1
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
2
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
In situ graphene-modified carbon microelectrode array biosensor for biofilm impedance analysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Thongthai P, Kitagawa H, Iwasaki Y, Noree S, Kitagawa R, Imazato S. Immobilizing Bactericides on Dental Resins via Electron Beam Irradiation. J Dent Res 2021; 100:1055-1062. [PMID: 34301167 DOI: 10.1177/00220345211026569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polymerizable bactericides, such as quaternary ammonium compound-based monomers, have been intensively studied as candidates for immobilizing antibacterial components on dental resin. However, they predominantly exhibit a bacteriostatic behavior, rather than bactericidal, as the immobilized components are left with insufficient molecular movement to disrupt the bacterial surface structure through contact-mediated action. In this study, we developed a novel strategy to increase the density of the immobilized bactericide and enhance its antibacterial/antibiofilm properties by combining a surface-grafting technique with electron beam irradiation. A solution of the quaternary ammonium compound-based monomer, 12-methacryloyloxydodecylpyridinium bromide (MDPB), was coated on polymethyl methacrylate (PMMA) resin specimens at the concentrations of 30, 50, and 80 wt%. The coated resins were subsequently exposed to 10 MeV of electron beam irradiation at 50 and 100 kGy, followed by thermal stabilization at 60 °C. The antibacterial effect was evaluated by inoculating a Streptococcus mutans suspension on the coated PMMA resin samples, which exhibited bactericidal effects even after 28 d of aging (P < 0.05, Tukey's honestly significant difference test). Transmission electron microscopy and bacteriolytic activity evaluation revealed that the S. mutans cells had sustained membrane depolarization. Furthermore, the antibiofilm effects against S. mutans and bacteria collected from human saliva were assessed. The thickness and the percentage of membrane-intact cells of the S. mutans and multispecies biofilms formed on the MDPB-immobilized surfaces were significantly lower than the uncoated PMMA specimens, even after 28-d aging (P < 0.05, Tukey's honestly significant difference test). Thus, the immobilization of antibacterial MDPB via electron beam irradiation induced rapid membrane depolarization, increasing membrane permeability and eventually causing cell death. Our strategy substantially enhances the antibacterial properties of the resinous materials and inhibits biofilm formation, therefore demonstrating significant potential for preventing infectious diseases in the oral environment.
Collapse
Affiliation(s)
- P Thongthai
- Department of Biomaterials Science, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - H Kitagawa
- Department of Biomaterials Science, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - Y Iwasaki
- Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Japan.,ORDIST, Kansai University, Suita, Japan
| | - S Noree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - R Kitagawa
- Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, Suita, Japan
| | - S Imazato
- Department of Biomaterials Science, Graduate School of Dentistry, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Song J, Li Y, Yin F, Zhang Z, Ke D, Wang D, Yuan Q, Zhang XE. Enhanced Electrochemical Impedance Spectroscopy Analysis of Microbial Biofilms on an Electrochemically In Situ Generated Graphene Interface. ACS Sens 2020; 5:1795-1803. [PMID: 32397709 DOI: 10.1021/acssensors.0c00570] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms can cause many bacterial diseases, such as dental disease. An in vitro detection of biofilms may help to screen antibiofilm drugs. An impedance measurement based on an Au electrode has been successfully used for in vitro real-time monitoring of animal and human cell growth. However, microbial growth on the Au electrode produced a poor signal because of the small size of microbial cells. We have recently demonstrated that graphene derivatives can be produced on a carbon electrode through facile electrochemical activation, thus forming a reduced graphene oxide-carbon electrode (rGO-CE). Based on this fact, we hypothesized that an in vitro formed rugose graphene layer of rGO-CE may provide a large surface area for the growth of microbial biofilms and can therefore produce a strong impedance signal in response to a change in the biomass. In this study, three oral bacteria, Streptococcus mutans (S. mutans), Actinomyces viscosus (A. viscosus), and Lactobacillus fermentum (L. fermentum), were cultured on the surfaces of rGO-CE. As a result, the impedance response signal of the rGO-CE for the growth of S. mutans and A. viscosus was found to be 3.3 times and 6.0 times stronger than that of the Au electrode at 1.17 and 54.7 kHz, respectively. In particular, the poorly adhering strain of L. fermentum also produced a detectable signal on the graphene electrode but not on the Au electrode at 1.17 kHz. Furthermore, destructions of the biofilms grown on the rGO-CE by cetylpyridinium chloride were successfully monitored by impedance changes. Overall, it is promising to develop a graphene-based impedance biosensor platform for biofilm study and antibiofilm drug screening.
