1
|
Harnik MA, Kindl G, Birklein F, Rittner HL. [Biomarkers in complex regional pain syndrome]. Schmerz 2025:10.1007/s00482-024-00856-4. [PMID: 39831976 DOI: 10.1007/s00482-024-00856-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/22/2025]
Abstract
Complex regional pain syndrome (CRPS) is a severe pain disorder with an unclear pathophysiology. Biomarkers offer opportunities to enhance diagnosis, stratification, prognosis, and monitoring. Serum markers such as cytokines and microRNAs show potential but require further research. Local skin markers, particularly pro-inflammatory cytokines, are elevated in the acute stage and correlate with disease activity. Imaging techniques such as skeletal scintigraphy and functional magnetic resonance imaging provide valuable insights into structural and functional changes, despite inconsistent results to date. Psychosocial factors, including pain intensity and psychological comorbidities, are important prognostic indicators. Future research should focus on specific biomarkers to develop mechanism-based treatments. A multidisciplinary approach remains crucial for effective treatment.
Collapse
Affiliation(s)
- Michael Alexander Harnik
- Klinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Zentrum für interdisziplinäre Schmerzmedizin (ZiS), Universitätsklinikum Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Deutschland
- Universitätsklinik für Anaesthesiologie und Schmerzmedizin, Inselspital, Universität Bern, Bern, Schweiz
| | - Gudrun Kindl
- Klinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Zentrum für interdisziplinäre Schmerzmedizin (ZiS), Universitätsklinikum Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Deutschland
| | - Frank Birklein
- Klinik und Poliklinik für Neurologie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Deutschland
| | - Heike L Rittner
- Klinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie, Zentrum für interdisziplinäre Schmerzmedizin (ZiS), Universitätsklinikum Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Deutschland.
| |
Collapse
|
2
|
Du M, Li J, Ren X, Zhao J, Miao Y, Lu Y. Nicorandil restores endothelial cell Kir6.2 expression to alleviate neuropathic pain in mice after chronic constriction injury. Int Immunopharmacol 2024; 143:113494. [PMID: 39467345 DOI: 10.1016/j.intimp.2024.113494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
The clinical management of neuropathic pain (NP) remains a significant challenge, as current pharmacological treatments do not fully meet clinical needs. Nicorandil, a potassium ATP channel agonist widely used in cardiovascular medicine, has recently been shown to have significant potential for analgesia. This study aimed to investigate the effects and mechanisms of nicorandil in a chronic constriction injury (CCI) mouse model. Nicorandil significantly alleviated pain hypersensitivity and reduced neuronal injury in the sciatic nerve (SN) and dorsal root ganglion (DRG) post-CCI. Nicorandil primarily affected endothelial cells and Schwann cells in the sciatic nerve, restoring the expression of the KATP channel subunit Kir6.2. Furthermore, nicorandil attenuated the hypoxia-induced apoptosis program in sciatic nerve endothelial cells, leading to reduced expression of apoptotic proteins, which provided significant endothelial protection, improved blood-nerve barrier leakage, and decreased the release of DRG inflammatory factors and pain neurotransmitter substance P. In vitro, nicorandil attenuated the apoptosis of human umbilical vein endothelial cells (HUVECs) in a hypoxic environment while maintaining cellular functions. In addition, administering the KATP channel inhibitor glibenclamide in vitro further confirmed the crucial role of Kir6.2 in reducing endothelial hypoxic stress, as confirmed by transmission electron microscopy and behavioural experiments. Overall, these findings indicate that nicorandil significantly ameliorates CCI-induced NP in mice by targeting Kir6.2 in sciatic nerve endothelial cells, thus inhibiting pain sensitization.
