1
|
Chen YY, Areti A, Yoshor D, Foster BL. Perception and Memory Reinstatement Engage Overlapping Face-Selective Regions within Human Ventral Temporal Cortex. J Neurosci 2024; 44:e2180232024. [PMID: 38627090 PMCID: PMC11140664 DOI: 10.1523/jneurosci.2180-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions specialized for processing specific sensory stimuli are reactivated to support content-specific retrieval. Recently, several studies have emphasized transformations in the spatial organization of these reinstated activity patterns. Specifically, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with the activity observed during perception. However, it is not clear that such transformations occur universally, with inconsistent evidence for other important stimulus categories, particularly faces. One challenge in addressing this question is the careful delineation of face-selective cortices, which are interdigitated with other selective regions, in configurations that spatially differ across individuals. Therefore, we conducted a multisession neuroimaging study to first carefully map individual participants' (nine males and seven females) face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the activity patterns within these regions during face memory encoding and retrieval. While face-selective regions were expectedly engaged during face perception at encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions, but did not show any consistent direction of spatial transformation (e.g., anteriorization). We also report on unique human intracranial recordings from VTC under the same experimental conditions. These findings highlight the importance of considering the complex configuration of category-selective cortex in elucidating principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
2
|
Pittella JEH. The uniqueness of the human brain: a review. Dement Neuropsychol 2024; 18:e20230078. [PMID: 38628563 PMCID: PMC11019715 DOI: 10.1590/1980-5764-dn-2023-0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 04/19/2024] Open
Abstract
The purpose of this review is to highlight the most important aspects of the anatomical and functional uniqueness of the human brain. For this, a comparison is made between our brains and those of our closest ancestors (chimpanzees and bonobos) and human ancestors. During human evolution, several changes occurred in the brain, such as an absolute increase in brain size and number of cortical neurons, in addition to a greater degree of functional lateralization and anatomical asymmetry. Also, the cortical cytoarchitecture became more diversified and there was an increase in the number of intracortical networks and networks extending from the cerebral cortex to subcortical structures, with more neural networks being invested in multisensory and sensory-motor-affective-cognitive integration. These changes permitted more complex, flexible and versatile cognitive abilities and social behavior, such as shared intentionality and symbolic articulated language, which, in turn, made possible the formation of larger social groups and cumulative cultural evolution that are characteristic of our species.
Collapse
Affiliation(s)
- José Eymard Homem Pittella
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Departamento de Anatomia Patológica e Medicina Legal, Belo Horizonte MG, Brazil
| |
Collapse
|
3
|
Rossion B, Jacques C, Jonas J. The anterior fusiform gyrus: The ghost in the cortical face machine. Neurosci Biobehav Rev 2024; 158:105535. [PMID: 38191080 DOI: 10.1016/j.neubiorev.2024.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Face-selective regions in the human ventral occipito-temporal cortex (VOTC) have been defined for decades mainly with functional magnetic resonance imaging. This face-selective VOTC network is traditionally divided in a posterior 'core' system thought to subtend face perception, and regions of the anterior temporal lobe as a semantic memory component of an extended general system. In between these two putative systems lies the anterior fusiform gyrus and surrounding sulci, affected by magnetic susceptibility artifacts. Here we suggest that this methodological gap overlaps with and contributes to a conceptual gap between (visual) perception and semantic memory for faces. Filling this gap with intracerebral recordings and direct electrical stimulation reveals robust face-selectivity in the anterior fusiform gyrus and a crucial role of this region, especially in the right hemisphere, in identity recognition for both familiar and unfamiliar faces. Based on these observations, we propose an integrated theoretical framework for human face (identity) recognition according to which face-selective regions in the anterior fusiform gyrus join the dots between posterior and anterior cortical face memories.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| | | | - Jacques Jonas
- Université de Lorraine, CNRS, IMoPA, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
4
|
Volfart A, Rossion B, Brissart H, Busigny T, Colnat-Coulbois S, Maillard L, Jonas J. Stability of face recognition abilities after left or right anterior temporal lobectomy. J Neuropsychol 2024; 18 Suppl 1:115-133. [PMID: 37391874 DOI: 10.1111/jnp.12337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/08/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Patients with anterior temporal lobe (ATL) resection due to mesial temporal lobe epilepsy (MTLE) have difficulties at identifying familiar faces and explicitly remembering newly learned faces but their ability to individuate unfamiliar faces remains largely unknown. Moreover, the extent to which their difficulties with familiar face identity recognition and learning is truly due to the ATL resection remains unknown. Here, we report a study of 24 MTLE patients and matched healthy controls tested with an extensive set of seven face and visual object recognition tasks (including three tasks evaluating unfamiliar face individuation) before and about 6 months after unilateral (nine left, 15 right) ATL resection. We found that ATL resection has little or no effect on the patients' preserved pre-surgical ability to perform unfamiliar face individuation, both at the group and individual levels. More surprisingly, ATL resection also has little effect on the patients' performance at recognizing and naming famous faces as well as at learning new faces. A substantial proportion of right MTLE patients (33%) even improved their response times on several tasks, which may indicate a functional release of visuo-spatial processing after resection in the right ATL. Altogether this study shows that face recognition abilities are mainly unaffected by ATL resection in MTLE, either because the critical regions for face recognition are spared or because performance at some tasks is already lower than normal preoperatively. Overall, these findings urge caution when interpreting the causal effect of brain lesions on face recognition ability in patients with ATL resection due to MTLE. They also illustrate the complexity of predicting cognitive outcomes after epilepsy surgery because of the influence of many different intertwined factors.
Collapse
Affiliation(s)
- Angélique Volfart
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Bruno Rossion
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- Institute of Research in Psychological Science, Université Catholique de Louvain, Louvain-La-Neuve, Belgium
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Hélène Brissart
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Thomas Busigny
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
| | - Sophie Colnat-Coulbois
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurochirurgie, Université de Lorraine, Nancy, France
| | - Louis Maillard
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| | - Jacques Jonas
- CNRS, CRAN UMR 7039, Université de Lorraine, Nancy, France
- CHRU-Nancy, Service de Neurologie, Université de Lorraine, Nancy, France
| |
Collapse
|
5
|
Volfart A, Rossion B, Yan X, Angelini L, Maillard L, Colnat-Coulbois S, Jonas J. Intracerebral electrical stimulation of the face-selective right lateral fusiform gyrus transiently impairs face identity recognition. Neuropsychologia 2023; 190:108705. [PMID: 37839512 DOI: 10.1016/j.neuropsychologia.2023.108705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Neuroimaging and intracranial electrophysiological studies have consistently shown the largest and most consistent face-selective neural activity in the middle portion of the human right lateral fusiform gyrus ('fusiform face area(s)', FFA). Yet, direct evidence for the critical role of this region in face identity recognition (FIR) is still lacking. Here we report the first evidence of transient behavioral impairment of FIR during focal electrical stimulation of the right FFA. Upon stimulation of an electrode contact within this region, subject CJ, who shows typical FIR ability outside of stimulation, was transiently unable to point to pictures of famous faces among strangers and to match pictures of famous or unfamiliar faces presented simultaneously for their identity. Her performance at comparable tasks with other visual materials (written names, pictures of buildings) remained unaffected by stimulation at the same location. During right FFA stimulation, CJ consistently reported that simultaneously presented faces appeared as being the same identity, with little or no distortion of the spatial face configuration. Independent electrophysiological recordings showed the largest neural face-selective and face identity activity at the critical electrode contacts. Altogether, this extensive multimodal case report supports the causal role of the right FFA in FIR.
