1
|
Ni R, Hu Z, Tao R. Advances of immune-checkpoint inhibition of CTLA-4 in pancreatic cancer. Biomed Pharmacother 2024; 179:117430. [PMID: 39260322 DOI: 10.1016/j.biopha.2024.117430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024] Open
Abstract
Targeting checkpoints for immune cell activation has been acknowledged known as one of the most effective way to activate anti-tumor immune responses. Among them, drugs targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are approved for clinical treatment though several more are in advanced stages of development, which demonstrated durable response rates and manageable safety profile. However, its therapy efficacy is unsatisfactory in pancreatic cancer (PC), which can be limited by the overall condition of patients, the pathological type of PC, the expression level of tumor related genes, etc. To improve clinical efficiency, various researches have been conducted, and the efficacy of combination therapy showed significantly improvement compared to monotherapy. This review analyzed current strategies based on anti-CTLA-4 combination immunotherapy, providing totally new idea for future research.
Collapse
Affiliation(s)
- Ran Ni
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zhiming Hu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Hepatobiliary & Pancreatic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Ran Tao
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Li H, Liu D, Li K, Wang Y, Zhang G, Qi L, Xie K. Pancreatic stellate cells and the interleukin family: Linking fibrosis and immunity to pancreatic ductal adenocarcinoma (Review). Mol Med Rep 2024; 30:159. [PMID: 38994764 PMCID: PMC11258612 DOI: 10.3892/mmr.2024.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive form of cancer with a low survival rate. A successful treatment strategy should not be limited to targeting cancer cells alone, but should adopt a more comprehensive approach, taking into account other influential factors. These include the extracellular matrix (ECM) and immune microenvironment, both of which are integral components of the tumor microenvironment. The present review describes the roles of pancreatic stellate cells, differentiated cancer‑associated fibroblasts and the interleukin family, either independently or in combination, in the progression of precursor lesions in pancreatic intraepithelial neoplasia and PDAC. These elements contribute to ECM deposition and immunosuppression in PDAC. Therapeutic strategies that integrate interleukin and/or stromal blockade for PDAC immunomodulation and fibrogenesis have yielded inconsistent results. A deeper comprehension of the intricate interplay between fibrosis, and immune responses could pave the way for more effective treatment targets, by elucidating the mechanisms and causes of ECM fibrosis during PDAC progression.
Collapse
Affiliation(s)
- Haichao Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Donglian Liu
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Kaishu Li
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Yichen Wang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Gengqiang Zhang
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Ling Qi
- Institute of Digestive Disease, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong 511518, P.R. China
| | - Keping Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
3
|
Van den Bossche J, De Laere M, Deschepper K, Germonpré P, Valcke Y, Lamont J, Stein B, Van Camp K, Germonpré C, Nijs G, Roelant E, Anguille S, Lion E, Berneman Z. Integration of the PD-L1 inhibitor atezolizumab and WT1/DC vaccination into standard-of-care first-line treatment for patients with epithelioid malignant pleural mesothelioma-Protocol of the Immuno-MESODEC study. PLoS One 2024; 19:e0307204. [PMID: 39008481 PMCID: PMC11249236 DOI: 10.1371/journal.pone.0307204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer with a very poor prognosis. Recently, immune checkpoint inhibition (ICI) has taken center stage in the currently ongoing revolution that is changing standard-of-care treatment for several malignancies, including MPM. As multiple arguments and accumulating lines of evidence are in support of the existence of a therapeutic synergism between chemotherapy and immunotherapy, as well as between different classes of immunotherapeutics, we designed a multicenter, single-arm, phase I/II trial in which both programmed-death-ligand 1 (PD-L1) inhibition and dendritic cell (DC) vaccination are integrated in the first-line conventional platinum/pemetrexed-based treatment scheme for epithelioid MPM patients (Immuno-MESODEC, ClinicalTrials.gov identifier NCT05765084). Fifteen treatment-naïve patients with unresectable epithelioid subtype MPM will be treated with four 3-weekly (±3 days) chemo-immunotherapy cycles. Standard-of-care chemotherapy consisting of cisplatinum (75mg/m2) and pemetrexed (500mg/m2) will be supplemented with the anti-PD-L1 antibody atezolizumab (1200 mg) and autologous Wilms' tumor 1 mRNA-electroporated dendritic cell (WT1/DC) vaccination (8-10 x 106 cells/vaccination). Additional atezolizumab (1680 mg) doses and/or WT1/DC vaccinations (8-10 x 106 cells/vaccination) can be administered optionally following completion of the chemo-immunotherapy scheme. Follow-up of patients will last for up to 90 days after final atezolizumab administration and/or WT1/DC vaccination or 24 months after diagnosis, whichever occurs later. The trial's primary endpoints are safety and feasibility, secondary endpoints are clinical efficacy and immunogenicity. This phase I/II trial will evaluate whether addition of atezolizumab and WT1/DC vaccination to frontline standard-of-care chemotherapy for the treatment of epithelioid MPM is feasible and safe. If so, this novel combination strategy should be further investigated as a promising advanced treatment option for this hard-to-treat cancer.
