1
|
Huynh NPT, Osipovitch M, Foti R, Bates J, Mansky B, Cano JC, Benraiss A, Zhao C, Lu QR, Goldman SA. Shared patterns of glial transcriptional dysregulation link Huntington's disease and schizophrenia. Brain 2024; 147:3099-3112. [PMID: 39028640 PMCID: PMC11370805 DOI: 10.1093/brain/awae166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 07/21/2024] Open
Abstract
Huntington's disease and juvenile-onset schizophrenia have long been regarded as distinct disorders. However, both manifest cell-intrinsic abnormalities in glial differentiation, with resultant astrocytic dysfunction and hypomyelination. To assess whether a common mechanism might underlie the similar glial pathology of these otherwise disparate conditions, we used comparative correlation network approaches to analyse RNA-sequencing data from human glial progenitor cells (hGPCs) produced from disease-derived pluripotent stem cells. We identified gene sets preserved between Huntington's disease and schizophrenia hGPCs yet distinct from normal controls that included 174 highly connected genes in the shared disease-associated network, focusing on genes involved in synaptic signalling. These synaptic genes were largely suppressed in both schizophrenia and Huntington's disease hGPCs, and gene regulatory network analysis identified a core set of upstream regulators of this network, of which OLIG2 and TCF7L2 were prominent. Among their downstream targets, ADGRL3, a modulator of glutamatergic synapses, was notably suppressed in both schizophrenia and Huntington's disease hGPCs. Chromatin immunoprecipitation sequencing confirmed that OLIG2 and TCF7L2 each bound to the regulatory region of ADGRL3, whose expression was then rescued by lentiviral overexpression of these transcription factors. These data suggest that the disease-associated suppression of OLIG2 and TCF7L2-dependent transcription of glutamate signalling regulators may impair glial receptivity to neuronal glutamate. The consequent loss of activity-dependent mobilization of hGPCs may yield deficient oligodendrocyte production, and hence the hypomyelination noted in these disorders, as well as the disrupted astrocytic differentiation and attendant synaptic dysfunction associated with each. Together, these data highlight the importance of convergent glial molecular pathology in both the pathogenesis and phenotypic similarities of two otherwise unrelated disorders, Huntington's disease and schizophrenia.
Collapse
Affiliation(s)
- Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Mikhail Osipovitch
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | - Rossana Foti
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
| | - Janna Bates
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Benjamin Mansky
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jose C Cano
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chuntao Zhao
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Q Richard Lu
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, Brain Tumor Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen, Faculty of Health and Medical Sciences, 2200 Copenhagen, Denmark
- Center for Translational Neuromedicine and Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
2
|
Vieira R, Mariani JN, Huynh NPT, Stephensen HJT, Solly R, Tate A, Schanz S, Cotrupi N, Mousaei M, Sporring J, Benraiss A, Goldman SA. Young glial progenitor cells competitively replace aged and diseased human glia in the adult chimeric mouse brain. Nat Biotechnol 2024; 42:719-730. [PMID: 37460676 PMCID: PMC11098747 DOI: 10.1038/s41587-023-01798-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 04/20/2023] [Indexed: 08/26/2023]
Abstract
Competition among adult brain cells has not been extensively researched. To investigate whether healthy glia can outcompete diseased human glia in the adult forebrain, we engrafted wild-type (WT) human glial progenitor cells (hGPCs) produced from human embryonic stem cells into the striata of adult mice that had been neonatally chimerized with mutant Huntingtin (mHTT)-expressing hGPCs. The WT hGPCs outcompeted and ultimately eliminated their human Huntington's disease (HD) counterparts, repopulating the host striata with healthy glia. Single-cell RNA sequencing revealed that WT hGPCs acquired a YAP1/MYC/E2F-defined dominant competitor phenotype upon interaction with the host HD glia. WT hGPCs also outcompeted older resident isogenic WT cells that had been transplanted neonatally, suggesting that competitive success depended primarily on the relative ages of competing populations, rather than on the presence of mHTT. These data indicate that aged and diseased human glia may be broadly replaced in adult brain by younger healthy hGPCs, suggesting a therapeutic strategy for the replacement of aged and diseased human glia.