Collapse
Affiliation(s)
- Angélique Volfart
- Université de Lorraine, CNRS, F-54000, Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348, Louvain-La-Neuve, Belgium; Queensland University of Technology, Faculty of Health, School of Psychology & Counselling, 4059, Brisbane, Australia
| | - Bruno Rossion
- Université de Lorraine, CNRS, F-54000, Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348, Louvain-La-Neuve, Belgium; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France.
| | - Xiaoqian Yan
- Université de Lorraine, CNRS, F-54000, Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348, Louvain-La-Neuve, Belgium; Fudan University, Institute of Science and Technology for Brain-Inspired Intelligence, 200433, Shanghai, China
| | - Luna Angelini
- Université de Lorraine, CNRS, F-54000, Nancy, France
| | - Louis Maillard
- Université de Lorraine, CNRS, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000, Nancy, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, F-54000, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
| |
Collapse
|
6
|
Chen YY, Areti A, Yoshor D, Foster BL. Individual-specific memory reinstatement patterns within human face-selective cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552130. [PMID: 37609262 PMCID: PMC10441346 DOI: 10.1101/2023.08.06.552130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Humans have the remarkable ability to vividly retrieve sensory details of past events. According to the theory of sensory reinstatement, during remembering, brain regions involved in the sensory processing of prior events are reactivated to support this perception of the past. Recently, several studies have emphasized potential transformations in the spatial organization of reinstated activity patterns. In particular, studies of scene stimuli suggest a clear anterior shift in the location of retrieval activations compared with those during perception. However, it is not clear that such transformations occur universally, with evidence lacking for other important stimulus categories, particularly faces. Critical to addressing these questions, and to studies of reinstatement more broadly, is the growing importance of considering meaningful variations in the organization of sensory systems across individuals. Therefore, we conducted a multi-session neuroimaging study to first carefully map individual participants face-selective regions within ventral temporal cortex (VTC), followed by a second session to examine the correspondence of activity patterns during face memory encoding and retrieval. Our results showed distinct configurations of face-selective regions within the VTC across individuals. While a significant degree of overlap was observed between face perception and memory encoding, memory retrieval engagement exhibited a more selective and constricted reinstatement pattern within these regions. Importantly, these activity patterns were consistently tied to individual-specific neural substrates, but did not show any consistent direction of spatial transformation (e.g., anteriorization). To provide further insight to these findings, we also report on unique human intracranial recordings from VTC under the same experimental conditions. Our findings highlight the importance of considering individual variations in functional neuroanatomy in the context of assessing the nature of cortical reinstatement. Consideration of such factors will be important for establishing general principles shaping the neural transformations that occur from perception to memory.
Collapse
Affiliation(s)
- Yvonne Y Chen
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | - Daniel Yoshor
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L Foster
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
7
|
Preston C, Alvarez AM, Allard M, Barragan A, Witte RS. Acoustoelectric Time-Reversal for Ultrasound Phase-Aberration Correction. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:854-864. [PMID: 37405897 PMCID: PMC10493188 DOI: 10.1109/tuffc.2023.3292595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Acoustoelectric imaging (AEI) is a technique that combines ultrasound (US) with radio frequency recording to detect and map local current source densities. This study demonstrates a new method called acoustoelectric time reversal (AETR), which uses AEI of a small current source to correct for phase aberrations through a skull or other US-aberrating layers with applications to brain imaging and therapy. Simulations conducted at three different US frequencies (0.5, 1.5, and 2.5 MHz) were performed through media layered with different sound speeds and geometries to induce aberrations of the US beam. Time delays of the acoustoelectric (AE) signal from a monopole within the medium were calculated for each element to enable corrections using AETR. Uncorrected aberrated beam profiles were compared with those after applying AETR corrections, which demonstrated a strong recovery (29%-100%) of lateral resolution and increases in focal pressure up to 283%. To further demonstrate the practical feasibility of AETR, we further conducted bench-top experiments using a 2.5 MHz linear US array to perform AETR through 3-D-printed aberrating objects. These experiments restored lost lateral restoration up to 100% for the different aberrators and increased focal pressure up to 230% after applying AETR corrections. Cumulatively, these results highlight AETR as a powerful tool for correcting focal aberrations in the presence of a local current source with applications to AEI, US imaging, neuromodulation, and therapy.
Collapse
|
8
|
Zhan M, Pallier C, Agrawal A, Dehaene S, Cohen L. Does the visual word form area split in bilingual readers? A millimeter-scale 7-T fMRI study. SCIENCE ADVANCES 2023; 9:eadf6140. [PMID: 37018408 PMCID: PMC10075963 DOI: 10.1126/sciadv.adf6140] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/06/2023] [Indexed: 05/29/2023]
Abstract
In expert readers, a brain region known as the visual word form area (VWFA) is highly sensitive to written words, exhibiting a posterior-to-anterior gradient of increasing sensitivity to orthographic stimuli whose statistics match those of real words. Using high-resolution 7-tesla functional magnetic resonance imaging (fMRI), we ask whether, in bilingual readers, distinct cortical patches specialize for different languages. In 21 English-French bilinguals, unsmoothed 1.2-millimeters fMRI revealed that the VWFA is actually composed of several small cortical patches highly selective for reading, with a posterior-to-anterior word-similarity gradient, but with near-complete overlap between the two languages. In 10 English-Chinese bilinguals, however, while most word-specific patches exhibited similar reading specificity and word-similarity gradients for reading in Chinese and English, additional patches responded specifically to Chinese writing and, unexpectedly, to faces. Our results show that the acquisition of multiple writing systems can indeed tune the visual cortex differently in bilinguals, sometimes leading to the emergence of cortical patches specialized for a single language.
Collapse
Affiliation(s)
- Minye Zhan
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Christophe Pallier
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Aakash Agrawal
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France
- Collège de France, Université Paris-Sciences-Lettres (PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Institut du Cerveau, ICM, Paris, France
- AP-HP, Hôpital de la Pitié Salpêtrière, Fédération de Neurologie, Paris, France
| |
Collapse
|
9
|
Hemptinne C, Hupin N, Lochy A, Yüksel D, Rossion B. Spatial Resolution Evaluation Based on Experienced Visual Categories With Sweep Evoked Periodic EEG Activity. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 36881407 PMCID: PMC10007901 DOI: 10.1167/iovs.64.3.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 02/12/2023] [Indexed: 03/08/2023] Open
Abstract
Purpose Visual function is typically evaluated in clinical settings with visual acuity (VA), a test requiring to behaviorally match or name optotypes such as tumbling E or Snellen letters. The ability to recognize these symbols has little in common with the automatic and rapid visual recognition of socially important stimuli in real life. Here we use sweep visual evoked potentials to assess spatial resolution objectively based on the recognition of human faces and written words. Methods To this end, we tested unfamiliar face individuation1 and visual word recognition2 in 15 normally sighted adult volunteers with a 68-electrode electroencephalogram system. Results Unlike previous measures of low-level visual function including VA, the most sensitive electrode was found at an electrode different from Oz in a majority of participants. Thresholds until which faces and words could be recognized were evaluated at the most sensitive electrode defined individually for each participant. Word recognition thresholds corresponded with the VA level expected from normally sighted participants, and even a VA significantly higher than expected from normally sighted individuals for a few participants. Conclusions Spatial resolution can be evaluated based on high-level stimuli encountered in day-to-day life, such as faces or written words with sweep visual evoked potentials.
