1
|
Tang B, Huang R, Ma W. Advances in nanotechnology-based approaches for the treatment of head and neck squamous cell carcinoma. RSC Adv 2024; 14:38668-38688. [PMID: 39654926 PMCID: PMC11626385 DOI: 10.1039/d4ra07193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common types of cancers occurring in the head and neck region, is often associated with high mortality rates due to its invasiveness and morbidity. The mainstream treatment methods in clinical settings, including surgery, chemotherapy, and radiotherapy, may cause poor overall survival rate and prognosis, with issues such as drug resistance, damage to adjacent healthy tissues, and potential recurrences. Other treatment approaches such as immunotherapy, photodynamic therapy (PDT), and photothermal therapy (PPT) also suffer from inefficient tumor targeting and suboptimal therapeutic outcomes. Early detection is vital for HNSCC patients, but it is always limited by insensitivity and confusing clinical manifestations. Hence, it is highly desirable to develop optimized therapeutic and diagnostic strategies. With the boom in nanomaterials, nanotechnology-conducted HNSCC therapy has attracted widespread attention. Nanoparticles (NPs) are distinguished by their unique morphology and superior physicochemical property, and some can exhibit direct antitumor activity, while others serve as promising candidates for drug delivery. In addition, NPs offer the potential for structural modification for drug delivery and tumor targeting, enabling specific delivery to tumor cells through conjugation with biomarker ligands and improving cargo biocompatibility. This work reviews current therapies and diagnosis methods for HNSCC, highlights the characteristics of the major NPs, surveys their uses and advantages in the treatment of HNSCC, and discusses the obstacles and prospects in clinical applications, aiming to enlighten future research directions for nanotechnology-based therapy for HNSCC.
Collapse
Affiliation(s)
- Bicai Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Rui Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu Sichuan 610041 China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials Chengdu Sichuan 610041 China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
2
|
Hu J, Li Y, Xie X, Song Y, Yan W, Luo Y, Jiang Y. The therapeutic potential of andrographolide in cancer treatment. Biomed Pharmacother 2024; 180:117438. [PMID: 39298908 DOI: 10.1016/j.biopha.2024.117438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Cancer poses a substantial global health challenge, necessitating the widespread use of chemotherapy and radiotherapy. Despite these efforts, issues like resistance development and severe side effects remain. As such, the search for more effective alternatives is critical. Andrographolide, a naturally occurring compound, has recently gained attention for its extensive biological activities. This review explores the role of andrographolide in cancer therapy, especially focusing on the molecular mechanisms that drive its anti-tumor properties. It also examines innovative methods to enhance andrographolide's bioavailability, thus boosting its effectiveness against cancer. Notably, andrographolide has potential for use in combination with various clinical drugs, and both preclinical and clinical studies provide strong evidence supporting its broader anticancer applications. Additionally, this paper proposes future research directions for andrographolide's anti-cancer effects and discusses the challenges in its clinical usage along with current research efforts to address these issues. In summary, this review underscores andrographolide's potential roles and contributes to the development of improved cancer treatment strategies.
Collapse
Affiliation(s)
- Jiaxuan Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yi Li
- Department of Anesthesiology, Ganzhou Key Laboratory of Anesthesiology, Ganzhou Key Laboratory of Osteoporosis Research, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xin Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Yunlei Song
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Yan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yan Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China
| | - Yumao Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, Scientific Research Center, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
3
|
Fathi F, Machado TOX, de A C Kodel H, Portugal I, Ferreira IO, Zielinska A, Oliveira MBPP, Souto EB. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for the delivery of bioactives sourced from plants: part II - applications and preclinical advancements. Expert Opin Drug Deliv 2024; 21:1491-1499. [PMID: 39351671 DOI: 10.1080/17425247.2024.2410949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Numerous purified bioactive compounds, crude extracts, and essential oils have demonstrated potent antioxidant, antimicrobial, anti-inflammatory, and antiviral properties, particularly in vitro or in silico; however, their in vivo applications are hindered by inadequate absorption and distribution in the organism. The incorporation of these phytochemicals into solid lipid nanoparticles (SLN) or nanostructured lipid carriers (NLC) has demonstrated significant advancements and represents a viable approach to improve their bioavailability through different administration routes. AREAS COVERED This review discusses the potential applications of SLN and NLC, loading bioactive compounds sourced from plants for the treatment of several diseases. An overview of the preclinical developments on the use of these lipid nanoparticles is also provided as well as the requisites to be launched on the market. EXPERT OPINION Medicinal plants have gained even more value for the pharmaceutical industries and their customers, leading to many studies exploring their therapeutic potential. Several bioactives derived from plants with antiviral, anticancer, neuroprotective, antioxidant, and antiaging properties have been proposed and loaded into lipid nanoparticles. In vitro and invivo studies corroborate the added value of SLN/NLC to improve the bioavailability of several bioactives. Surface modification to increase their stability and target delivery should be considering.
