and to investigate the role of thymic changes for thymectomy outcomes in MG. We analyzed 83 thymic H&E slides from thymectomized NTMG patients, of which 69 had EOMG and 14 LOMG, using digital pathology open-access software QuPath. We compared the results to the retrospectively assessed clinical outcome at two years after thymectomy and at the last follow-up visit where complete stable remission and minimal use of medication were primary outcomes. The automated annotation pipeline was an effective and reliable way to analyze thymic H&E samples compared to manual annotation with mean intraclass correlation of 0.80. The ratio of thymic tissue to stroma and fat was increased in EOMG compared to LOMG (p = 8.7e-07), whereas no difference was observed in the ratio of medulla to cortex between these subtypes. AChRAb seropositivity correlated with the number of ectopic germinal centers (eGC; p = 0.00067) but not with other histological areas. Patients with an increased number of eGCs had better post-thymectomy outcomes at two years after thymectomy (p = 0.0035) and at the last follow-up (p = 0.0267). ROC analysis showed that eGC area predicts thymectomy outcome in EOMG with an AUC of 0.79. Digital pathology can thus help in providing a predictive tool to the clinician, the eGC number, to guide the post-thymectomy treatment decisions in EOMG patients.
Collapse
|
34
|
Bortone F, Scandiffio L, Cavalcante P, Mantegazza R, Bernasconi P. Epstein-Barr Virus in Myasthenia Gravis: Key Contributing Factor Linking Innate Immunity with B-Cell-Mediated Autoimmunity. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epstein-Barr virus (EBV), a common human herpes virus latently infecting most of the world’s population with periodic reactivations, is the main environmental factor suspected to trigger and/or sustain autoimmunity by its ability to disrupt B-cell tolerance checkpoints. Myasthenia gravis (MG) is a prototypic autoimmune disorder, mostly caused by autoantibodies to acetylcholine receptor (AChR) of the neuromuscular junction, which cause muscle weakness and fatigability. Most patients display hyperplastic thymus, characterized by ectopic germinal center formation, chronic inflammation, exacerbated Toll-like receptor activation, and abnormal B-cell activation. After an overview on MG clinical features and intra-thymic pathogenesis, in the present chapter, we describe our main findings on EBV presence in MG thymuses, including hyperplastic and thymoma thymuses, in relationship with innate immunity activation and data from other autoimmune conditions. Our overall data strongly indicate a critical contribution of EBV to innate immune dysregulation and sustained B-cell-mediated autoimmune response in the pathological thymus of MG patients.
Collapse
|
35
|
Mandel-Brehm C, Fichtner ML, Jiang R, Winton VJ, Vazquez SE, Pham MC, Hoehn KB, Kelleher NL, Nowak RJ, Kleinstein SH, Wilson MR, DeRisi JL, O'Connor KC. Elevated N-Linked Glycosylation of IgG V Regions in Myasthenia Gravis Disease Subtypes. THE JOURNAL OF IMMUNOLOGY 2021; 207:2005-2014. [PMID: 34544801 DOI: 10.4049/jimmunol.2100225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023]
Abstract
Elevated N-linked glycosylation of IgG V regions (IgG-VN-Glyc) is an emerging molecular phenotype associated with autoimmune disorders. To test the broader specificity of elevated IgG-VN-Glyc, we studied patients with distinct subtypes of myasthenia gravis (MG), a B cell-mediated autoimmune disease. Our experimental design focused on examining the B cell repertoire and total IgG. It specifically included adaptive immune receptor repertoire sequencing to quantify and characterize N-linked glycosylation sites in the circulating BCR repertoire, proteomics to examine glycosylation patterns of the total circulating IgG, and an exploration of human-derived recombinant autoantibodies, which were studied with mass spectrometry and Ag binding assays to respectively confirm occupation of glycosylation sites and determine whether they alter binding. We found that the frequency of IgG-VN-Glyc motifs was increased in the total BCR repertoire of patients with MG when compared with healthy donors. The elevated frequency was attributed to both biased V gene segment usage and somatic hypermutation. IgG-VN-Glyc could be observed in the total circulating IgG in a subset of patients with MG. Autoantigen binding, by four patient-derived MG autoantigen-specific mAbs with experimentally confirmed presence of IgG-VN-Glyc, was not altered by the glycosylation. Our findings extend prior work on patterns of Ig V region N-linked glycosylation in autoimmunity to MG subtypes.