Collapse
Affiliation(s)
- Coralie Hemptinne
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Ophthalmology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Nathan Hupin
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Ophthalmology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Aliette Lochy
- Cognitive Science and Assessment Institute, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Demet Yüksel
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- Ophthalmology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bruno Rossion
- Institute of Neuroscience, Université catholique de Louvain, Louvain-La-Neuve, Belgium
- University of Lorraine, CNRS, CRAN, Lorraine, France
| |
Collapse
|
10
|
Rossion B, Jacques C, Jonas J. Intracerebral Electrophysiological Recordings to Understand the Neural Basis of Human Face Recognition. Brain Sci 2023; 13:354. [PMID: 36831897 PMCID: PMC9954066 DOI: 10.3390/brainsci13020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding how the human brain recognizes faces is a primary scientific goal in cognitive neuroscience. Given the limitations of the monkey model of human face recognition, a key approach in this endeavor is the recording of electrophysiological activity with electrodes implanted inside the brain of human epileptic patients. However, this approach faces a number of challenges that must be overcome for meaningful scientific knowledge to emerge. Here we synthesize a 10 year research program combining the recording of intracerebral activity (StereoElectroEncephaloGraphy, SEEG) in the ventral occipito-temporal cortex (VOTC) of large samples of participants and fast periodic visual stimulation (FPVS), to objectively define, quantify, and characterize the neural basis of human face recognition. These large-scale studies reconcile the wide distribution of neural face recognition activity with its (right) hemispheric and regional specialization and extend face-selectivity to anterior regions of the VOTC, including the ventral anterior temporal lobe (VATL) typically affected by magnetic susceptibility artifacts in functional magnetic resonance imaging (fMRI). Clear spatial dissociations in category-selectivity between faces and other meaningful stimuli such as landmarks (houses, medial VOTC regions) or written words (left lateralized VOTC) are found, confirming and extending neuroimaging observations while supporting the validity of the clinical population tested to inform about normal brain function. The recognition of face identity - arguably the ultimate form of recognition for the human brain - beyond mere differences in physical features is essentially supported by selective populations of neurons in the right inferior occipital gyrus and the lateral portion of the middle and anterior fusiform gyrus. In addition, low-frequency and high-frequency broadband iEEG signals of face recognition appear to be largely concordant in the human association cortex. We conclude by outlining the challenges of this research program to understand the neural basis of human face recognition in the next 10 years.
Collapse
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Corentin Jacques
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Jacques Jonas
- CNRS, CRAN, Université de Lorraine, F-54000 Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, F-54000 Nancy, France
| |
Collapse
|
11
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023. [PMID: 36427753 DOI: 10.1101/2022.04.08.487562v1.full.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
12
|
Chen X, Liu X, Parker BJ, Zhen Z, Weiner KS. Functionally and structurally distinct fusiform face area(s) in over 1000 participants. Neuroimage 2023; 265:119765. [PMID: 36427753 PMCID: PMC9889174 DOI: 10.1016/j.neuroimage.2022.119765] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
The fusiform face area (FFA) is a widely studied region causally involved in face perception. Even though cognitive neuroscientists have been studying the FFA for over two decades, answers to foundational questions regarding the function, architecture, and connectivity of the FFA from a large (N>1000) group of participants are still lacking. To fill this gap in knowledge, we quantified these multimodal features of fusiform face-selective regions in 1053 participants in the Human Connectome Project. After manually defining over 4,000 fusiform face-selective regions, we report five main findings. First, 68.76% of hemispheres have two cortically separate regions (pFus-faces/FFA-1 and mFus-faces/FFA-2). Second, in 26.69% of hemispheres, pFus-faces/FFA-1 and mFus-faces/FFA-2 are spatially contiguous, yet are distinct based on functional, architectural, and connectivity metrics. Third, pFus-faces/FFA-1 is more face-selective than mFus-faces/FFA-2, and the two regions have distinct functional connectivity fingerprints. Fourth, pFus-faces/FFA-1 is cortically thinner and more heavily myelinated than mFus-faces/FFA-2. Fifth, face-selective patterns and functional connectivity fingerprints of each region are more similar in monozygotic than dizygotic twins and more so than architectural gradients. As we share our areal definitions with the field, future studies can explore how structural and functional features of these regions will inform theories regarding how visual categories are represented in the brain.
Collapse
Affiliation(s)
- Xiayu Chen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xingyu Liu
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Department of Psychology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
13
|
Jacques C, Jonas J, Colnat-Coulbois S, Maillard L, Rossion B. Low and high frequency intracranial neural signals match in the human associative cortex. eLife 2022; 11:e76544. [PMID: 36074548 PMCID: PMC9457683 DOI: 10.7554/elife.76544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
In vivo intracranial recordings of neural activity offer a unique opportunity to understand human brain function. Intracranial electrophysiological (iEEG) activity related to sensory, cognitive or motor events manifests mostly in two types of signals: event-related local field potentials in lower frequency bands (<30 Hz, LF) and broadband activity in the higher end of the frequency spectrum (>30 Hz, High frequency, HF). While most current studies rely exclusively on HF, thought to be more focal and closely related to spiking activity, the relationship between HF and LF signals is unclear, especially in human associative cortex. Here, we provide a large-scale in-depth investigation of the spatial and functional relationship between these 2 signals based on intracranial recordings from 121 individual brains (8000 recording sites). We measure category-selective responses to complex ecologically salient visual stimuli - human faces - across a wide cortical territory in the ventral occipito-temporal cortex (VOTC), with a frequency-tagging method providing high signal-to-noise ratio (SNR) and the same objective quantification of signal and noise for the two frequency ranges. While LF face-selective activity has higher SNR across the VOTC, leading to a larger number of significant electrode contacts especially in the anterior temporal lobe, LF and HF display highly similar spatial, functional, and timing properties. Specifically, and contrary to a widespread assumption, our results point to nearly identical spatial distribution and local spatial extent of LF and HF activity at equal SNR. These observations go a long way towards clarifying the relationship between the two main iEEG signals and reestablish the informative value of LF iEEG to understand human brain function.
Collapse
Affiliation(s)
- Corentin Jacques
- Université de Lorraine, CNRS, CRANNancyFrance
- Psychological Sciences Research Institute (IPSY), Université Catholique de Louvain (UCLouvain)Louvain-la-NeuveBelgium
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRANNancyFrance
- Université de Lorraine, CHRU-Nancy, Service de NeurologieNancyFrance
| | | | - Louis Maillard
- Université de Lorraine, CNRS, CRANNancyFrance
- Université de Lorraine, CHRU-Nancy, Service de NeurologieNancyFrance
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRANNancyFrance
- Université de Lorraine, CHRU-Nancy, Service de NeurologieNancyFrance
| |
Collapse
|
14
|
Kabdebon C, Fló A, de Heering A, Aslin R. The power of rhythms: how steady-state evoked responses reveal early neurocognitive development. Neuroimage 2022; 254:119150. [PMID: 35351649 PMCID: PMC9294992 DOI: 10.1016/j.neuroimage.2022.119150] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/17/2022] Open
Abstract
Electroencephalography (EEG) is a non-invasive and painless recording of cerebral activity, particularly well-suited for studying young infants, allowing the inspection of cerebral responses in a constellation of different ways. Of particular interest for developmental cognitive neuroscientists is the use of rhythmic stimulation, and the analysis of steady-state evoked potentials (SS-EPs) - an approach also known as frequency tagging. In this paper we rely on the existing SS-EP early developmental literature to illustrate the important advantages of SS-EPs for studying the developing brain. We argue that (1) the technique is both objective and predictive: the response is expected at the stimulation frequency (and/or higher harmonics), (2) its high spectral specificity makes the computed responses particularly robust to artifacts, and (3) the technique allows for short and efficient recordings, compatible with infants' limited attentional spans. We additionally provide an overview of some recent inspiring use of the SS-EP technique in adult research, in order to argue that (4) the SS-EP approach can be implemented creatively to target a wide range of cognitive and neural processes. For all these reasons, we expect SS-EPs to play an increasing role in the understanding of early cognitive processes. Finally, we provide practical guidelines for implementing and analyzing SS-EP studies.