Collapse
Affiliation(s)
- Jolien Van den Bossche
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Maxime De Laere
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Koen Deschepper
- Division of Pulmonary and Infectious Diseases, VITAZ, Sint-Niklaas, Belgium
| | - Paul Germonpré
- Respiratory Oncology & Integrated Cancer Cancer Ghent, AZ Maria Middelares, Ghent, Belgium
| | - Yvan Valcke
- Division of Pulmonary and Infectious Diseases, VITAZ, Sint-Niklaas, Belgium
| | - Jan Lamont
- Respiratory Oncology & Integrated Cancer Cancer Ghent, AZ Maria Middelares, Ghent, Belgium
| | - Barbara Stein
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Kirsten Van Camp
- Division of Pulmonary and Infectious Diseases, VITAZ, Sint-Niklaas, Belgium
| | - Charlotte Germonpré
- Respiratory Oncology & Integrated Cancer Cancer Ghent, AZ Maria Middelares, Ghent, Belgium
| | - Griet Nijs
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium
| | - Ella Roelant
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital (UZA), University of Antwerp, Edegem, Belgium
| | - Sébastien Anguille
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Division of Hematology, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Eva Lion
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Center for Cell Therapy and Regenerative Medicine (CCRG), Antwerp University Hospital (UZA), Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Division of Hematology, Antwerp University Hospital (UZA), Edegem, Belgium
| |
Collapse
|
4
|
Xiao Z, Wang R, Wang X, Yang H, Dong J, He X, Yang Y, Guo J, Cui J, Zhou Z. Impaired function of dendritic cells within the tumor microenvironment. Front Immunol 2023; 14:1213629. [PMID: 37441069 PMCID: PMC10333501 DOI: 10.3389/fimmu.2023.1213629] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Dendritic cells (DCs), a class of professional antigen-presenting cells, are considered key factors in the initiation and maintenance of anti-tumor immunity due to their powerful ability to present antigen and stimulate T-cell responses. The important role of DCs in controlling tumor growth and mediating potent anti-tumor immunity has been demonstrated in various cancer models. Accordingly, the infiltration of stimulatory DCs positively correlates with the prognosis and response to immunotherapy in a variety of solid tumors. However, accumulating evidence indicates that DCs exhibit a significantly dysfunctional state, ultimately leading to an impaired anti-tumor immune response due to the effects of the immunosuppressive tumor microenvironment (TME). Currently, numerous preclinical and clinical studies are exploring immunotherapeutic strategies to better control tumors by restoring or enhancing the activity of DCs in tumors, such as the popular DC-based vaccines. In this review, an overview of the role of DCs in controlling tumor progression is provided, followed by a summary of the current advances in understanding the mechanisms by which the TME affects the normal function of DCs, and concluding with a brief discussion of current strategies for DC-based tumor immunotherapy.