Collapse
Affiliation(s)
- Caleigh Mandel-Brehm
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Miriam L Fichtner
- Department of Neurology, Yale University School of Medicine, New Haven, CT.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL
| | - Sara E Vazquez
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT
| | - Neil L Kelleher
- Department of Chemistry, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL.,Department of Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence at Northwestern University, Evanston, IL
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT.,Department of Pathology, Yale University School of Medicine, New Haven, CT.,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | - Michael R Wilson
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA; and
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA.,Chan Zuckerberg Biohub, San Francisco, CA
| | - Kevin C O'Connor
- Department of Neurology, Yale University School of Medicine, New Haven, CT; .,Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
36
|
Handunnetthi L, Knezevic B, Kasela S, Burnham KL, Milani L, Irani SR, Fang H, Knight JC. Genomic Insights into Myasthenia Gravis Identify Distinct Immunological Mechanisms in Early and Late Onset Disease. Ann Neurol 2021; 90:455-463. [PMID: 34279044 PMCID: PMC8581766 DOI: 10.1002/ana.26169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The purpose of this study was to identify disease relevant genes and explore underlying immunological mechanisms that contribute to early and late onset forms of myasthenia gravis. METHODS We used a novel genomic methodology to integrate genomewide association study (GWAS) findings in myasthenia gravis with cell-type specific information, such as gene expression patterns and promotor-enhancer interactions, in order to identify disease-relevant genes. Subsequently, we conducted additional genomic investigations, including an expression quantitative analysis of 313 healthy people to provide mechanistic insights. RESULTS We identified several genes that were specifically linked to early onset myasthenia gravis including TNIP1, ORMDL3, GSDMB, and TRAF3. We showed that regulators of toll-like receptor 4 signaling were enriched among these early onset disease genes (fold enrichment = 3.85, p = 6.4 × 10-3 ). In contrast, T-cell regulators CD28 and CTLA4 were exclusively linked to late onset disease. We identified 2 causal genetic variants (rs231770 and rs231735; posterior probability = 0.98 and 0.91) near the CTLA4 gene. Subsequently, we demonstrated that these causal variants result in low expression of CTLA4 (rho = -0.66, p = 1.28 × 10-38 and rho = -0.52, p = 7.01 × 10-22 , for rs231735 and rs231770, respectively). INTERPRETATION The disease-relevant genes identified in this study are a unique resource for many disciplines, including clinicians, scientists, and the pharmaceutical industry. The distinct immunological pathways linked to early and late onset myasthenia gravis carry important implications for drug repurposing opportunities and for future studies of drug development. ANN NEUROL 2021;90:455-463.
Collapse
Affiliation(s)
- Lahiru Handunnetthi
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Bogdan Knezevic
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Silva Kasela
- Estonian Genome Centre, Institute of GenomicsUniversity of TartuTartuEstonia
| | | | - Lili Milani
- Estonian Genome Centre, Institute of GenomicsUniversity of TartuTartuEstonia
| | - Sarosh R. Irani
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Hai Fang
- Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | | |
Collapse
|
37
|
Zhao R, Luo S, Zhao C. The role of innate immunity in myasthenia gravis. Autoimmun Rev 2021; 20:102800. [PMID: 33722749 DOI: 10.1016/j.autrev.2021.102800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Myasthenia gravis (MG) is a T cell-driven, B cell-mediated and autoantibody-dependent autoimmune disorder against neuromuscular junctions (NMJ). Accumulated evidence has emerged regarding the role of innate immunity in the pathogenesis of MG. In this review, we proposed two hypothesis underlying the pathological mechanism. In the context of gene predisposition, on the one hand, Toll-like receptors (TLRs) pathways were initiated by viral infection in the thymus with MG to generate chemokines and pro-inflammatory cytokines such as Type I interferon (IFN), which facilitate the thymus to function as a tertiary lymphoid organ (TLO). On the another hand, the antibodies against acetylcholine receptors (AChR) generated by thymus then activated the classical pathways on thymus and neuromuscular junction (NMJ). Futher, we also highlight the role of innate immune cells in the pathogenic response. Finally, we provide some future perspectives in developing new therapeutic approaches particularly targeting the innate immunity for MG.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan hospital Fudan University, 200040 Shanghai, China.