Collapse
Affiliation(s)
- Claire Kabdebon
- Laboratoire de Sciences Cognitives et Psycholinguistique, Département d'études cognitives, ENS, EHESS, CNRS, PSL University, Paris, France; Haskins Laboratories, New Haven, CT, USA.
| | - Ana Fló
- Cognitive Neuroimaging Unit, CNRS ERL 9003, INSERM U992, CEA, Université Paris-Saclay, NeuroSpin Center, Gif/Yvette, France
| | - Adélaïde de Heering
- Center for Research in Cognition & Neuroscience (CRCN), Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Richard Aslin
- Haskins Laboratories, New Haven, CT, USA; Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
15
|
Axelrod V, Rozier C, Malkinson TS, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L. Face-selective multi-unit activity in the proximity of the FFA modulated by facial expression stimuli. Neuropsychologia 2022; 170:108228. [DOI: 10.1016/j.neuropsychologia.2022.108228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 02/13/2022] [Accepted: 03/23/2022] [Indexed: 01/02/2023]
|
16
|
Gao X, Wen M, Sun M, Rossion B. A Genuine Interindividual Variability in Number and Anatomical Localization of Face-Selective Regions in the Human Brain. Cereb Cortex 2022; 32:4834-4856. [PMID: 35088077 DOI: 10.1093/cercor/bhab519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroimaging studies have reported regions with more neural activation to face than nonface stimuli in the human occipitotemporal cortex for three decades. Here we used a highly sensitive and reliable frequency-tagging functional magnetic resonance imaging paradigm measuring high-level face-selective neural activity to assess interindividual variability in the localization and number of face-selective clusters. Although the majority of these clusters are located in the same cortical gyri and sulci across 25 adult brains, a volume-based analysis of unsmoothed data reveals a large amount of interindividual variability in their spatial distribution and number, particularly in the ventral occipitotemporal cortex. In contrast to the widely held assumption, these face-selective clusters cannot be objectively related on a one-to-one basis across individual brains, do not correspond to a single cytoarchitectonic region, and are not clearly demarcated by estimated posteroanterior cytoarchitectonic borders. Interindividual variability in localization and number of cortical face-selective clusters does not appear to be due to the measurement noise but seems to be genuine, casting doubt on definite labeling and interindividual correspondence of face-selective "areas" and questioning their a priori definition based on cytoarchitectony or probabilistic atlases of independent datasets. These observations challenge conventional models of human face recognition based on a fixed number of discrete neurofunctional information processing stages.
Collapse
Affiliation(s)
- Xiaoqing Gao
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Minjie Wen
- Department of Psychology, Zhejiang University, Hangzhou 310028, China
| | - Mengdan Sun
- Center for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| |
Collapse
|
17
|
Volfart A, Yan X, Maillard L, Colnat-Coulbois S, Hossu G, Rossion B, Jonas J. Intracerebral electrical stimulation of the right anterior fusiform gyrus impairs human face identity recognition. Neuroimage 2022; 250:118932. [PMID: 35085763 DOI: 10.1016/j.neuroimage.2022.118932] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 01/23/2023] Open
Abstract
Brain regions located between the right fusiform face area (FFA) in the middle fusiform gyrus and the temporal pole may play a critical role in human face identity recognition but their investigation is limited by a large signal drop-out in functional magnetic resonance imaging (fMRI). Here we report an original case who is suddenly unable to recognize the identity of faces when electrically stimulated on a focal location inside this intermediate region of the right anterior fusiform gyrus. The reliable transient identity recognition deficit occurs without any change of percept, even during nonverbal face tasks (i.e., pointing out the famous face picture among three options; matching pictures of unfamiliar or familiar faces for their identities), and without difficulty at recognizing visual objects or famous written names. The effective contact is associated with the largest frequency-tagged electrophysiological signals of face-selectivity and of familiar and unfamiliar face identity recognition. This extensive multimodal investigation points to the right anterior fusiform gyrus as a critical hub of the human cortical face network, between posterior ventral occipito-temporal face-selective regions directly connected to low-level visual cortex, the medial temporal lobe involved in generic memory encoding, and ventral anterior temporal lobe regions holding semantic associations to people's identity.
Collapse
Affiliation(s)
- Angélique Volfart
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium
| | - Xiaoqian Yan
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Stanford University, Department of Psychology, CA 94305 Stanford, USA
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, F-54000 Nancy, France
| | - Gabriela Hossu
- Université de Lorraine, CHRU-Nancy, CIC-IT, F-54000 Nancy, France; Université de Lorraine, Inserm, IADI, F-54000 Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; University of Louvain, Psychological Sciences Research Institute, B-1348 Louvain-La-Neuve, Belgium; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, F-54000 Nancy, France.
| |
Collapse
|
18
|
Hagen S, Lochy A, Jacques C, Maillard L, Colnat-Coulbois S, Jonas J, Rossion B. Dissociated face- and word-selective intracerebral responses in the human ventral occipito-temporal cortex. Brain Struct Funct 2021; 226:3031-3049. [PMID: 34370091 PMCID: PMC8541991 DOI: 10.1007/s00429-021-02350-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023]
Abstract
The extent to which faces and written words share neural circuitry in the human brain is actively debated. Here, we compare face-selective and word-selective responses in a large group of patients (N = 37) implanted with intracerebral electrodes in the ventral occipito-temporal cortex (VOTC). Both face-selective (i.e., significantly different responses to faces vs. non-face visual objects) and word-selective (i.e., significantly different responses to words vs. pseudofonts) neural activity is isolated with frequency-tagging. Critically, this sensitive approach allows to objectively quantify category-selective neural responses and disentangle them from general visual responses. About 70% of significant electrode contacts show either face-selectivity or word-selectivity only, with the expected right and left hemispheric dominance, respectively. Spatial dissociations are also found within core regions of face and word processing, with a medio-lateral dissociation in the fusiform gyrus (FG) and surrounding sulci, respectively. In the 30% of overlapping face- and word-selective contacts across the VOTC or in the FG and surrounding sulci, between-category-selective amplitudes (faces vs. words) show no-to-weak correlations, despite strong correlations in both the within-category-selective amplitudes (face-face, word-word) and the general visual responses to words and faces. Overall, these observations support the view that category-selective circuitry for faces and written words is largely dissociated in the human adult VOTC.