Collapse
Affiliation(s)
- Zhihua Xiao
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Ruiqi Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xuyan Wang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Haikui Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiamei Dong
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Xin He
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jiahao Guo
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiawen Cui
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Zhiling Zhou
- Department of Pharmacy, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| |
Collapse
|
5
|
D’Alise AM, Nocchi L, Garzia I, Seclì L, Infante L, Troise F, Cotugno G, Allocca S, Romano G, Lahm A, Leoni G, Sasso E, Scarselli E, Nicosia A. Adenovirus Encoded Adjuvant (AdEnA) anti-CTLA-4, a novel strategy to improve Adenovirus based vaccines against infectious diseases and cancer. Front Immunol 2023; 14:1156714. [PMID: 37180141 PMCID: PMC10169702 DOI: 10.3389/fimmu.2023.1156714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Luigia Infante
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | | | | | | | | | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| | | | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| |
Collapse
|
6
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
7
|
Zhang M, Zhou M, Cai X, Zhou Y, Jiang X, Luo Y, Hu Y, Qiu R, Wu Y, Zhang Y, Xiong Y. VEGF promotes diabetic retinopathy by upregulating the PKC/ET/NF-κB/ICAM-1 signaling pathway. Eur J Histochem 2022; 66. [DOI: 10.4081/ejh.2022.3522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022] Open
Abstract
Diabetic retinopathy (DR) is a common microvascular complication in patients with diabetes mellitus. DR is caused by chronic hyperglycemia and is characterized by progressive loss of vision because of damage to the retinal microvasculature. In this study, we investigated the regulatory role and clinical significance of the vascular endothelial growth factor (VEGF)/protein kinase C (PKC)/endothelin (ET)/nuclear factor-κB (NF-κB)/intercellular adhesion molecule 1 (ICAM-1) signaling pathway in DR using a rat model. Intraperitoneal injections of the VEGF agonist, streptozotocin (STZ) were used to generate the DR model rats. DR rats treated with the VEGF inhibitor (DR+VEGF inhibitor) were used to study the specific effects of VEGF on DR pathology and the underlying mechanisms. DR and DR+VEGF agonist rats were injected with the PKCβ2 inhibitor, GF109203X to determine the therapeutic potential of blocking the VEGF/PKC/ET/NF-κB/ICAM-1 signaling pathway. The body weights and blood glucose levels of the rats in all groups were evaluated at 16 weeks. DR-related retinal histopathology was analyzed by hematoxylin and eosin staining. ELISA assay was used to estimate the PKC activity in the retinal tissues. Western blotting and RT-qPCR assays were used to analyze the expression levels of PKC-β2, VEGF, ETs, NF-κB, and ICAM-1 in the retinal tissues. Immunohistochemistry was used to analyze VEGF and ICAM-1 expression in the rat retinal tissues. Our results showed that VEGF, ICAM-1, PKCβ2, ET, and NF-κB expression levels as well as PKC activity were significantly increased in the retinal tissues of the DR and DR+VEGF agonist rat groups compared to the control and DR+VEGF inhibitor rat groups. DR and DR+VEGF agonist rats showed significantly lower body weight and significantly higher retinal histopathology scores and blood glucose levels compared to the control and DR+VEGF inhibitor group rats. However, treatment of DR and DR+VEGF agonist rats with GF109203X partially alleviated DR pathology by inhibiting the VEGF/ PKC/ET/NF-κB/ICAM-1 signaling pathway. In summary, our data demonstrated that inhibition of the VEGF/ PKC/ET/NF-κB/ICAM-1 signaling pathway significantly alleviated DR-related pathology in the rat model. Therefore, VEGF/PKC/ET/NF-κB/ICAM-1 signaling axis is a promising therapeutic target for DR.
Collapse
|
8
|
Zhang H, Ye L, Yu X, Jin K, Wu W. Neoadjuvant therapy alters the immune microenvironment in pancreatic cancer. Front Immunol 2022; 13:956984. [PMID: 36225934 PMCID: PMC9548645 DOI: 10.3389/fimmu.2022.956984] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic cancer has an exclusive inhibitory tumor microenvironment characterized by a dense mechanical barrier, profound infiltration of immunosuppressive cells, and a lack of penetration of effector T cells, which constitute an important cause for recurrence and metastasis, resistance to chemotherapy, and insensitivity to immunotherapy. Neoadjuvant therapy has been widely used in clinical practice due to its many benefits, including the ability to improve the R0 resection rate, eliminate tumor cell micrometastases, and identify highly malignant tumors that may not benefit from surgery. In this review, we summarize multiple aspects of the effect of neoadjuvant therapy on the immune microenvironment of pancreatic cancer, discuss possible mechanisms by which these changes occur, and generalize the theoretical basis of neoadjuvant chemoradiotherapy combined with immunotherapy, providing support for the development of more effective combination therapeutic strategies to induce potent immune responses to tumors.