Collapse
Affiliation(s)
- Jin Song
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Yiwei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiao Hong Shan No. 44, Wuhan 430071, China
| | - Fang Yin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Zhitao Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dingkun Ke
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
6
|
Miranda SLFD, Damaceno JT, Faveri M, Figueiredo LC, Soares GMS, Feres M, Bueno-Silva B. In Vitro Antimicrobial Effect of Cetylpyridinium Chloride on Complex Multispecies Subgingival Biofilm. Braz Dent J 2020; 31:103-108. [PMID: 32556007 DOI: 10.1590/0103-6440202002630] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023] Open
Abstract
Periodontopathogenic subgingival biofilm is the main etiological agent of periodontitis. Thus, a search for antimicrobials as adjuvant for periodontal treatment in the literature is intense. Cetylpyridinium chloride (CPC) is a well-known antimicrobial agent commonly used in mouthrinses. However, CPC effects on a complex biofilm model were not found over the literature. Therefore, the aim of this manuscript is to evaluate 0.075% CPC antimicrobial properties in a multispecies subgingival biofilm model in vitro. The subgingival biofilm composed by 31 species related to periodontitis was formed for 7 days, using the calgary device. The treatments with CPC and chlorhexidine (CHX) 0.12% (as positive control) were performed 2x/day, for 1 min, from day 3 until the end of experimental period, totaling 8 treatments. After 7 days of biofilm formation, biofilm metabolic activity was evaluated by a colorimetric reaction and biofilms microbial composition by DNA-DNA hybridization. Statistical analysis was performed using ANOVA with data transformed via BOX-COX followed by Dunnett post-hoc. Both CPC and CHX reduced biofilm metabolic activity in 60% and presented antimicrobial activity against 13 different species. Specifically, only CHX reduced levels of F.n. vicentii and P. gingivalis while only CPC reduced A. odontolyticus and A. israelli. CPC was as effective as CHX as antimicrobial through in vitro complex multispecies subgingival biofilm. However, future studies using in vivo models of experimental periodontal disease should be performed to prove such effect.
Collapse
Affiliation(s)
| | | | - Marcelo Faveri
- Dental Research Division, UNG - Universidade Guarulhos, Guarulhos, SP, Brazil
| | | | | | - Magda Feres
- Dental Research Division, UNG - Universidade Guarulhos, Guarulhos, SP, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, UNG - Universidade Guarulhos, Guarulhos, SP, Brazil
| |
Collapse
|
7
|
Halicki PCB, Radin V, von Groll A, Nora MV, Pinheiro AC, da Silva PEA, Ramos DF. Antibiofilm Potential of Arenecarbaldehyde 2-Pyridinylhydrazone Derivatives Against Acinetobacter baumannii. Microb Drug Resist 2019; 26:1429-1436. [PMID: 31770073 DOI: 10.1089/mdr.2019.0185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In the last 15 years, Acinetobacter baumannii has received special attention, mainly due to several resistance mechanisms and high rates of morbimortality. The ability to form biofilms contributes to the persistence of this microorganism in the hospital environment and facilitates the occurrence of nosocomial infections. Several studies have highlighted the pharmacological relevance of pyridines in the treatment and control of infectious diseases and others have related the anti-A. baumannii potential of hydrazine derivatives. Considering this scenario, we aimed to evaluate the antimicrobial and antibiofilm activity of 10 pyridinylhydrazone compounds against A. baumannii. The minimum inhibitory concentration of the compounds was determined by broth microdilution method and the antibiofilm activity was evaluated by inhibition and destruction biofilm assays. In addition, the cytotoxicity of the compounds in the J774A.1 cell line was also evaluated, and the selectivity index was calculated. Among the 10 pyridine compounds, the compounds B and D were able to inhibit the formation of biofilms and destroy bacterial biofilms even in a concentration of 12.5 μg/mL. Thus, the pyridine compounds evaluated can be a scaffold for the development of new substances with antimicrobial and antibiofilm activity.