Collapse
Affiliation(s)
- Simen Hagen
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 HR, Nijmegen, The Netherlands
| | - Aliette Lochy
- Cognitive Science and Assessment Institute, University of Luxembourg, 365, Esch-sur-Alzette, Luxembourg
| | - Corentin Jacques
- Psychological Sciences Research Institute and Institute of Neuroscience, UCLouvain, 1348, Louvain-La-Neuve, Belgium
| | - Louis Maillard
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Sophie Colnat-Coulbois
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurochirurgie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Jacques Jonas
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France
| | - Bruno Rossion
- CRAN UMR 7039, CNRS, Université de Lorraine, Pavillon Krug, Hôpital Central, CHRU-Nancy, 29 Avenue du Maréchal de Lattre de Tassigny, 54035, Nancy, France.
- Psychological Sciences Research Institute and Institute of Neuroscience, UCLouvain, 1348, Louvain-La-Neuve, Belgium.
- Service de Neurologie, Université de Lorraine, CHRU-Nancy, 54000, Nancy, France.
| |
Collapse
|
19
|
Matt S, Dzhelyova M, Maillard L, Lighezzolo-Alnot J, Rossion B, Caharel S. The rapid and automatic categorization of facial expression changes in highly variable natural images. Cortex 2021; 144:168-184. [PMID: 34666300 DOI: 10.1016/j.cortex.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 01/23/2023]
Abstract
Emotional expressions are quickly and automatically read from human faces under natural viewing conditions. Yet, categorization of facial expressions is typically measured in experimental contexts with homogenous sets of face stimuli. Here we evaluated how the 6 basic facial emotions (Fear, Disgust, Happiness, Anger, Surprise or Sadness) can be rapidly and automatically categorized with faces varying in head orientation, lighting condition, identity, gender, age, ethnic origin and background context. High-density electroencephalography was recorded in 17 participants viewing 50 s sequences with natural variable images of neutral-expression faces alternating at a 6 Hz rate. Every five stimuli (1.2 Hz), variable natural images of one of the six basic expressions were presented. Despite the wide physical variability across images, a significant F/5 = 1.2 Hz response and its harmonics (e.g., 2F/5 = 2.4 Hz, etc.) was observed for all expression changes at the group-level and in every individual participant. Facial categorization responses were found mainly over occipito-temporal sites, with distinct hemispheric lateralization and cortical topographies according to the different expressions. Specifically, a stronger response was found to Sadness categorization, especially over the left hemisphere, as compared to Fear and Happiness, together with a right hemispheric dominance for categorization of Fearful faces. Importantly, these differences were specific to upright faces, ruling out the contribution of low-level visual cues. Overall, these observations point to robust rapid and automatic facial expression categorization processes in the human brain.
Collapse
Affiliation(s)
- Stéphanie Matt
- Université de Lorraine, 2LPN, Nancy, France; Université de Lorraine, Laboratoire INTERPSY, Nancy, France.
| | - Milena Dzhelyova
- Université Catholique de Louvain, Institute of Research in Psychological Science, Louvain-la-Neuve, Belgium.
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France.
| | | | - Bruno Rossion
- Université Catholique de Louvain, Institute of Research in Psychological Science, Louvain-la-Neuve, Belgium; Université de Lorraine, CNRS, CRAN, Nancy, France; Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France.
| | - Stéphanie Caharel
- Université de Lorraine, 2LPN, Nancy, France; Institut Universitaire de France, Paris, France.
| |
Collapse
|
20
|
Scullen T, Teja N, Song SH, Couldwell M, Carr C, Mathkour M, Lee DJ, Tubbs RS, Dallapiazza RF. Use of stereoelectroencephalography beyond epilepsy: a systematic review. World Neurosurg 2021; 155:96-108. [PMID: 34217862 DOI: 10.1016/j.wneu.2021.06.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Tyler Scullen
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Nikhil Teja
- Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Hanover, New Hampshire, USA
| | - Seo Ho Song
- Geisel School of Medicine, Dartmouth University, Hanover, New Hampshire, USA
| | - Mitchell Couldwell
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Chris Carr
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Mansour Mathkour
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Darrin J Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Shane Tubbs
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA; Department of Structural & Cellular Biology, Tulane University, New Orleans, Louisiana, USA; Department of Anatomical Sciences, St. George's University, Grenada
| | - Robert F Dallapiazza
- Tulane University School of Medicine, Tulane University, New Orleans, Louisiana, USA.
| |
Collapse
|
21
|
Jonas J, Rossion B. Intracerebral electrical stimulation to understand the neural basis of human face identity recognition. Eur J Neurosci 2021; 54:4197-4211. [PMID: 33866613 DOI: 10.1111/ejn.15235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Recognizing people's identity by their faces is a key function in the human species, supported by regions of the ventral occipito-temporal cortex (VOTC). In the last decade, there have been several reports of perceptual face distortion during direct electrical stimulation (DES) with subdural electrodes positioned over a well-known face-selective VOTC region of the right lateral middle fusiform gyrus (LatMidFG; i.e., the "Fusiform Face Area", FFA). However, transient impairments of face identity recognition (FIR) have been extremely rare and only behaviorally quantified during DES with intracerebral (i.e., depth) electrodes in stereo-electroencephalography (SEEG). The three detailed cases reported so far, summarized here, were specifically impaired at FIR during DES inside different anatomical VOTC regions of the right hemisphere: the inferior occipital gyrus (IOG) and the LatMidFG, as well as a region that lies at the heart of a large magnetic susceptibility artifact in functional magnetic resonance imaging (fMRI): the anterior fusiform gyrus (AntFG). In the first two regions, the eloquent electrode contacts were systematically associated with the highest face-selective and (unfamiliar) face individuation responses as measured with intracerebral electrophysiology. Stimulation in the right AntFG did not lead to perceptual changes but also caused an inability to remember having been presented face pictures, as if the episode was never recorded in memory. These observations support the view of an extensive network of face-selective VOTC regions subtending human FIR, with at least three critical nodes in the right hemisphere associated with differential intrinsic and extrinsic patterns of reentrant connectivity.
Collapse
Affiliation(s)
- Jacques Jonas
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy, France
- Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy, France
| |
Collapse
|
22
|
Suzuki K, Yamashita O. MEG current source reconstruction using a meta-analysis fMRI prior. Neuroimage 2021; 236:118034. [PMID: 33839265 DOI: 10.1016/j.neuroimage.2021.118034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022] Open
Abstract
Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.
Collapse
Affiliation(s)
- Keita Suzuki
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Okito Yamashita
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| |
Collapse
|
23
|
Sanada T, Kapeller C, Jordan M, Grünwald J, Mitsuhashi T, Ogawa H, Anei R, Guger C. Multi-modal Mapping of the Face Selective Ventral Temporal Cortex-A Group Study With Clinical Implications for ECS, ECoG, and fMRI. Front Hum Neurosci 2021; 15:616591. [PMID: 33828468 PMCID: PMC8020907 DOI: 10.3389/fnhum.2021.616591] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
Face recognition is impaired in patients with prosopagnosia, which may occur as a side effect of neurosurgical procedures. Face selective regions on the ventral temporal cortex have been localized with electrical cortical stimulation (ECS), electrocorticography (ECoG), and functional magnetic resonance imagining (fMRI). This is the first group study using within-patient comparisons to validate face selective regions mapping, utilizing the aforementioned modalities. Five patients underwent surgical treatment of intractable epilepsy and joined the study. Subdural grid electrodes were implanted on their ventral temporal cortices to localize seizure foci and face selective regions as part of the functional mapping protocol. Face selective regions were identified in all patients with fMRI, four patients with ECoG, and two patients with ECS. From 177 tested electrode locations in the region of interest (ROI), which is defined by the fusiform gyrus and the inferior temporal gyrus, 54 face locations were identified by at least one modality in all patients. fMRI mapping showed the highest detection rate, revealing 70.4% for face selective locations, whereas ECoG and ECS identified 64.8 and 31.5%, respectively. Thus, 28 face locations were co-localized by at least two modalities, with detection rates of 89.3% for fMRI, 85.7% for ECoG and 53.6 % for ECS. All five patients had no face recognition deficits after surgery, even though five of the face selective locations, one obtained by ECoG and the other four by fMRI, were within 10 mm to the resected volumes. Moreover, fMRI included a quite large volume artifact on the ventral temporal cortex in the ROI from the anatomical structures of the temporal base. In conclusion, ECS was not sensitive in several patients, whereas ECoG and fMRI even showed activation within 10 mm to the resected volumes. Considering the potential signal drop-out in fMRI makes ECoG the most reliable tool to identify face selective locations in this study. A multimodal approach can improve the specificity of ECoG and fMRI, while simultaneously minimizing the number of required ECS sessions. Hence, all modalities should be considered in a clinical mapping protocol entailing combined results of co-localized face selective locations.