Collapse
Affiliation(s)
- Minghao Du
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Jiani Li
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China
| | - Xiaoyu Ren
- Orthopedic Microsurgical Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Jian Zhao
- Orthopedic Microsurgical Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yu Miao
- Department of Neurosurgery, Xi'an Central Hospital, Xi'an Jiaotong University, Xi'an 710003, China.
| | - Yichen Lu
- Orthopedic Microsurgical Reconstruction Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.
| |
Collapse
|
3
|
Hassan M, Shahzadi S, Yasir M, Chun W, Kloczkowski A. Therapeutic Implication of miRNAs as an Active Regulatory Player in the Management of Pain: A Review. Genes (Basel) 2024; 15:1003. [PMID: 39202362 PMCID: PMC11353898 DOI: 10.3390/genes15081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic pain is frequently associated with neuropathy, inflammation, or the malfunctioning of nerves. Chronic pain is associated with a significant burden of morbidity due to opioid use, associated with addiction and tolerance, and disability. MicroRNAs (miRs) are emerging therapeutic targets to treat chronic pain through the regulation of genes associated with inflammation, neuronal excitability, survival, or de-differentiation. In this review, we discuss the possible involvement of miRs in pain-related molecular pathways. miRs are known to regulate high-conviction pain genes, supporting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Saba Shahzadi
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
| | - Muhammad Yasir
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Wanjoo Chun
- Department of Pharmacology, College of Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea; (M.Y.); (W.C.)
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA; (S.S.); (A.K.)
- Department of Pediatrics, The Ohio State University School of Medicine, Columbus, OH 43205, USA
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Sullivan JM, Bagnell AM, Alevy J, Avila EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA, Aisenberg WH, Zuberi AR, Bogdanik L, Lutz CM, Qiu Z, Quinlan KA, Searson PC, Sumner CJ. Gain-of-function mutations of TRPV4 acting in endothelial cells drive blood-CNS barrier breakdown and motor neuron degeneration in mice. Sci Transl Med 2024; 16:eadk1358. [PMID: 38776392 PMCID: PMC11316273 DOI: 10.1126/scitranslmed.adk1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jonathan Alevy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jennifer S. Huh
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - William H. Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | | | | | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Katharina A. Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Aguilar-Martínez SY, Campos-Viguri GE, Medina-García SE, García-Flores RJ, Deas J, Gómez-Cerón C, Pedroza-Torres A, Bautista-Rodríguez E, Fernández-Tilapa G, Rodríguez-Dorantes M, Pérez-Plasencia C, Peralta-Zaragoza O. MiR-21 Regulates Growth and Migration of Cervical Cancer Cells by RECK Signaling Pathway. Int J Mol Sci 2024; 25:4086. [PMID: 38612895 PMCID: PMC11012906 DOI: 10.3390/ijms25074086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Expression of miR-21 has been found to be altered in almost all types of cancers, and it has been classified as an oncogenic microRNA. In addition, the expression of tumor suppressor gene RECK is associated with miR-21 overexpression in high-grade cervical lesions. In the present study, we analyze the role of miR-21 in RECK gene regulation in cervical cancer cells. To identify the downstream cellular target genes of upstream miR-21, we silenced endogenous miR-21 expression using siRNAs. We analyzed the expression of miR-21 and RECK, as well as functional effects on cell proliferation and migration. We found that in cervical cancer cells, there was an inverse correlation between miR-21 expression and RECK mRNA and protein expression. SiRNAs to miR-21 increased luciferase reporter activity in construct plasmids containing the RECK-3'-UTR microRNA response elements MRE21-1, MRE21-2, and MRE21-3. The role of miR-21 in cell proliferation was also analyzed, and cancer cells transfected with siRNAs exhibited a markedly reduced cell proliferation and migration. Our findings indicate that miR-21 post-transcriptionally down-regulates the expression of RECK to promote cell proliferation and cell migration inhibition in cervical cancer cell survival. Therefore, miR-21 and RECK may be potential therapeutic targets in gene therapy for cervical cancer.