Collapse
Affiliation(s)
| | - Vanessa Radin
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina da Universidade Federal do Rio Grande, FURG, Rio Grande, Brazil
| | - Andrea von Groll
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina da Universidade Federal do Rio Grande, FURG, Rio Grande, Brazil
| | - Marcus Vinícius Nora
- Fundação Oswaldo Cruz, Instituto De Tecnologia Em Fármacos, Farmanguinhos, Rio De Janeiro, Brazil
| | | | - Pedro Eduardo Almeida da Silva
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina da Universidade Federal do Rio Grande, FURG, Rio Grande, Brazil
| | - Daniela Fernandes Ramos
- Núcleo de Pesquisa em Microbiologia Médica (NUPEMM), Faculdade de Medicina da Universidade Federal do Rio Grande, FURG, Rio Grande, Brazil
| |
Collapse
|
8
|
Lin H, Liu X, Shen Z, Cheng W, Zeng Z, Chen Y, Tang C, Jiang T. The effect of isoflavaspidic acid PB extracted from Dryopteris fragrans (L.) Schott on planktonic and biofilm growth of dermatophytes and the possible mechanism of antibiofilm. JOURNAL OF ETHNOPHARMACOLOGY 2019; 241:111956. [PMID: 31129309 DOI: 10.1016/j.jep.2019.111956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dryopteris fragrans (L.) Schott (D. fragrans), a deciduous perennial herb, has been traditionally used for treatment of various skin diseases in Heilongjiang province of China for many years. Phloroglucinol derivatives extracted from D. fragrans were the most effective fraction against dermatophytes. Isoflavaspidic acid PB is a typically phloroglucinol derivative which extracted from D. fragrans and has been reported to exert anti-fungal activities against several dermatophytes. AIM OF THE STUDY This study aimed to evaluate anti-fungal and anti-biofilm activity of isoflavaspidic acid PB on planktonic and biofilm growth of dermatophytes and explore possible mechanisms of anti-biofilm. MATERIALS AND METHODS Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of isoflavaspidic acid PB against 25 isolates of dermatophytes were determined by the Clinical and Laboratory Standards Institute (CLSI) M38-A2 method. The effects of isoflavaspidic acid PB on dermatophytes biofilm formation and pre-formed biofilm were assessed by 2.3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[carbonyl (phenylamino)]-2H-tetrazolium hydroxide (XTT) assay. Morphology of mature biofilm were observed by Scanning Electron Microscope (SEM). Biomass, exopolysaccharide and ergosterol content of mature biofilm were analyzed by gravimetric analysis, anthranone sulfuric acid method and Ultra Performance Liquid Chromatography (UPLC) assay respectively. RESULT The MIC and MFC ranges of isoflavaspidic acid PB against 25 isolates of dermatophytes were 20-80 μg/mL and 40-80 μg/mL respectively. Isoflavaspidic acid PB (2 MIC) inhibited not only Trichophyton biofilm formation (54.8% ∼ 81.2%) but also the metabolic activity of mature biofilm (20.7% ∼ 44.2%). The result of SEM showed that isoflavaspidic acid PB (8 MIC) could destroy the morphology of hyphae seriously. Comparing with control group, biomass, exopolysaccharide and ergosterol content of the mature biofilm under isoflavaspidic acid PB (8 MIC) were significantly decreased (P < 0.01). CONCLUSION Isoflavaspidic acid PB had anti-fungal and fungicidal activities against dermatophytes. Isoflavaspidic acid PB could inhibit the biofilm of Trichophyton. The mechanism might be related to the decline of the biofilm biomass, exopolysaccharide and ergosterol content. These results showed that isoflavaspidic acid PB could be explored for promising anti-biofilm drugs.