Collapse
Affiliation(s)
- Takahiro Sanada
- Department of Neurosurgery, Nayoro City General Hospital, Nayoro, Japan.,Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
| | - Christoph Kapeller
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| | - Michael Jordan
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| | - Johannes Grünwald
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Juntendo University, Tokyo, Japan.,Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, United States
| | - Hiroshi Ogawa
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ryogo Anei
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
| | - Christoph Guger
- g.tec Medical Engineering GmbH, Schiedlberg, Austria.,Guger Technologies OG, Graz, Austria
| |
Collapse
|
24
|
Spagna A, Hajhajate D, Liu J, Bartolomeo P. Visual mental imagery engages the left fusiform gyrus, but not the early visual cortex: A meta-analysis of neuroimaging evidence. Neurosci Biobehav Rev 2021; 122:201-217. [PMID: 33422567 DOI: 10.1016/j.neubiorev.2020.12.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 12/03/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022]
Abstract
The dominant neural model of visual mental imagery (VMI) stipulates that memories from the medial temporal lobe acquire sensory features in early visual areas. However, neurological patients with damage restricted to the occipital cortex typically show perfectly vivid VMI, while more anterior damages extending into the temporal lobe, especially in the left hemisphere, often cause VMI impairments. Here we present two major results reconciling neuroimaging findings in neurotypical subjects with the performance of brain-damaged patients: (1) A large-scale meta-analysis of 46 fMRI studies, of which 27 investigated specifically visual mental imagery, revealed that VMI engages fronto-parietal networks and a well-delimited region in the left fusiform gyrus. (2) A Bayesian analysis showed no evidence for imagery-related activity in early visual cortices. We propose a revised neural model of VMI that draws inspiration from recent cytoarchitectonic and lesion studies, whereby fronto-parietal networks initiate, modulate, and maintain activity in a core temporal network centered on the fusiform imagery node, a high-level visual region in the left fusiform gyrus.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Columbia University in the City of New York, NY, 10027, USA; Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Dounia Hajhajate
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France
| | - Jianghao Liu
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France; Dassault Systèmes, Vélizy-Villacoublay, France
| | - Paolo Bartolomeo
- Sorbonne Université, Inserm U 1127, CNRS UMR 7225, Paris Brain Institute, ICM, Hôpital de la Pitié-Salpêtrière, F-75013, Paris, France.
| |
Collapse
|
25
|
Bottari D, Bednaya E, Dormal G, Villwock A, Dzhelyova M, Grin K, Pietrini P, Ricciardi E, Rossion B, Röder B. EEG frequency-tagging demonstrates increased left hemispheric involvement and crossmodal plasticity for face processing in congenitally deaf signers. Neuroimage 2020; 223:117315. [DOI: 10.1016/j.neuroimage.2020.117315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
|
26
|
Yan X, Rossion B. A robust neural familiar face recognition response in a dynamic (periodic) stream of unfamiliar faces. Cortex 2020; 132:281-295. [DOI: 10.1016/j.cortex.2020.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 01/23/2023]
|
27
|
Jacques C, Rossion B, Volfart A, Brissart H, Colnat-Coulbois S, Maillard L, Jonas J. The neural basis of rapid unfamiliar face individuation with human intracerebral recordings. Neuroimage 2020; 221:117174. [DOI: 10.1016/j.neuroimage.2020.117174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
|
28
|
Rossion B, Retter TL, Liu‐Shuang J. Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. Eur J Neurosci 2020; 52:4283-4344. [DOI: 10.1111/ejn.14865] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/30/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Bruno Rossion
- CNRS, CRAN UMR7039 Université de Lorraine F‐54000Nancy France
- Service de Neurologie, CHRU‐Nancy Université de Lorraine F‐54000Nancy France
| | - Talia L. Retter
- Department of Behavioural and Cognitive Sciences Faculty of Language and Literature Humanities, Arts and Education University of Luxembourg Luxembourg Luxembourg
| | - Joan Liu‐Shuang
- Institute of Research in Psychological Science Institute of Neuroscience Université de Louvain Louvain‐la‐Neuve Belgium
| |
Collapse
|
29
|
Cao R, Li X, Todorov A, Wang S. A Flexible Neural Representation of Faces in the Human Brain. Cereb Cortex Commun 2020; 1:tgaa055. [PMID: 34296119 PMCID: PMC8152845 DOI: 10.1093/texcom/tgaa055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 07/27/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
An important question in human face perception research is to understand whether the neural representation of faces is dynamically modulated by context. In particular, although there is a plethora of neuroimaging literature that has probed the neural representation of faces, few studies have investigated what low-level structural and textural facial features parametrically drive neural responses to faces and whether the representation of these features is modulated by the task. To answer these questions, we employed 2 task instructions when participants viewed the same faces. We first identified brain regions that parametrically encoded high-level social traits such as perceived facial trustworthiness and dominance, and we showed that these brain regions were modulated by task instructions. We then employed a data-driven computational face model with parametrically generated faces and identified brain regions that encoded low-level variation in the faces (shape and skin texture) that drove neural responses. We further analyzed the evolution of the neural feature vectors along the visual processing stream and visualized and explained these feature vectors. Together, our results showed a flexible neural representation of faces for both low-level features and high-level social traits in the human brain.
Collapse
Affiliation(s)
- Runnan Cao
- Department of Chemical and Biomedical Engineering, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
| | - Xin Li
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Alexander Todorov
- Booth School of Business, University of Chicago, Chicago, IL 60637, USA
| | - Shuo Wang
- Department of Chemical and Biomedical Engineering, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
30
|
Typical visual unfamiliar face individuation in left and right mesial temporal epilepsy. Neuropsychologia 2020; 147:107583. [PMID: 32771474 DOI: 10.1016/j.neuropsychologia.2020.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022]
Abstract
Patients with chronic mesial temporal lobe epilepsy have difficulties at identifying familiar faces as well as at explicit old/new face recognition tasks. However, the extent to which these difficulties can be attributed to visual individuation of faces, independently of general explicit learning and semantic memory processes, is unknown. We tested 42 mesial temporal lobe epilepsy patients divided into two groups according to the side of epilepsy (left and right) and 42 matched controls on an extensive series of individuation tasks of unfamiliar faces and control visual stimuli, as well as on face detection, famous face recognition and naming, and face and non-face learning. Overall, both patient groups had difficulties at identifying and naming famous faces, and at explicitly learning face and non-face images. However, there was no group difference in accuracy between patients and controls at the two most widely used neuropsychological tests assessing visual individuation of unfamiliar faces (Benton Facial Recognition Test and Cambridge Face Memory Test). While patients with right mesial temporal lobe epilepsy were slowed down at all tasks, this effect was not specific to faces or even high-level stimuli. Importantly, both groups showed the same profile of response as typical participants across various stimulus manipulations, showing no evidence of qualitative processing impairments. Overall, these results point to largely preserved visual face individuation processes in patients with mesial temporal lobe epilepsy, with semantic and episodic memory difficulties being consistent with the localization of the neural structures involved in their epilepsy (anterior temporal cortex and hippocampus). These observations have implications for the prediction of neuropsychological outcomes in the case of surgery and support the validity of intracranial electroencephalographic recordings performed in this population to understand neural mechanisms of human face individuation, notably through intracranial electrophysiological recordings and stimulations.