Collapse
Affiliation(s)
- Seidy Y. Aguilar-Martínez
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Gabriela E. Campos-Viguri
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Selma E. Medina-García
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Ricardo J. García-Flores
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Jessica Deas
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| | - Claudia Gómez-Cerón
- Department of Epidemiology of Cancer, Research Center Population Health, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Abraham Pedroza-Torres
- Programa Investigadoras e Investigadores por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías, México City 14080, Mexico;
- Hereditary Cancer Clinic, Instituto Nacional de Cancerología, México City 14080, Mexico
| | | | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Chemical Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo 39070, Mexico;
| | | | - Carlos Pérez-Plasencia
- Oncogenomics Laboratory, Instituto Nacional de Cancerología, México City 14080, Mexico;
- Biomedicine Unit, FES-Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz 54090, Mexico
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico; (S.Y.A.-M.); (G.E.C.-V.); (S.E.M.-G.); (R.J.G.-F.); (J.D.)
| |
Collapse
|
6
|
Zhou Y, Zhang Y, Xu J, Wang Y, Yang Y, Wang W, Gu A, Han B, Shurin GV, Zhong R, Shurin MR, Zhong H. Schwann cell-derived exosomes promote lung cancer progression via miRNA-21-5p. Glia 2024; 72:692-707. [PMID: 38192185 DOI: 10.1002/glia.24497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Schwann cells (SCs), the primary glial cells of the peripheral nervous system, which have been identified in many solid tumors, play an important role in cancer development and progression by shaping the tumor immunoenvironment and supporting the development of metastases. Using different cellular, molecular, and genetic approaches with integrated bioinformatics analysis and functional assays, we revealed the role of human SC-derived exosomal miRNAs in lung cancer progression in vitro and in vivo. We found that exosomal miRNA-21 from SCs up-regulated the proliferation, motility, and invasiveness of human lung cancer cells in vitro, which requires functional Rab small GTPases Rab27A and Rab27B in SCs for exosome release. We also revealed that SC exosomal miRNA-21-5p regulated the functional activation of tumor cells by targeting metalloprotease inhibitor RECK in tumor cells. Integrated bioinformatic analyses showed that hsa-miRNA-21-5p is associated with poor prognosis in patients with lung adenocarcinoma and can promote lung cancer progression through multiple signaling pathways including the MAPK, PI3K/Akt, and TNF signaling. Furthermore, in mouse xenograft models, SC exosomes and SC exosomal hsa-miRNA-21-5p augmented human lung cancer cell growth and lymph node metastasis in vivo. Together our data revealed, for the first time, that SC-secreted exosomes and exosomal miRNA-21-5p promoted the proliferation, motility, and spreading of human lung cancer cells in vitro and in vivo. Thus, exosomal miRNA-21 may play an oncogenic role in SC-accelerated progression of lung cancer and this pathway may serve as a new therapeutic target for further evaluation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianlin Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Yang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weimin Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aiqin Gu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baohui Han
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Galina V Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Dos Santos PRM, da Silva Gomes PR, Romão P, Maluf FC, Guimarães VR, Candido P, Gonçalves GL, de Camargo JA, Dos Santos GA, Silva I, Leite KRM, Nahas W, Reis ST, Pimenta R, Viana NI. Enhancing RECK Expression Through miR-21 Inhibition: A Promising Strategy for Bladder Carcinoma Control. Biochem Genet 2024:10.1007/s10528-024-10714-8. [PMID: 38522065 DOI: 10.1007/s10528-024-10714-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 03/25/2024]
Abstract
Bladder carcinoma (BC) is the tenth most frequent malignancy worldwide, with high morbidity and mortality rates. Despite recent treatment advances, high-grade BC and muscle-invasive BC present with significant progression and recurrence rates, urging the need for alternative treatments. The microRNA-21 (miR-21) has superexpression in many malignancies and is associated with cellular invasion and progression. One of its mechanisms of action is the regulation of RECK, a tumor suppressor gene responsible for inhibiting metalloproteinases, including MMP9. In a high-grade urothelial cancer cell line, we aimed to assess if miR-21 downregulation would promote RECK expression and decrease MMP9 expression. We also evaluated cellular migration and proliferation potential by inhibition of this pathway. In a T24 cell line, we inhibited miR-21 expression by transfection of a specific microRNA inhibitor (anti-miR-21). There were also control and scramble groups, the last with a negative microRNA transfected. After the procedure, we performed a genetic expression analysis of miR-21, RECK, and MMP9 through qPCR. Migration, proliferation, and protein expression were evaluated via wound healing assay, colony formation assay, flow cytometry, and immunofluorescence.After anti-miR-21 transfection, miR-21 expression decreased with RECK upregulation and MMP9 downregulation. The immunofluorescence assay showed a significant increase in RECK protein expression (p < 0.0001) and a decrease in MMP9 protein expression (p = 0.0101). The anti-miR-21 transfection significantly reduced cellular migration in the wound healing assay (p < 0.0001). Furthermore, in the colony formation assay, the anti-miR-21 group demonstrated reduced cellular proliferation (p = 0.0008), also revealed in the cell cycle analysis by flow cytometry (p = 0.0038). Our results corroborate the hypothesis that miR-21 is associated with BC cellular migration and proliferation, revealing its potential as a new effective treatment for this pathology.