| |
Collapse
|
38
|
Isono T, Wakasa T, Kusumoto H, Shimada K, Ogawa T, Shiono H. SS-A52 antigen expression in thymic carcinoma accompanied with Sjögren syndrome: A case report. Medicine (Baltimore) 2021; 100:e24491. [PMID: 33592902 PMCID: PMC7870235 DOI: 10.1097/md.0000000000024491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/07/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE The relationship between thymic tumors and Sjögren syndrome (SjS) is unknown, and surgical resection has not been optimized. Especially, thymic carcinoma with autoimmune disease is rare. Analysis of SS-A52, germinal centers, plasma cells, and Foxp3+ Treg in thymic carcinoma has never been reported, and their pathological roles in causing SjS have not been studied. PATIENT CONCERNS A 78-year-old man presented with sputum production and xerostomia while asleep. Chest computed tomography showed a homogeneous and hypodense mass in the anterosuperior mediastinum. Serum levels of the antinuclear antibody, antibody to SS-A, and antibody to SS-B were positive. DIAGNOSES Thymic carcinoma (squamous cell carcinoma) and SjS. INTERVENTIONS Video-assisted thoracoscopic resection of the mediastinal tumor and postoperative radiation therapy was performed. OUTCOMES The histological diagnosis was thymic squamous cell carcinoma. Histologically, the squamous carcinomatous cells were arranged in nests and cords in the fibrohyaline stroma with capsular invasion. In the stroma, dense lymphoid tissues containing large reactive germinal centers and many plasma cells were also noted. In the involuted thymus, CD20-positive mature lymphocytes infiltrated, and germinal centers were noted. Double immunohistochemical staining revealed that SS-A52 antigen was positive in both the carcinoma component and CD20-positive mature B cells. Postoperatively, the xerostomia persisted, and serum SS-A and SS-B remained positive. No evidence of carcinoma recurrence with chest computed tomography scan was observed at 18-months follow-up. LESSONS In the surgical treatment of thymic tumors with SjS, extended thymectomy might be worth considering to stop the progressive destruction of the targets of SjS-specific autoantibodies. However, the postoperative symptoms may not dramatically improve because the target organs might have changed irreversibly, and memory B cells might persist. This is the first report that demonstrated the SS-A52 antigen presentation in a thymic tumor to the best of our knowledge.
Collapse
Affiliation(s)
| | - Tomoko Wakasa
- Department of Diagnostic Pathology, Kindai University Nara Hospital, Ikoma
| | | | - Keiji Shimada
- Department of Diagnostic Pathology, Nara City Hospital, Nara
| | | | | |
Collapse
|
39
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
40
|
Jiang R, Hoehn KB, Lee CS, Pham MC, Homer RJ, Detterbeck FC, Aban I, Jacobson L, Vincent A, Nowak RJ, Kaminski HJ, Kleinstein SH, O'Connor KC. Thymus-derived B cell clones persist in the circulation after thymectomy in myasthenia gravis. Proc Natl Acad Sci U S A 2020; 117:30649-30660. [PMID: 33199596 PMCID: PMC7720237 DOI: 10.1073/pnas.2007206117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Myasthenia gravis (MG) is a neuromuscular, autoimmune disease caused by autoantibodies that target postsynaptic proteins, primarily the acetylcholine receptor (AChR) and inhibit signaling at the neuromuscular junction. The majority of patients under 50 y with AChR autoantibody MG have thymic lymphofollicular hyperplasia. The MG thymus is a reservoir of plasma cells that secrete disease-causing AChR autoantibodies and although thymectomy improves clinical scores, many patients fail to achieve complete stable remission without additional immunosuppressive treatments. We speculate that thymus-associated B cells and plasma cells persist in the circulation after thymectomy and that their persistence could explain incomplete responses to resection. We studied patients enrolled in a randomized clinical trial and used complementary modalities of B cell repertoire sequencing to characterize the thymus B cell repertoire and identify B cell clones that resided in the thymus and circulation before and 12 mo after thymectomy. Thymus-associated B cell clones were detected in the circulation by both mRNA-based and genomic DNA-based sequencing. These antigen-experienced B cells persisted in the circulation after thymectomy. Many circulating thymus-associated B cell clones were inferred to have originated and initially matured in the thymus before emigration from the thymus to the circulation. The persistence of thymus-associated B cells correlated with less favorable changes in clinical symptom measures, steroid dose required to manage symptoms, and marginal changes in AChR autoantibody titer. This investigation indicates that the diminished clinical response to thymectomy is related to persistent circulating thymus-associated B cell clones.