Collapse
Affiliation(s)
- Ricardo Vieira
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - John N Mariani
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Nguyen P T Huynh
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Hans J T Stephensen
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Renee Solly
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Ashley Tate
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
- Sana Biotechnology, Inc, Cambridge, MA, USA
| | - Steven Schanz
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Natasha Cotrupi
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Marzieh Mousaei
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jon Sporring
- Department of Computer Science, University of Copenhagen Faculty of Science, Copenhagen, Denmark
| | - Abdellatif Benraiss
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.
- Sana Biotechnology, Inc, Cambridge, MA, USA.
| |
Collapse
|
3
|
Tranfa M, Iasevoli F, Cocozza S, Ciccarelli M, Barone A, Brunetti A, de Bartolomeis A, Pontillo G. Neural substrates of verbal memory impairment in schizophrenia: A multimodal connectomics study. Hum Brain Mapp 2023; 44:2829-2840. [PMID: 36852587 PMCID: PMC10089087 DOI: 10.1002/hbm.26248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
While verbal memory is among the most compromised cognitive domains in schizophrenia (SZ), its neural substrates remain elusive. Here, we explored the structural and functional brain network correlates of verbal memory impairment in SZ. We acquired diffusion and resting-state functional MRI data of 49 SZ patients, classified as having preserved (VMP, n = 22) or impaired (VMI, n = 26) verbal memory based on the List Learning task, and 55 healthy controls (HC). Structural and functional connectivity matrices were obtained and analyzed to assess associations with disease status (SZ vs. HC) and verbal memory impairment (VMI vs. VMP) using two complementary data-driven approaches: threshold-free network-based statistics (TFNBS) and hybrid connectivity independent component analysis (connICA). TFNBS showed altered connectivity in SZ patients compared with HC (p < .05, FWER-corrected), with distributed structural changes and functional reorganization centered around sensorimotor areas. Specifically, functional connectivity was reduced within the visual and somatomotor networks and increased between visual areas and associative and subcortical regions. Only a tiny cluster of increased functional connectivity between visual and bilateral parietal attention-related areas correlated with verbal memory dysfunction. Hybrid connICA identified four robust traits, representing fundamental patterns of joint structural-functional connectivity. One of these, mainly capturing the functional connectivity profile of the visual network, was significantly associated with SZ (HC vs. SZ: Cohen's d = .828, p < .0001) and verbal memory impairment (VMP vs. VMI: Cohen's d = -.805, p = .01). We suggest that aberrant connectivity of sensorimotor networks may be a key connectomic signature of SZ and a putative biomarker of SZ-related verbal memory impairment, in consistency with bottom-up models of cognitive disruption.
Collapse
Affiliation(s)
- Mario Tranfa
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Felice Iasevoli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Sirio Cocozza
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Mariateresa Ciccarelli
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Annarita Barone
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
| | - Arturo Brunetti
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
| | - Andrea de Bartolomeis
- Section of Psychiatry ‐ Unit of Treatment Resistant Psychosis ‐ Laboratory of Molecular and Translational Psychiatry ‐ Department of Neuroscience, Reproductive and Odontostomatological SciencesUniversity “Federico II”NaplesItaly
- Staff of UNESCO Chair on Health Education and Sustainable DevelopmentUniversity “Federico II”NaplesItaly
| | - Giuseppe Pontillo
- Department of Advanced Biomedical SciencesUniversity “Federico II”NaplesItaly
- Department of Electrical Engineering and Information Technology (DIETI)University “Federico II”NaplesItaly
| |
Collapse
|
4
|
Aleksandrova MA, Sukhinich KK. Astrocytes of the Brain: Retinue Plays the King. Russ J Dev Biol 2022. [DOI: 10.1134/s1062360422040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|