Collapse
Affiliation(s)
- Huiru Zhang
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Weiding Wu, ; Kaizhou Jin, ; Xianjun Yu,
| | - Kaizhou Jin
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Weiding Wu, ; Kaizhou Jin, ; Xianjun Yu,
| | - Weiding Wu
- Department of Pancreatic Surgery, Shanghai Cancer Centre, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Fudan University, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
- *Correspondence: Weiding Wu, ; Kaizhou Jin, ; Xianjun Yu,
| |
Collapse
|
9
|
Mukherji R, Debnath D, Hartley ML, Noel MS. The Role of Immunotherapy in Pancreatic Cancer. Curr Oncol 2022; 29:6864-6892. [PMID: 36290818 PMCID: PMC9600738 DOI: 10.3390/curroncol29100541] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
Pancreatic adenocarcinoma remains one of the most lethal cancers globally, with a significant need for improved therapeutic options. While the recent breakthroughs of immunotherapy through checkpoint inhibitors have dramatically changed treatment paradigms in other malignancies based on considerable survival benefits, this is not so for pancreatic cancer. Chemotherapies with modest benefits are still the cornerstone of advanced pancreatic cancer treatment. Pancreatic cancers are inherently immune-cold tumors and have been largely refractory to immunotherapies in clinical trials. Understanding and overcoming the current failures of immunotherapy through elucidating resistance mechanisms and developing novel therapeutic approaches are essential to harnessing the potential durable benefits of immune-modulating therapy in pancreatic cancer patients.
Collapse
Affiliation(s)
- Reetu Mukherji
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Dipanjan Debnath
- Department of Internal Medicine, Medstar Washington Hospital Center, 110 Irving Street NW, Washington, DC 20010, USA
| | - Marion L. Hartley
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Marcus S. Noel
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
- Correspondence:
| |
Collapse
|
10
|
Cenerenti M, Saillard M, Romero P, Jandus C. The Era of Cytotoxic CD4 T Cells. Front Immunol 2022; 13:867189. [PMID: 35572552 PMCID: PMC9094409 DOI: 10.3389/fimmu.2022.867189] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In 1986, Mosmann and Coffman identified 2 functionally distinct subsets of activated CD4 T cells, Th1 and Th2 cells, being key in distinct T cell mediated responses. Over the past three decades, our understanding of CD4 T cell differentiation has expanded and the initial paradigm of a dichotomic CD4 T cell family has been revisited to accommodate a constantly growing number of functionally distinct CD4 T helper and regulatory subpopulations. Of note, CD4 T cells with cytotoxic functions have also been described, initially in viral infections, autoimmune disorders and more recently also in cancer settings. Here, we provide an historical overview on the discovery and characterization of cytotoxic CD4 T cells, followed by a description of their mechanisms of cytotoxicity. We emphasize the relevance of these cells in disease conditions, particularly in cancer, and we provide insights on how to exploit these cells in immunotherapy.