Collapse
Affiliation(s)
- Haoqi Lin
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Xueping Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Zhibin Shen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Wanqiu Cheng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Zhijun Zeng
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yanfen Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Chunping Tang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| | - Tao Jiang
- Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China; Laboratory Animal Center, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
9
|
Fallatah H, Elhaneid M, Ali-Boucetta H, Overton TW, El Kadri H, Gkatzionis K. Antibacterial effect of graphene oxide (GO) nano-particles against Pseudomonas putida biofilm of variable age. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:25057-25070. [PMID: 31250387 PMCID: PMC6689283 DOI: 10.1007/s11356-019-05688-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 06/04/2019] [Indexed: 05/29/2023]
Abstract
Graphene oxide (GO) has been reported to possess antibacterial activity; therefore, its accumulation in the environment could affect microbial communities such as biofilms. The susceptibility of biofilms to antimicrobials is known to depend on the stage of biofilm maturity. The aim of this study was to investigate the effect of GO nano-particles on Pseudomonas putida KT2440 biofilm of variable age. FT-IR, UV-vis, and Raman spectroscopy confirmed the oxidation of graphene while XPS confirmed the high purity of the synthesised GO over 6 months. Biofilms varying in maturity (24, 48, and 72 h) were formed using a CDC reactor and were treated with GO (85 μg/mL or 8.5 μg/mL). The viability of P. putida was monitored by culture on media and the bacterial membrane integrity was assessed using flow cytometry. P. putida cells were observed using confocal microscopy and SEM. The results showed that GO significantly reduced the viability of 48-h biofilm and detached biofilm cells associated with membrane damage while the viability was not affected in 24- and 72-h biofilms and detached biofilm cells. The results showed that susceptibility of P. putida biofilm to GO varied according to age which may be due to changes in the physiological state of cells during maturation. Graphical abstract.
Collapse
Affiliation(s)
- Hussam Fallatah
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Mohamad Elhaneid
- School of Pharmacy, University of Birmingham, B15 2TT, Birmingham, UK
| | | | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK
| | - Hani El Kadri
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
| | - Konstantinos Gkatzionis
- School of Chemical Engineering, University of Birmingham, B15 2TT, Birmingham, UK.
- Department of Food Science and Nutrition, School of the Environment, University of the Aegean, Metropolite Ioakeim 2, 81400, Myrina, Lemnos, Greece.
| |
Collapse
|
10
|
Dang MH, Jung JE, Choi HM, Jeon JG. Difference in virulence and composition of a cariogenic biofilm according to substratum direction. Sci Rep 2018; 8:6244. [PMID: 29674703 PMCID: PMC5908833 DOI: 10.1038/s41598-018-24626-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the difference in composition and virulence of Streptococcus mutans biofilms according to substratum direction. S. mutans biofilms (46-h-old) were formed on three different saliva-coated hydroxyapatite (sHA) disc direction groups: downward (discs placed in the direction of gravity), vertical (discs placed parallel to gravity direction), and upward (discs placed opposite to gravity). The 46-h-old biofilms on sHA discs in the upward direction showed the highest biofilm accumulation, colony forming unit (CFU) count, and extracellular polysaccharide (EPS) amount, followed by those in the vertical and downward directions. In the confocal laser scanning microscopy (CLSM) study, the biofilms in the upward direction also showed the highest bacterial count (live or dead cells) and EPS biovolume. Scanning electron microscopy (SEM) analysis confirmed the microbiological and biochemical results. In addition, biofilm density and acid production were higher in the upward direction than those in the other directions. Our findings suggest that substratum direction, which might be related to gravity, strongly influences the formation and virulence of cariogenic biofilms and subsequent initiation of dental caries. Collectively, the differences in the formation and virulence of cariogenic biofilms are related to the direction of tooth surface (occlusal surfaces of mandibular teeth > proximal surfaces > occlusal surfaces of maxillary teeth).