Collapse
Affiliation(s)
- Paulo Rodolfo Moraes Dos Santos
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Faculdade de Medicina, Universidade Anhembi Morumbi, São Paulo, SP, Brazil
| | - Paulo Ricardo da Silva Gomes
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Faculdade de Medicina, Universidade Federal do Pará, Belém, PA, Brazil
| | - Poliana Romão
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Feres Camargo Maluf
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Vanessa Ribeiro Guimarães
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Patrícia Candido
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, São Paulo, SP, Brazil
| | - Guilherme Lopes Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Alves de Camargo
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriel Arantes Dos Santos
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Iran Silva
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katia Ramos Moreira Leite
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - William Nahas
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, Brazil
| | - Sabrina T Reis
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Moriah Institute of Science and Education (MISE), Hospital Moriah, São Paulo, SP, Brazil
| | - Ruan Pimenta
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
- Precision Immunology Institute, Department of Immunology and Immunotherapy, and Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Nayara Izabel Viana
- Laboratorio de Investigação Médica 55 (LIM55), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
- Universidade do Estado de Minas Gerais - UEMG, Passos, MG, Brazil.
| |
Collapse
|
8
|
Reinhold AK, Hartmannsberger B, Burek M, Rittner HL. Stabilizing the neural barrier - A novel approach in pain therapy. Pharmacol Ther 2023; 249:108484. [PMID: 37390969 DOI: 10.1016/j.pharmthera.2023.108484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/08/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Chronic and neuropathic pain are a widespread burden. Incomplete understanding of underlying pathomechanisms is one crucial factor for insufficient treatment. Recently, impairment of the blood nerve barrier (BNB) has emerged as one key aspect of pain initiation and maintenance. In this narrative review, we discuss several mechanisms and putative targets for novel treatment strategies. Cells such as pericytes, local mediators like netrin-1 and specialized proresolving mediators (SPMs), will be covered as well as circulating factors including the hormones cortisol and oestrogen and microRNAs. They are crucial in either the BNB or similar barriers and associated with pain. While clinical studies are still scarce, these findings might provide valuable insight into mechanisms and nurture development of therapeutic approaches.
Collapse
Affiliation(s)
- Ann-Kristin Reinhold
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Beate Hartmannsberger
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Malgorzata Burek
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Heike L Rittner
- University Hospital Würzburg, Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, Oberdürrbacher Str. 6, 97080 Würzburg, Germany.
| |
Collapse
|
9
|
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D’Amato I, Hoeijmakers JGJ, Dib-Hajj S, Waxman SG, Faber CG, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023; 146:3049-3062. [PMID: 36730021 PMCID: PMC10316770 DOI: 10.1093/brain/awad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.