Collapse
Affiliation(s)
- Mara Cenerenti
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| | - Margaux Saillard
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Ludwig Institute for Cancer Research, Lausanne, Switzerland.,Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Ludwig Institute for Cancer Research, Lausanne, Switzerland
| |
Collapse
|
11
|
Challenges for Better Diagnosis and Management of Pancreatic and Biliary Tract Cancers Focusing on Blood Biomarkers: A Systematic Review. Cancers (Basel) 2021; 13:cancers13164220. [PMID: 34439378 PMCID: PMC8394661 DOI: 10.3390/cancers13164220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Pancreatic and biliary tract cancers are malignant tumors that have a very poor prognosis and are resistant to chemotherapy. The later a cancer is detected, the worse the prognosis becomes; therefore, early detection is important. Biomarkers are physiological indices that serve as a guide to indicate the presence or absence of a certain disease, or its progression. The purpose of our research is to summarize previously reported biomarkers for the diagnosis and prognosis of pancreatic and biliary tract cancers. Abstract Background: pancreatic cancer (PCa) and biliary tract cancer (BTC) are cancers with a poor prognosis and few effective treatments. One of the reasons for this is late detection. Many researchers are tackling to develop non-invasive biomarkers for cancer, but few are specific for PCa or BTC. In addition, genetic abnormalities occur in cancer tissues, which ultimately affect the expression of various molecules. Therefore, it is important to identify molecules that are altered in PCa and BTC. For this systematic review, a systematic review of Medline and Embase to select biomarker studies of PCa and BTC patients was conducted. Results: after reviewing 72 studies, 79 biomarker candidates were identified, including 22 nucleic acids, 43 proteins, and 14 immune cell types. Of the 72 studies, 61 examined PCa, and 11 examined BTC. Conclusion: PCa and BTC are characterized by nucleic acid, protein, and immune cell profiles that are markedly different from those of healthy subjects. These altered molecules and cell subsets may serve as cancer-specific biomarkers, particularly in blood. Further studies are needed to better understand the diagnosis and prognosis of PCa and BTC.
Collapse
|
12
|
Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021; 9:vaccines9050454. [PMID: 34064410 PMCID: PMC8147771 DOI: 10.3390/vaccines9050454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy has become a standard treatment in many cancers and it is based on three main therapeutic axes: immune checkpoint blockade (ICB), vaccination and adoptive cell transfer (ACT). If originally these therapies mainly focused on exploiting CD8 T cells given their role in the direct elimination of tumor cells, increasing evidence highlights the crucial role CD4 T cells play in the antitumor immune response. Indeed, these cells can profoundly modulate the tumor microenvironment (TME) by secreting different types of cytokine or by directly eliminating cancer cells. In this review, we describe how different CD4 T cell subsets can contribute to tumor immune responses during immunotherapy and the novel high-throughput immune monitoring tools that are expected to facilitate the study of CD4 T cells, at antigen-specific and single cell level, thus accelerating bench-to-bed translational research in cancer.
Collapse
|
13
|
Yap TA, Parkes EE, Peng W, Moyers JT, Curran MA, Tawbi HA. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov 2021; 11:1368-1397. [PMID: 33811048 DOI: 10.1158/2159-8290.cd-20-1209] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/03/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Harnessing the immune system to treat cancer through inhibitors of CTLA4 and PD-L1 has revolutionized the landscape of cancer. Rational combination strategies aim to enhance the antitumor effects of immunotherapies, but require a deep understanding of the mechanistic underpinnings of the immune system and robust preclinical and clinical drug development strategies. We review the current approved immunotherapy combinations, before discussing promising combinatorial approaches in clinical trials and detailing innovative preclinical model systems being used to develop rational combinations. We also discuss the promise of high-order immunotherapy combinations, as well as novel biomarker and combinatorial trial strategies. SIGNIFICANCE: Although immune-checkpoint inhibitors are approved as dual checkpoint strategies, and in combination with cytotoxic chemotherapy and angiogenesis inhibitors for multiple cancers, patient benefit remains limited. Innovative approaches are required to guide the development of novel immunotherapy combinations, ranging from improvements in preclinical tumor model systems to biomarker-driven trial strategies.