Collapse
Affiliation(s)
- Ruoyi Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Kenneth B Hoehn
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
| | - Casey S Lee
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511
| | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Pathology & Laboratory Medicine Service, VA CT Health Care System, West Haven, CT 06516
| | - Frank C Detterbeck
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06511
| | - Inmaculada Aban
- Department of Biostatistics, University of Alabama, Birmingham, AL 35294
| | - Leslie Jacobson
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, OX1 2JD Oxford, United Kingdom
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Henry J Kaminski
- Department of Neurology, The George Washington University, Washington, DC 20052
| | - Steven H Kleinstein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06511
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511;
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
41
|
Punga AR, Kusner L, Berrih-Aknin S, Le Panse R. Editorial: Advances in Autoimmune Myasthenia Gravis. Front Immunol 2020; 11:1688. [PMID: 32983085 PMCID: PMC7484602 DOI: 10.3389/fimmu.2020.01688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
42
|
Cavalcante P, Mantegazza R, Bernasconi P. Pharmacogenetic and pharmaco-miR biomarkers for tailoring and monitoring myasthenia gravis treatments. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1804865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Paola Cavalcante
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Renato Mantegazza
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pia Bernasconi
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
43
|
Abstract
INTRODUCTION Acetylcholine receptor antibody-positive generalized myasthenia gravis (gMG) is effectively treated with symptomatic and immunosuppressive drugs but a proportion of patients has a persistent disease and severe adverse events (AEs). The unmet medical needs are specific immunosuppression and AE lowering. Eculizumab blocks C5 protecting neuromuscular junction from the destructive autoantibody effects. Phase II (Study C08-001) and III (ECU-MG-301) studies, with the open-label extension (ECU-MG-302), demonstrated eculizumab efficacy and safety in refractory gMG patients. AREAS COVERED We provide an overview of eculizumab biological features, clinical efficacy, and safety in gMG patients, highlighting our perspective on the drug positioning in the MG treatment algorithm. EXPERT OPINION Eculizumab has the potential to significantly change the immunosuppressive approach in gMG offering the opportunity to avoid or delay corticosteroids' use due to its speed and selective mechanism of action. Eculizumab prescription will depend on: 1. ability to modify the natural disease course; 2. sustainability in the clinical practice (cost/effectiveness ratio); 3. drug-induced AE reduction. At present we are missing a controlled study on its use as a first-line treatment. We think that immunosuppression in MG will change significantly in the next years by adopting more focused 'Precision Medicine' approaches, and Eculizumab seems to satisfy such a promise.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milan, Italy
| | - Paola Cavalcante
- Neurology IV Unit ‒ Neuroimmunology and Neuromuscular Diseases, Fondazione I.R.C.C.S. Istituto Neurologico Carlo Besta , Milan, Italy
| |
Collapse
|
44
|
Antonioli L, Fornai M, Pellegrini C, Masi S, Puxeddu I, Blandizzi C. Ectopic Lymphoid Organs and Immune-Mediated Diseases: Molecular Basis for Pharmacological Approaches. Trends Mol Med 2020; 26:1021-1033. [PMID: 32600794 DOI: 10.1016/j.molmed.2020.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/21/2020] [Accepted: 06/04/2020] [Indexed: 12/15/2022]
Abstract
Chronic inflammation is the result a persistent increase in the expression of several proinflammatory pathways with impaired inflammatory resolution. Ectopic lymphoid organs (ELOs), untypical lymphoid annexes, emerge during chronic inflammation and contribute to the physiopathology of chronic inflammatory disorders. This review discusses the pathophysiological role of ELOs in the progression of immune-mediated inflammatory diseases (IMIDs), including multiple sclerosis (MS), rheumatoid arthritis (RA), inflammatory bowel disease (IBD), atherosclerosis, and Sjögren syndrome (SSj). The molecular pathways underlying the emergence of ELOs are of interest for the development of novel pharmacological approaches for the management of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy.
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Ilaria Puxeddu
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW This article provides an update on the most recent advances in diagnostic procedures and therapeutic approaches for myasthenia gravis, spanning from autoantibody and neuroelectrophysiological tests as diagnostic tools, to innovative and promising treatments based on biological drugs. RECENT FINDINGS Novel studies performed by cell-based assays (CBAs) indicate an improvement in the chance of identifying serum autoantibodies in myasthenic patients. Clinical trials on the use of biological drugs were recently concluded, providing important data on safety and efficacy of eculizumab, efgartigimod and amifampridine phosphate: the first, a complement blocker, showed long-term safety and efficacy in acetylcholine receptor (AChR)-positive myasthenic patients with refractory generalized disease; the second, the neonatal Fc receptor blocker, was well tolerated and clinically effective in both AChR-specific and muscle-specific kinase receptor (MuSK)-positive patients; the third, a blocker of presynaptic potassium channels, was found to be well tolerated and effective in MuSK-positive patients. SUMMARY CBAs can lead to a significant reduction of seronegative patients, improving myasthenia gravis diagnostic process. New biological drugs offer innovative approaches to treat myasthenic patients with generalized disease, promising to change the paradigm of treatment and to significantly enhance therapeutic success within a precision medicine framework.