Collapse
Affiliation(s)
- Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Gelemanovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Matilde Paolini
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carlotta Pardo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria D’Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| |
Collapse
|
10
|
Reyes-Long S, Cortés-Altamirano JL, Bandala C, Avendaño-Ortiz K, Bonilla-Jaime H, Bueno-Nava A, Ávila-Luna A, Sánchez-Aparicio P, Clavijo-Cornejo D, Dotor-LLerena AL, Cabrera-Ruiz E, Alfaro-Rodríguez A. Role of the MicroRNAs in the Pathogenic Mechanism of Painful Symptoms in Long COVID: Systematic Review. Int J Mol Sci 2023; 24:3574. [PMID: 36834984 PMCID: PMC9963913 DOI: 10.3390/ijms24043574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The ongoing pandemic of COVID-19 has caused more than 6.7 million tragic deaths, plus, a large percentage of people who survived it present a myriad of chronic symptoms that last for at least 6 months; this has been named as long COVID. Some of the most prevalent are painful symptoms like headache, joint pain, migraine, neuropathic-like pain, fatigue and myalgia. MicroRNAs are small non-coding RNAs that regulate genes, and their involvement in several pathologies has been extensively shown. A deregulation of miRNAs has been observed in patients with COVID-19. The objective of the present systematic review was to show the prevalence of chronic pain-like symptoms of patients with long COVID and based on the expression of miRNAs in patients with COVID-19, and to present a proposal on how they may be involved in the pathogenic mechanisms of chronic pain-like symptoms. A systematic review was carried out in online databases for original articles published between March 2020 to April 2022; the systematic review followed the PRISMA guidelines, and it was registered in PROSPERO with registration number CRD42022318992. A total of 22 articles were included for the evaluation of miRNAs and 20 regarding long COVID; the overall prevalence of pain-like symptoms was around 10 to 87%, plus, the miRNAs that were commonly up and downregulated were miR-21-5p, miR-29a,b,c-3p miR-92a,b-3p, miR-92b-5p, miR-126-3p, miR-150-5p, miR-155-5p, miR-200a, c-3p, miR-320a,b,c,d,e-3p, and miR-451a. The molecular pathways that we hypothesized to be modulated by these miRNAs are the IL-6/STAT3 proinflammatory axis and the compromise of the blood-nerve barrier; these two mechanisms could be associated with the prevalence of fatigue and chronic pain in the long COVID population, plus they could be novel pharmacological targets in order to reduce and prevent these symptoms.
Collapse
Affiliation(s)
- Samuel Reyes-Long
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Jose Luis Cortés-Altamirano
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
- Research Department, Universidad Estatal del Valle de Ecatepec, Ecatepec de Morelos 55210, Mexico
| | - Cindy Bandala
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karina Avendaño-Ortiz
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Herlinda Bonilla-Jaime
- Reproductive Biology Department, Universidad Autónoma Metropolitana, Mexico City 09340, Mexico
| | - Antonio Bueno-Nava
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Alberto Ávila-Luna
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Pedro Sánchez-Aparicio
- Pharmacology Department, Facultad de Medicina Veterinaria, Universidad Autónoma del Estado de México, Toluca 56900, Mexico
| | - Denise Clavijo-Cornejo
- División de Reumatología, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Ana Lilia Dotor-LLerena
- Neurociencias Clínicas, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | - Elizabeth Cabrera-Ruiz
- Basic Neurosciences, Instituto Nacional de Rehabilitación LGII, Mexico City 14389, Mexico
| | | |
Collapse
|
11
|
Pathophysiology of Post-Traumatic Trigeminal Neuropathic Pain. Biomolecules 2022; 12:biom12121753. [PMID: 36551181 PMCID: PMC9775491 DOI: 10.3390/biom12121753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022] Open
Abstract
Trigeminal nerve injury is one of the causes of chronic orofacial pain. Patients suffering from this condition have a significantly reduced quality of life. The currently available management modalities are associated with limited success. This article reviews some of the common causes and clinical features associated with post-traumatic trigeminal neuropathic pain (PTNP). A cascade of events in the peripheral and central nervous system function is involved in the pathophysiology of pain following nerve injuries. Central and peripheral processes occur in tandem and may often be co-dependent. Due to the complexity of central mechanisms, only peripheral events contributing to the pathophysiology have been reviewed in this article. Future investigations will hopefully help gain insight into trigeminal-specific events in the pathophysiology of the development and maintenance of neuropathic pain secondary to nerve injury and enable the development of new therapeutic modalities.
Collapse
|