Collapse
Affiliation(s)
- Timothy A Yap
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eileen E Parkes
- Oxford Institute of Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Weiyi Peng
- Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Justin T Moyers
- Investigational Cancer Therapeutics (Phase I Program), The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Slingluff CL, Zarour HM, Tawbi HAH, Kirkwood JM, Postow MA, Friedlander P, Devoe CE, Gaughan EM, Mauldin IS, Olson WC, Smith KT, Macri MJ, Ricciardi T, Ryan A, Venhaus R, Wolchok JD. A phase 1 study of NY-ESO-1 vaccine + anti-CTLA4 antibody Ipilimumab (IPI) in patients with unresectable or metastatic melanoma. Oncoimmunology 2021; 10:1898105. [PMID: 33796406 PMCID: PMC8007150 DOI: 10.1080/2162402x.2021.1898105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Ipilimumab (IPI) can enhance immunity to the cancer-testis antigen NY-ESO-1. A clinical trial was designed to assess safety, immunogenicity, and clinical responses with IPI + NY-ESO-1 vaccines and effects on the tumor microenvironment (TME). Patients with measurable NY-ESO-1+ tumors were enrolled among three arms: A) IPI + NY-ESO-1 protein + poly-ICLC (pICLC) + incomplete Freund’s adjuvant (IFA); B) IPI + NY-ESO-1 overlapping long peptides (OLP) + pICLC + IFA; and C) IPI + NY-ESO-1 OLP + pICLC. Clinical responses were assessed by irRC. T cell and Ab responses were assessed by ex vivo IFN-gamma ELIspot and ELISA. Tumor biopsies pre- and post-treatment were evaluated for immune infiltrates. Eight patients were enrolled: 5, 2, and 1 in Arms A-C, respectively. There were no DLTs. Best clinical responses were SD (4) and PD (4). T-cell and antibody (Ab) responses to NY-ESO-1 were detected in 6 (75%) and 7 (88%) patients, respectively, and were associated with SD. The breadth of Ab responses was greater for patients with SD than PD (p = .036). For five patients evaluable in the TME, treatment was associated with increases in proliferating (Ki67+) CD8+ T cells and decreases in RORγt+ CD4+ T cells. T cell densities increased for those with SD. Detection of T cell responses to NY-ESO-1 ex vivo in most patients suggests that IPI may have enhanced those responses. Proliferating intratumoral CD8+ T cells increased after vaccination plus IPI suggesting favorable impact of IPI plus NY-ESO-1 vaccines on the TME. List of Abbreviations: Ab = antibody; CTCAE = NCI Common Terminology Criteria for Adverse Events; DHFR/DHRP = dihydrofolate reductase; DLT = Dose-limiting toxicity; ELISA = enzyme-linked immunosorbent assay; IFA = incomplete Freund’s adjuvant (Montanide ISA-51); IFNγ = Interferon gamma; IPI = Ipilimumab; irRC = immune-related response criteria; mIFH = multispectral immunofluorescence histology; OLP = NY-ESO-1 overlapping long peptides; PBMC = peripheral blood mononuclear cells; PD = Progressive disease; pICLC = poly-ICLC (Hiltonol), a TLR3/MDA-5 agonist; RLT = Regimen-limiting Toxicity; ROI = regions of interest; RT = room temperature; SAE = serious adverse event; SD = stable disease; TEAE = treatment-emergent adverse events; TLR = toll-like receptor; TME = tumor microenvironment; TRAE = treatment-related adverse events.
Collapse
Affiliation(s)
- Craig L Slingluff
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Hassane M Zarour
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hussein Abdul-Hassan Tawbi
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX
| | - John M Kirkwood
- Division of Medical Oncology, Dept of Medicine and Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael A Postow
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Philip Friedlander
- Department of Medicine, Hematology, and Medical Oncology, Mount Sinai Medical Center, New York, NY, USA
| | - Craig E Devoe
- Northwell Health Cancer Institute, Lake Success, NY, USA
| | - Elizabeth M Gaughan
- Department of Medicine/Division of Hematology Oncology, University of Virginia, Charlottesville, VA, USA
| | - Ileana S Mauldin
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Walter C Olson
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Kelly T Smith
- Department of Surgery/Division of Surgical Oncology, University of Virginia, Charlottesville, VA, USA
| | - Mary J Macri
- Ludwig Institute for Cancer Research, New York, NY, USA
| | | | - Aileen Ryan
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Ralph Venhaus
- Ludwig Institute for Cancer Research, New York, NY, USA
| | - Jedd D Wolchok
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center.,Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