Collapse
Affiliation(s)
- Minh-Huy Dang
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 plus program, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Ji-Eun Jung
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 plus program, Chonbuk National University, Jeonju, 561-756, Republic of Korea
| | - Hyeon-Mi Choi
- Department of Dentistry, Presbyterian Medical Center, Jeonju, Republic of Korea
| | - Jae-Gyu Jeon
- Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 plus program, Chonbuk National University, Jeonju, 561-756, Republic of Korea.
| |
Collapse
|
11
|
Yoon HY, Lee SY. Susceptibility of bacteria isolated from dental unit waterlines to disinfecting chemical agents. J GEN APPL MICROBIOL 2018; 64:269-275. [DOI: 10.2323/jgam.2018.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Hye Young Yoon
- Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University
| | - Si Young Lee
- Department of Oral Microbiology, College of Dentistry, Research Institute of Oral Science, Gangneung-Wonju National University
| |
Collapse
|
12
|
Pandit S, Jung JE, Choi HM, Jeon JG. Effect of brief periodic fluoride treatments on the virulence and composition of a cariogenic biofilm. BIOFOULING 2018; 34:53-61. [PMID: 29199458 DOI: 10.1080/08927014.2017.1404583] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
The present study investigated the effect of periodic 1-min fluoride treatments on Streptococcus mutans biofilms and then determined the relationship between anti-biofilm activity, treatment frequency, and fluoride concentration using a linear-fitting procedure. S. mutans biofilms were periodically treated (1-min/treatment) with fluoride during biofilm formation and analyzed using microbiological methods, confocal microscopy, and real-time PCR. The results indicated that reductions in the dry weight and acidogenicity of biofilms due to periodic fluoride treatment occurred in a concentration dependent manner. The reduction in dry weight without affecting bacterial cell viability was observed mainly due to the inhibitory effect of fluoride on gtfB and gtfC gene expression, which suppresses EPS production and avoids reduction of the pH below the critical point on the tooth surface. This study suggests that brief periodic exposure to appropriate fluoride concentrations through mouthwashes and toothpastes may affect the virulence and composition of cariogenic biofilms and subsequently prevent dental caries.
Collapse
Affiliation(s)
- Santosh Pandit
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Ji-Eun Jung
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| | - Hyeon-Mi Choi
- b Department of Dentistry , Presbyterian Medical Center , Jeonju , Republic of Korea
| | - Jae-Gyu Jeon
- a Department of Preventive Dentistry, School of Dentistry, Institute of Oral Bioscience and BK 21 Plus Program , Chonbuk National University , Jeonju , Republic of Korea
| |
Collapse
|
13
|
Retamal-Valdes B, Soares GM, Stewart B, Figueiredo LC, Faveri M, Miller S, Zhang YP, Feres M. Effectiveness of a pre-procedural mouthwash in reducing bacteria in dental aerosols: randomized clinical trial. Braz Oral Res 2017; 31:e21. [PMID: 28380086 DOI: 10.1590/1807-3107bor-2017.vol31.0021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/06/2017] [Indexed: 11/22/2022] Open
Abstract
The aim of this randomized, single blinded clinical trial was to evaluate the effect of a pre-procedural mouthwash containing cetylpyridinium chloride (CPC), zinc lactate (Zn) and sodium fluoride (F) in the reduction of viable bacteria in oral aerosol after a dental prophylaxis with ultrasonic scaler. Sixty systemically healthy volunteers receiving dental prophylaxis were randomly assigned to one of the following experimental groups (15 per group): (i) rinsing with 0.075% CPC, 0.28% Zn and 0.05% F (CPC+Zn+F), (ii) water or (iii) 0.12% chlorhexidine digluconate (CHX), and (iv) no rinsing. Viable bacteria were collected from different locations in the dental office on enriched TSA plates and anaerobically incubated for 72 hours. The colonies were counted and species were then identified by Checkerboard DNA-DNA Hybridization. The total number of colony-forming units (CFUs) detected in the aerosols from volunteers who rinsed with CPC+Zn+F or CHX was statistically significantly (p<0.05) lower than of those subjects who did not rinse or who rinsed with water. When all locations were considered together, the aerosols from the CPC+Zn+F and CHX groups showed, respectively, 70% and 77% fewer CFUs than those from the No Rinsing group and 61% and 70% than those from the Water group. The mean proportions of bacterial species from the orange complex were statistically significantly (p<0.05) lower in aerosols from the CPC+Zn+F and CHX groups compared with the others two groups. In conclusion, the mouthwash containing CPC+Zn+F, is effective in reducing viable bacteria in oral aerosol after a dental prophylaxis with ultrasonic scaler.