Collapse
|
46
|
Cron MA, Guillochon É, Kusner L, Le Panse R. Role of miRNAs in Normal and Myasthenia Gravis Thymus. Front Immunol 2020; 11:1074. [PMID: 32587589 PMCID: PMC7297979 DOI: 10.3389/fimmu.2020.01074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
The thymus, a primary lymphoid organ, provides a complex environment essential for the generation of the T-cell repertoire. Thymic alterations occur during life either in the context of thymic involution upon aging or the pathophysiological context of Myasthenia Gravis (MG). These changes involve complicated regulatory networks, in which microRNAs (miRNAs) are key players. Here, we analyzed the role of miRNAs in thymocyte maturation and differentiation sustained by thymic epithelial cells. We compared data from the literature regarding the role of mouse thymic miRNAs and original data obtained from a human thymic miRnome study. We identified a set of highly expressed miRNAs defined as ThymiRs and investigated miRNA expression in infants as compared to adults to determine those associated with human thymic involution. Thymic changes are also frequently observed in MG, an autoimmune disease which results in the production of anti-acetylcholine receptor (AChR) antibodies that lead to muscle weaknesses. Alterations such as thymoma in late-onset MG patients and hyperplasia with ectopic germinal centers (GCs) in early-onset (EOMG) patients are found. Thymic miRNA expression has been studied in AChR-MG patients both in thymoma-associated MG (TAMG) and EOMG, and their function through their mRNA targets investigated. Most of the dysregulated thymic miRNAs in EOMG are associated with GC development, such as miR-7, miR-24, miR-139, miR-143, miR-145, miR-146, miR-150, miR-452, miR-548 or thymic inflammation, such as miR-125b, miR-146, or miR-29. Understanding these pathways may provide therapeutic targets or biomarkers of disease manifestations.
Collapse
Affiliation(s)
- Mélanie A Cron
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Émilie Guillochon
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| | - Linda Kusner
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| | - Rozen Le Panse
- Sorbonne University, INSERM, Association Institute of Myology, Center of Research in Myology, Paris, France
| |
Collapse
|
47
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
48
|
Hidalgo Y, Núñez S, Fuenzalida MJ, Flores-Santibáñez F, Sáez PJ, Dorner J, Lennon-Dumenil AM, Martínez V, Zorn E, Rosemblatt M, Sauma D, Bono MR. Thymic B Cells Promote Germinal Center-Like Structures and the Expansion of Follicular Helper T Cells in Lupus-Prone Mice. Front Immunol 2020; 11:696. [PMID: 32411134 PMCID: PMC7199236 DOI: 10.3389/fimmu.2020.00696] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the activation of autoreactive T and B cells, autoantibody production, and immune complex deposition in various organs. Previous evidence showed abnormal accumulation of B cells in the thymus of lupus-prone mice, but the role of this population in the progression of the disease remains mostly undefined. Here we analyzed the spatial distribution, function, and properties of this thymic B cell population in the BWF1 murine model of SLE. We found that in diseased animals, thymic B cells proliferate, and cluster in structures that resemble ectopic germinal centers. Moreover, we detected antibody-secreting cells in the thymus of diseased-BWF1 mice that produce anti-dsDNA IgG autoantibodies. We also found that thymic B cells from diseased-BWF1 mice induced the differentiation of thymocytes to follicular helper T cells (TFH). These data suggest that the accumulation of B cells in the thymus of BWF1 mice results in the formation of germinal center-like structures and the expansion of a TFH population, which may, in turn, activate and differentiate B cells into autoreactive plasma cells. Therefore, the thymus emerges as an important niche that supports the maintenance of the pathogenic humoral response in the development of murine SLE.