| |
Collapse
|
15
|
Immunostimulatory nanoparticle incorporating two immune agonists for the treatment of pancreatic tumors. J Control Release 2020; 330:1095-1105. [PMID: 33188827 DOI: 10.1016/j.jconrel.2020.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/27/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease, where even surgical resection and aggressive chemotherapy produce dismal outcomes. Immunotherapy is a promising alternative to conventional treatments, possessing the ability to elicit T cell-mediated killing of tumor cells and prevent disease recurrence. Immunotherapeutic approaches thus far have seen limited success in PDAC due to a poorly immunogenic and exceedingly immunosuppressive tumor microenvironment, which is enriched with dysfunctional and immunosuppressed antigen-presenting cells (APCs). We developed a highly potent immunostimulatory nanoparticle (immuno-NP) to activate and expand APCs in the tumor and induce local secretion of interferon β (IFNβ), which is a pro-inflammatory cytokine that plays a major role in APC recruitment. The effectiveness of the immuno-NP stems from its dual cargo of two synergistic immune modulators consisting of an agonist of the stimulator of interferon genes (STING) pathway and an agonist of the Toll-like receptor 4 (TLR4) pathway. We show the functional synergy of the dual-agonist cargo can be tweaked by adjusting the ratio of the two agonists loaded in the immuno-NP, leading to an increase in IFNβ production (11-fold) compared to any single agonist immuno-NP variant. Using the orthotopic murine Panc02 model of PDAC, we show that systemic administration allowed immuno-NPs to deposit into the perivascular regions of the tumor, which coincided with the APC-rich tumor areas leading to predominant uptake of immuno-NPs by APCs. The immuno-NPs were effectively taken up by a significant portion of dendritic cells in the tumor (>56%). This led to a significant expansion of APCs, resulting in an 11.5-fold increase of dendritic cells and infiltration of lymphocytes throughout the pancreatic tumor compared to untreated animals.
Collapse
|
16
|
Christenson ES, Jaffee E, Azad NS. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. Lancet Oncol 2020; 21:e135-e145. [PMID: 32135117 DOI: 10.1016/s1470-2045(19)30795-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/24/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
Pancreatic ductal adenocarcinoma is the seventh leading cause of cancer death worldwide with an estimated 432 242 deaths occurring in 2018. This estimate, in conjunction with the findings that pancreatic ductal adenocarcinoma incidence is rising and that pancreatic ductal adenocarcinoma has the highest case-fatality rate of any solid tumour, highlights the urgency for designing novel therapeutic strategies to combat this deadly disease. Through the efforts of the global research community, our knowledge of the factors that lead to the development of pancreatic ductal adenocarcinoma, its progression, and the interplay between tumour cells and their surrounding microenvironment have improved substantially. Although these scientific advances have not yet translated into targeted or immunotherapy strategies that are effective for most patients with pancreatic ductal adenocarcinoma, important incremental progress has been made particularly for the treatment of specific molecular subgroups of tumours. Although PD-1 inhibitors for mismatch-repair-deficient tumours and NTRK inhibitors for tumours containing NTRK gene fusions are the most recent targeted agents approved by the US Food and Drug Administration, olaparib for germline BRCA-mutated pancreatic ductal adenocarcinoma is expected to be approved soon in the maintenance setting. These recent advances show the accelerated pace at which pancreatic ductal adenocarcinoma drugs are achieving successful clinical outcomes. Here we review the current understanding of the pathophysiology of pancreatic ductal adenocarcinoma, recent advances in the understanding of the stromal microenvironment, current standard-of-care treatment, and novel therapeutic targets and strategies that hold promise for improving patient outcomes. We predict that there will be major breakthroughs in the treatment of pancreatic ductal adenocarcinoma in the next 5-10 years. These breakthroughs will result from the increased understanding of the treatment barriers imposed by the tumour-associated stroma, and from the development of novel approaches to re-engineer the tumour microenvironment in favour of effective anticancer responses.