Collapse
|
31
|
Rekow D, Leleu A, Poncet F, Damon F, Rossion B, Durand K, Schaal B, Baudouin JY. Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: further evidence for the role of intersensory congruency in perceptual development. COGNITIVE DEVELOPMENT 2020. [DOI: 10.1016/j.cogdev.2020.100930] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
32
|
Yin Z, Wang Y, Dong M, Wang Y, Ren S, Liang J. Short-range and long-range neuronal oscillatory coupling in multiple frequency bands during face perception. Int J Psychophysiol 2020; 152:26-35. [PMID: 32277957 DOI: 10.1016/j.ijpsycho.2020.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Neuronal oscillatory activity has been considered to play a key role in face processing through its functional effect on information flow and exchange in human brain. Specifically, most neuronal oscillatory activity is measured in different rhythm based on the electrophysiological signal at single channel level. Although, the neuronal oscillatory coupling between neuronal assembles is associated with the information flow and exchange between brain regions, few studies focus on this type of neuronal oscillatory activity in face processing. In this study, the neuronal oscillatory coupling was investigated based on electroencephalographic (EEG) data of 20 participants, which were recorded when the participants were in a face/non-face perceptual task. The phase lag index (PLI) was used to assess the neuronal oscillatory coupling between brain regions in typical frequency bands. Enhanced short-range coupling was observed in theta (4-8 Hz) and alpha (8-12 Hz) band over the frontal region, in gamma1 (30-49 Hz) band over the left posterior and occipito-temporal regions, and in gamma2 (51-75 Hz) over the right temporal region during face perception compared with non-face perception. Long-range coupling was increased in theta and gamma band over the right hemisphere during face perception. Moreover, increased long-range coupling was observed in alpha band over the left and right hemisphere respectively during face perception. The results suggested that frequency-specific neuronal oscillatory coupling within and between regions of frontal cortex and the ventral visual pathway played an important role in face perception, which might reflect underlying neural mechanism of face perception.
Collapse
Affiliation(s)
- Zhongliang Yin
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Ying Wang
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China
| | - Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Yubo Wang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Shenghan Ren
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China
| | - Jimin Liang
- School of Electronic Engineering, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
33
|
Hagen S, Jacques C, Maillard L, Colnat-Coulbois S, Rossion B, Jonas J. Spatially Dissociated Intracerebral Maps for Face- and House-Selective Activity in the Human Ventral Occipito-Temporal Cortex. Cereb Cortex 2020; 30:4026-4043. [PMID: 32301963 DOI: 10.1093/cercor/bhaa022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We report a comprehensive mapping of the human ventral occipito-temporal cortex (VOTC) for selective responses to frequency-tagged faces or landmarks (houses) presented in rapid periodic trains of objects, with intracerebral recordings in a large sample (N = 75). Face-selective contacts are three times more numerous than house-selective contacts and show a larger amplitude, with a right hemisphere advantage for faces. Most importantly, these category-selective contacts are spatially dissociated along the lateral-to-medial VOTC axis, respectively, consistent with neuroimaging evidence. At the minority of "overlap" contacts responding selectively to both faces and houses, response amplitude to the two categories is not correlated, suggesting a contribution of distinct populations of neurons responding selectively to each category. The medio-lateral dissociation also extends into the underexplored anterior temporal lobe (ATL). In this region, a relatively high number of intracerebral recording contacts show category-exclusive responses (i.e., without any response to baseline visual objects) to faces but rarely to houses, in line with the proposed role of this region in processing people-related semantic information. Altogether, these observations shed novel insight on the neural basis of human visual recognition and strengthen the validity of the frequency-tagging approach coupled with intracerebral recordings in epileptic patients to understand human brain function.
Collapse
Affiliation(s)
- Simen Hagen
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France
| | - Corentin Jacques
- Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve B-1348, Belgium
| | - Louis Maillard
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy F-54000, France
| | - Sophie Colnat-Coulbois
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Service de Neurochirurgie, Nancy F-54000, France
| | - Bruno Rossion
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Louvain-La-Neuve B-1348, Belgium.,Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy F-54000, France
| | - Jacques Jonas
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Service de Neurologie, Nancy F-54000, France
| |
Collapse
|
34
|
The cortical face network of the prosopagnosic patient PS with fast periodic stimulation in fMRI. Cortex 2019; 119:528-542. [DOI: 10.1016/j.cortex.2018.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 09/01/2018] [Accepted: 11/07/2018] [Indexed: 12/27/2022]
|
35
|
Leleu A, Rekow D, Poncet F, Schaal B, Durand K, Rossion B, Baudouin J. Maternal odor shapes rapid face categorization in the infant brain. Dev Sci 2019; 23:e12877. [DOI: 10.1111/desc.12877] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/07/2019] [Accepted: 06/04/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Arnaud Leleu
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Diane Rekow
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Fanny Poncet
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Benoist Schaal
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Karine Durand
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
| | - Bruno Rossion
- Psychological Sciences Research Institute, Institute of Neuroscience University of Louvain Louvain‐la‐Neuve Belgium
- Université de Lorraine, CNRS, CRAN Nancy France
- Université de Lorraine, CHRU‐Nancy Nancy France
| | - Jean‐Yves Baudouin
- Developmental Ethology and Cognitive Psychology group, Centre des Sciences du Goût et de l’Alimentation Université Bourgogne Franche‐Comté, CNRSInra, AgroSup Dijon Dijon France
- Laboratoire Développement Département Psychologie du Développement, de l'Éducation et des Vulnérabilités (PsyDÉV), Institut de psychologie Université de Lyon (Lumière Lyon 2) Individu, Processus Handicap, Éducation (DIPHE) Bron cedex France
| |
Collapse
|
36
|
Hill VB, Cankurtaran CZ, Liu BP, Hijaz TA, Naidich M, Nemeth AJ, Gastala J, Krumpelman C, McComb EN, Korutz AW. A Practical Review of Functional MRI Anatomy of the Language and Motor Systems. AJNR Am J Neuroradiol 2019; 40:1084-1090. [PMID: 31196862 DOI: 10.3174/ajnr.a6089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 11/07/2022]
Abstract
Functional MR imaging is being performed with increasing frequency in the typical neuroradiology practice; however, many readers of these studies have only a limited knowledge of the functional anatomy of the brain. This text will delineate the locations, anatomic boundaries, and functions of the cortical regions of the brain most commonly encountered in clinical practice-specifically, the regions involved in movement and language.