Collapse
Affiliation(s)
- Yessia Hidalgo
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Cells for Cells-Consorcio Regenero, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | | | - Maria Jose Fuenzalida
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile
| | | | - Pablo J Sáez
- INSERM U932, Institut Curie, Centre de Recherche, PSL Research University, Paris, France
| | - Jessica Dorner
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | | | - Victor Martínez
- FAVET-INBIOGEN, Faculty of Veterinary Sciences, University of Chile, Santiago, Chile
| | - Emmanuel Zorn
- Department of Medicine, Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Mario Rosemblatt
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Fundacion Ciencia & Vida, Santiago, Chile.,Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Maria Rosa Bono
- Departamento de Biologia, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
49
|
Hu B, Niu L, Jiang Z, Xu S, Hu Y, Cao K. LncRNA XLOC_003810 promotes T cell activation and inhibits PD-1/PD-L1 expression in patients with myasthenia gravis-related thymoma. Scand J Immunol 2020; 92:e12886. [PMID: 32243615 DOI: 10.1111/sji.12886] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the effect of long non-coding RNA XLOC_003810 on the activation of CD4+ T cells and expression of PD-1/PD-L1 in patients with myasthenia gravis-related thymoma (MG-T). Thymus specimens and thymic mononuclear cells were obtained from MG and MG-T patients or cardiac surgery patients undergoing thoracotomy who were selected as negative controls (NC). XLOC_003810 expression was examined using quantitative real-time PCR (qRT-PCR). Frequency of CD4+ T cells and proportion of CD4+ PD-1+ T cells and CD14+ PD-L1+ monocytes were quantified by flow cytometry. The release of inflammatory cytokines was measured by qRT-PCR and enzyme-linked immunosorbent assay. Compared with the NC group, expression of XLOC_003810, frequency of CD4+ T cells and the production of inflammatory cytokines were increased in patients with MG and MG-T. XLOC_003810 overexpression significantly increased the frequency of CD4+ T cells, facilitated the production of inflammatory cytokines and decreased the proportion of CD4+ PD-1+ T cells and CD14+ PD-L1+ monocytes in the thymic mononuclear cells. In contrast, XLOC_003810 knockdown exerted the opposite effect. Together, XLOC_003810 promotes T cell activation and inhibits PD-1/PD-L1 pathway in patients with MG-T.
Collapse
Affiliation(s)
- Bo Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Niu
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng Jiang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shenglin Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong Hu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Cao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
50
|
Yamamoto M, Iguchi G, Bando H, Kanie K, Hidaka-Takeno R, Fukuoka H, Takahashi Y. Autoimmune Pituitary Disease: New Concepts With Clinical Implications. Endocr Rev 2020; 41:5568277. [PMID: 31513261 DOI: 10.1210/endrev/bnz003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/11/2019] [Indexed: 01/21/2023]
Abstract
Some endocrine disorders, including hypophysitis and isolated adrenocorticotropic hormone (ACTH) deficiency, are caused by an autoimmune response to endocrine organs. Although the pathogenesis of some autoimmune endocrine diseases has been elucidated, it remains obscure for most. Anti-PIT-1 hypophysitis (anti-PIT-1 antibody syndrome) is a newly described pituitary autoimmune disease characterized by acquired and specific growth hormone (GH), prolactin (PRL), and thyroid-stimulating hormone (TSH) deficiencies. This disorder is associated with a thymoma or neoplasm that ectopically expresses pituitary-specific transcription factor 1 (PIT-1) protein. Circulating anti-PIT-1 antibody is a disease marker, and PIT-1-reactive cytotoxic T cells (CTLs) play a pivotal role in disease development. In addition, isolated ACTH deficiency appears to be caused by autoimmunity to corticotrophs; however, the pathogenesis remains unclear. A recently described case of isolated ACTH deficiency with large cell neuroendocrine carcinoma (LCNEC) showed ectopically expressed proopiomelanocortin (POMC), and circulating anti-POMC antibody and POMC-reactive CTLs were also detected. As CTL infiltrations around corticotrophs were also observed, isolated ACTH deficiency may be associated at least in part with a paraneoplastic syndrome. Although several underlying mechanisms for pituitary autoimmunity have been proposed, these observations highlight the importance of paraneoplastic syndrome as a cause of pituitary autoimmune disease. In this review, we focus on the pathophysiology and connection of anti-PIT-1 hypophysitis and isolated ACTH deficiency and discuss the state-of-art knowledge for understanding pituitary autoimmunity.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | - Genzo Iguchi
- Bulletin of Medical Center for Student's Health Service, Kobe University, Kobe, Japan
| | - Hironori Bando
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Keitaro Kanie
- Division of Diabetes and Endocrinology Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Hidenori Fukuoka
- Division of Diabetes and Endocrinology, Kobe University Hospital, Kobe, Japan
| | - Yutaka Takahashi
- Division of Diabetes and Endocrinology Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|