Collapse
Affiliation(s)
- Eric S Christenson
- Bloomberg-Kimmel Institute, Sidney Kimmel Comprehensive Cancer Center, and The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Jaffee
- Bloomberg-Kimmel Institute, Sidney Kimmel Comprehensive Cancer Center, and The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nilofer S Azad
- Bloomberg-Kimmel Institute, Sidney Kimmel Comprehensive Cancer Center, and The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Luo W, Yang G, Luo W, Cao Z, Liu Y, Qiu J, Chen G, You L, Zhao F, Zheng L, Zhang T. Novel therapeutic strategies and perspectives for metastatic pancreatic cancer: vaccine therapy is more than just a theory. Cancer Cell Int 2020; 20:66. [PMID: 32158356 PMCID: PMC7057654 DOI: 10.1186/s12935-020-1147-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer is an aggressive and malignant tumor with an exceedingly high mortality rate. The quality of life and survival rates of pancreatic cancer patients with metastasis are poor compared with those without metastasis. Thus far, no effective treatment strategy has been established for metastatic pancreatic cancer patients. Therefore, an appropriate therapeutic method based on the elimination of metastatic pancreatic cancer is critical to improve patient outcome. Tumor-targeted vaccines have been widely discussed in recent studies and enabled important breakthroughs in the treatment of pancreatic cancer by preventing the escape of tumor cells from immune surveillance and activating the immune system to eliminate cancer cells. T cells can be activated by the stimulation of tumor-targeted vaccines, but to mount an effective immune response, both immune checkpoint inhibitors and positive costimulatory molecules are required. In this review, we discuss potential tumor-targeted vaccines that can target pancreatic cancer, elaborate the probably appropriate combination of vaccines therapy and evaluate the underlying benefits as well as obstacles in the current therapy for metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Wenhao Luo
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Gang Yang
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Wentao Luo
- 2Department of Mechanical Engineering, Tsinghua University, Beijing, 100084 China
| | - Zhe Cao
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Yueze Liu
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Jiangdong Qiu
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Guangyu Chen
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lei You
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Fangyu Zhao
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China
| | - Lianfang Zheng
- 3Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| | - Taiping Zhang
- 1Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730 China.,4Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730 China
| |
Collapse
|
18
|
Gautam SK, Kumar S, Dam V, Ghersi D, Jain M, Batra SK. MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Semin Immunol 2020; 47:101391. [PMID: 31952903 PMCID: PMC7160012 DOI: 10.1016/j.smim.2020.101391] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a dismal five-year survival rate. This is due to its asymptomatic nature, lack of reliable biomarkers, poor resectability, early metastasis, and high recurrence rate. Limited efficacies of current treatment modalities treatment-associated toxicity underscore the need for the development of immunotherapy-based approaches. For non-resectable, locally advanced metastatic PC, immunotherapy-based approaches including vaccines, antibody-targeted, immune checkpoint inhibition, CAR-T-cells, and adoptive T-cell transfer could be valuable additions to existing treatment modalities. Thus far, the vaccine candidates in PC have demonstrated modest immunological responses in different treatment modalities. The identification of tumor-associated antigens (TAA) and their successful implication in PC treatment is still a challenge. MUC4, a high molecular weight glycoprotein that functionally contributes to PC pathogenesis, is an attractive TAA. It is not detected in the normal pancreas; however, it is overexpressed in mouse and human pancreatic tumors. The recombinant MUC4 domain, as well as predicted immunogenic T-cell epitopes, elicited cellular and humoral anti-MUC4 response, suggesting its ulility as a vaccine candidate for PC therapy. Existence of PC-associated MUC4 splice variants, autoantibodies against overexpressed and aberrantly glycosylated MUC4 and presence of T-cell clones against the mutations present in MUC4 further reinforce its significance as a tumor antigen for vaccine development. Herein, we review the significance of MUC4 as a tumor antigen in PC immunotherapy and discuss both, the development and challenges associated with MUC4 based immunotherapy. Lastly, we will present our perspective on MUC4 antigenicity for the future development of MUC4-based PC immunotherapy.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vi Dam
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
19
|
Yang J, Shangguan J, Eresen A, Li Y, Wang J, Zhang Z. Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies. Pathol Res Pract 2019; 215:152691. [PMID: 31676092 DOI: 10.1016/j.prp.2019.152691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Despite significant advances over the past decades of research, pancreatic cancer (PC) continues to have the worst 5-year survival of any malignancy. Dendritic cells (DCs) are the most potent professional antigen-presenting cells and are involved in the induction and regulation of antitumor immune responses. DC-based immunotherapy has been used in clinical trials for PC. Although safety, efficacy, and immune activation were reported in patients with PC, DC vaccines have not yet fulfilled their promise. Additional strategies for combinatorial approaches aimed to augment and sustain the antitumor specific immune response elicited by DC vaccines are currently being investigated. Here, we will discuss DC vaccination immunotherapies that are currently under preclinical and clinical investigation and potential combination approaches for treating and improving the survival of PC patients.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Li
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Chongqing, China.
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|