Collapse
Affiliation(s)
- V B Hill
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - C Z Cankurtaran
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - B P Liu
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.).,Radiation Oncology (B.P.L.), Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - T A Hijaz
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - M Naidich
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - A J Nemeth
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.).,Neurology (A.J.N.)
| | - J Gastala
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - C Krumpelman
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - E N McComb
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| | - A W Korutz
- From the Departments of Radiology (V.B.H., C.Z.C., B.P.L., T.A.H., M.N., A.J.N., J.G., C.K., E.N.M., A.W.K.)
| |
Collapse
|
37
|
Zimmermann FGS, Yan X, Rossion B. An objective, sensitive and ecologically valid neural measure of rapid human individual face recognition. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181904. [PMID: 31312474 PMCID: PMC6599768 DOI: 10.1098/rsos.181904] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Humans may be the only species able to rapidly and automatically recognize a familiar face identity in a crowd of unfamiliar faces, an important social skill. Here, by combining electroencephalography (EEG) and fast periodic visual stimulation (FPVS), we introduce an ecologically valid, objective and sensitive neural measure of this human individual face recognition function. Natural images of various unfamiliar faces are presented at a fast rate of 6 Hz, allowing one fixation per face, with variable natural images of a highly familiar face identity, a celebrity, appearing every seven images (0.86 Hz). Following a few minutes of stimulation, a high signal-to-noise ratio neural response reflecting the generalized discrimination of the familiar face identity from unfamiliar faces is observed over the occipito-temporal cortex at 0.86 Hz and harmonics. When face images are presented upside-down, the individual familiar face recognition response is negligible, being reduced by a factor of 5 over occipito-temporal regions. Differences in the magnitude of the individual face recognition response across different familiar face identities suggest that factors such as exposure, within-person variability and distinctiveness mediate this response. Our findings of a biological marker for fast and automatic recognition of individual familiar faces with ecological stimuli open an avenue for understanding this function, its development and neural basis in neurotypical individual brains along with its pathology. This should also have implications for the use of facial recognition measures in forensic science.
Collapse
Affiliation(s)
- Friederike G. S. Zimmermann
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- BG Klinikum Hamburg, Bergedorfer Straße 10, 21033 Hamburg, Germany
| | - Xiaoqian Yan
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
| | - Bruno Rossion
- Institute of Research in Psychological Science, Institute of Neuroscience, Université de Louvain, Louvain-la-Neuve, Belgium
- Université de Lorraine, CNRS, CRAN, 54000 Nancy, France
- CHRU-Nancy, Service de Neurologie, 54000 Nancy, France
| |
Collapse
|
38
|
|
39
|
Or CCF, Retter TL, Rossion B. The contribution of color information to rapid face categorization in natural scenes. J Vis 2019; 19:20. [DOI: 10.1167/19.5.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Charles C.-F. Or
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
- Psychological Sciences Research Institute & Institute of Neuroscience, University of Louvain, Belgium
- ://blogs.ntu.edu.sg/visionlab/
| | - Talia L. Retter
- Psychological Sciences Research Institute & Institute of Neuroscience, University of Louvain, Belgium
- Department of Psychology, Center for Integrative Neuroscience, University of Nevada, Reno, USA
| | - Bruno Rossion
- Psychological Sciences Research Institute & Institute of Neuroscience, University of Louvain, Belgium
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France
- CHRU-Nancy, Service de Neurologie, F-54000, Nancy, France
- ://face-categorization-lab.webnode.com/people/bruno-rossion
| |
Collapse
|
40
|
Rossion B, Taubert J. What can we learn about human individual face recognition from experimental studies in monkeys? Vision Res 2019; 157:142-158. [DOI: 10.1016/j.visres.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 03/22/2018] [Accepted: 03/29/2018] [Indexed: 10/28/2022]
|
41
|
Takeda Y, Suzuki K, Kawato M, Yamashita O. MEG Source Imaging and Group Analysis Using VBMEG. Front Neurosci 2019; 13:241. [PMID: 30967756 PMCID: PMC6438955 DOI: 10.3389/fnins.2019.00241] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/01/2019] [Indexed: 11/13/2022] Open
Abstract
Variational Bayesian Multimodal EncephaloGraphy (VBMEG) is a MATLAB toolbox that estimates distributed source currents from magnetoencephalography (MEG)/electroencephalography (EEG) data by integrating functional MRI (fMRI) (https://vbmeg.atr.jp/). VBMEG also estimates whole-brain connectome dynamics using anatomical connectivity derived from a diffusion MRI (dMRI). In this paper, we introduce the VBMEG toolbox and demonstrate its usefulness. By collaborating with VBMEG's tutorial page (https://vbmeg.atr.jp/docs/v2/static/vbmeg2_tutorial_neuromag.html), we show its full pipeline using an open dataset recorded by Wakeman and Henson (2015). We import the MEG data and preprocess them to estimate the source currents. From the estimated source currents, we perform a group analysis and examine the differences of current amplitudes between conditions by controlling the false discovery rate (FDR), which yields results consistent with previous studies. We highlight VBMEG's characteristics by comparing these results with those obtained by other source imaging methods: weighted minimum norm estimate (wMNE), dynamic statistical parametric mapping (dSPM), and linearly constrained minimum variance (LCMV) beamformer. We also estimate source currents from the EEG data and the whole-brain connectome dynamics from the MEG data and dMRI. The observed results indicate the reliability, characteristics, and usefulness of VBMEG.
Collapse
Affiliation(s)
- Yusuke Takeda
- ATR Neural Information Analysis Laboratories, Kyoto, Japan
| | - Keita Suzuki
- ATR Neural Information Analysis Laboratories, Kyoto, Japan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | | |
Collapse
|
42
|
Weiner KS. The Mid‐Fusiform Sulcus (
sulcus sagittalis gyri fusiformis
). Anat Rec (Hoboken) 2019; 302:1491-1503. [DOI: 10.1002/ar.24041] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Kevin S. Weiner
- Department of PsychologyUC Berkeley Berkeley California
- Helen Wills Neuroscience Institute Berkeley California
| |
Collapse
|
43
|
Selective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings. Proc Natl Acad Sci U S A 2018; 115:E7595-E7604. [PMID: 30038000 DOI: 10.1073/pnas.1718987115] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report a comprehensive cartography of selective responses to visual letters and words in the human ventral occipito-temporal cortex (VOTC) with direct neural recordings, clarifying key aspects of the neural basis of reading. Intracerebral recordings were performed in a large group of patients (n = 37) presented with visual words inserted periodically in rapid sequences of pseudofonts, nonwords, or pseudowords, enabling classification of responses at three levels of word processing: letter, prelexical, and lexical. While letter-selective responses are found in much of the VOTC, with a higher proportion in left posterior regions, prelexical/lexical responses are confined to the middle and anterior sections of the left fusiform gyrus. This region overlaps with and extends more anteriorly than the visual word form area typically identified with functional magnetic resonance imaging. In this region, prelexical responses provide evidence for populations of neurons sensitive to the statistical regularity of letter combinations independently of lexical responses to familiar words. Despite extensive sampling in anterior ventral temporal regions, there is no hierarchical organization between prelexical and lexical responses in the left fusiform gyrus. Overall, distinct word processing levels depend on neural populations that are spatially intermingled rather than organized according to a strict postero-anterior hierarchy in the left VOTC.
Collapse
|
44
|
Gao X, Gentile F, Rossion B. Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping. Brain Struct Funct 2018; 223:2433-2454. [DOI: 10.1007/s00429-018-1630-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/14/2018] [Indexed: 10/17/2022]
|