Collapse
Affiliation(s)
- Belén Retamal-Valdes
- Universidade de Guarulhos, Department of Periodontology, Dental Research Division, Guarulhos, São Paulo, Brazil
| | - Geisla Mary Soares
- Universidade de Guarulhos, Department of Periodontology, Dental Research Division, Guarulhos, São Paulo, Brazil
| | | | - Luciene Cristina Figueiredo
- Universidade de Guarulhos, Department of Periodontology, Dental Research Division, Guarulhos, São Paulo, Brazil
| | - Marcelo Faveri
- Universidade de Guarulhos, Department of Periodontology, Dental Research Division, Guarulhos, São Paulo, Brazil
| | | | | | - Magda Feres
- Universidade de Guarulhos, Department of Periodontology, Dental Research Division, Guarulhos, São Paulo, Brazil
| |
Collapse
|
14
|
Mirtič J, Kogej K, Baumgartner S, Smistad G, Kristl J, Hiorth M. Development of Cetylpyridinium-Alginate Nanoparticles: A Binding and Formulation Study. Int J Pharm 2016; 511:774-84. [DOI: 10.1016/j.ijpharm.2016.07.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/24/2022]
|
15
|
Fabbri S, Johnston DA, Rmaile A, Gottenbos B, De Jager M, Aspiras M, Starke EM, Ward MT, Stoodley P. High-Velocity Microsprays Enhance Antimicrobial Activity in Streptococcus mutans Biofilms. J Dent Res 2016; 95:1494-1500. [PMID: 27554642 DOI: 10.1177/0022034516662813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Streptococcus mutans in dental plaque biofilms play a role in caries development. The biofilm's complex structure enhances the resistance to antimicrobial agents by limiting the transport of active agents inside the biofilm. The authors assessed the ability of high-velocity water microsprays to enhance delivery of antimicrobials into 3-d-old S. mutans biofilms. Biofilms were exposed to a 90° or 30° impact, first using a 1-µm tracer bead solution (109 beads/mL) and, second, a 0.2% chlorhexidine (CHX) or 0.085% cetylpyridinium chloride (CPC) solution. For comparison, a 30-s diffusive transport and simulated mouthwash were also performed. Confocal microscopy was used to determine number and relative bead penetration depth into the biofilm. Assessment of antimicrobial penetration was determined by calculating the killing depth detected by live/dead viability staining. The authors first demonstrated that the microspray was able to deliver significantly more microbeads deeper in the biofilm compared with diffusion and mouthwashing exposures. Next, these experiments revealed that the microspray yielded better antimicrobial penetration evidenced by deeper killing inside the biofilm and a wider killing zone around the zone of clearance than diffusion alone. Interestingly the 30° impact in the distal position delivered approximately 16 times more microbeads and yielded approximately 20% more bacteria killing (for both CHX and CPC) than the 90° impact. These data suggest that high-velocity water microsprays can be used as an effective mechanism to deliver microparticles and antimicrobials inside S. mutans biofilms. High shear stresses generated at the biofilm-burst interface might have enhanced bead and antimicrobial delivery inside the remaining biofilm by combining forced advection into the biofilm matrix and physical restructuring of the biofilm itself. Further, the impact angle has potential to be optimized both for biofilm removal and active agents' delivery inside biofilm in those protected areas where some biofilm might remain.
Collapse
Affiliation(s)
- S Fabbri
- National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, UK
| | - D A Johnston
- Biomedical Imaging Unit, School of Medicine, University of Southampton, Southampton, UK
| | - A Rmaile
- Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - B Gottenbos
- Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | - M De Jager
- Philips Research, High Tech Campus, Eindhoven, The Netherlands
| | | | - E M Starke
- Philips Oral Healthcare, Bothell, Washington, USA
| | - M T Ward
- Philips Oral Healthcare, Bothell, Washington, USA
| | - P Stoodley
- National Centre for Advanced Tribology at Southampton (nCATS), University of Southampton, Southampton, UK.,Departments of Microbial Infection and Immunity and the Department of Orthopaedics, Centre for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|