Collapse
Affiliation(s)
- Faezeh Fathi
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Viterbo Ferreira, Portugal
| | - Tatiane O X Machado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
- Rede Nordeste de Biotecnologia-RENORBIO, University of Tiradentes, Aracaju, Sergipe, Brazil
- Department of Agroindustry, Federal Institute of Sertão Pernambucano, Campus Petrolina Zona Rural, Petrolina, PE, Brazil
| | - Helena de A C Kodel
- Graduation Program of Biomedicine, University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Isabella Portugal
- Department of Medicine, Cambridge Health Alliance, Cambridge, MA, USA
| | - Inês O Ferreira
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
| | - Aleksandra Zielinska
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
- Institute of Natural Fibres and Medicinal Plants National Research Institute, Department of Biotechnology, Poznań, Poland
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Viterbo Ferreira, Portugal
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy of University of Porto, Viterbo Ferreira, Portugal
- UCD School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
4
|
Medina-Berríos N, Pantoja-Romero W, Lavín Flores A, Díaz Vélez S, Martínez Guadalupe AC, Torres Mulero MT, Kisslinger K, Martínez-Ferrer M, Morell G, Weiner BR. Synthesis and Characterization of Carbon-Based Quantum Dots and Doped Derivatives for Improved Andrographolide's Hydrophilicity in Drug Delivery Platforms. ACS OMEGA 2024; 9:12575-12584. [PMID: 38524434 PMCID: PMC10955586 DOI: 10.1021/acsomega.3c06252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 03/26/2024]
Abstract
Carbon-based quantum dots (CBQDs), sulfur-doped carbon-based quantum dots (S-CBQDs), and nitrogen-doped carbon-based quantum dots (N-CBQDs) have strong potential for drug delivery platforms. They were conjugated with andrographolide, a well-known hydrophobic drug, to study the concomitant changes in hydrophilicity. The interactions between these nanomaterials and the drug were studied by characterizing the optical and structural properties of the nanoparticles before and after coupling with the drug. It was found that the interaction of the drug with these nanomaterials produced noticeable changes in their optical and structural properties. Moreover, the partition coefficient for the nanocomposites was determined by NMR. The results indicate that conjugating the drug with the nanoparticles significantly enhanced its affinity for the aqueous phase, from 2.632 to 0.1117, thereby opening the possibility of using this approach for developing an effective drug delivery platform for this hydrophobic drug.
Collapse
Affiliation(s)
- Nataniel Medina-Berríos
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Wenndy Pantoja-Romero
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Alexis Lavín Flores
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Sebastián
C. Díaz Vélez
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| | - Anna C. Martínez Guadalupe
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Mariana T. Torres Mulero
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Kim Kisslinger
- Brookhaven
National Lab, Upton, New York 11973, United States
| | - Magaly Martínez-Ferrer
- Division
of Cancer Biology, University of Puerto
Rico Comprehensive Cancer Center, San Juan 00936-3027, Puerto Rico
- Department
of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, San Juan 00925-253, Puerto Rico
| | - Gerardo Morell
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
- Department
of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
| | - Brad R. Weiner
- Department
of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan 00925-253, Puerto Rico
- Molecular
Sciences Research Center, University of
Puerto Rico, San Juan 00925-253, Puerto
Rico
| |
Collapse
|
5
|
Deshmukh R, Jain AK, Singh R, Paul SD, Harwansh RK. Andrographis paniculata and Andrographolide - A Snapshot on Recent Advances in Nano Drug Delivery Systems against Cancer. Curr Drug Deliv 2024; 21:631-644. [PMID: 36740794 DOI: 10.2174/1567201820666230203115752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 02/07/2023]
Abstract
Cancer is one of the deadliest illnesses of the 21st century. Chemotherapy and radiation therapies both have considerable side effects. Antitumor antibiotics are one of them. Coughs, common colds, fevers, laryngitis, and infectious disorders have all been treated with Andrographis paniculata for centuries. Extracts of Andrographis effectively treat various ailments, as well as cancer. The most active molecule in Andrographis paniculata is andrographolide a, diterpene, and lactone. Andrographis paniculata and its derivatives have long been used to treat various ailments. Anti-inflammatory and cancerfighting characteristics have been observed in Andrographolide. Andrographolide, a diterpene lactone separated from Andrographis paniculata, has also been shown to have important criticalessential biological protective properties. It has also been suggested that it could be used to treat major human diseases like-rheumatoid like rheumatoid, colitis, and Parkinsons disease. This summary aims to highlight Andrographolide as a promising cancer treatment option. Several databases were searched for andrographolides cytotoxic/anti-cancer effects in pre-clinical and clinical research to serve this purpose. Several studies have shown that Andrographolide is helpful in cancer medication, as detailed in this review.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Aman Kumar Jain
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rajesh Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Swarnali Das Paul
- Department of Pharmacy, Shri Shankaracharya College of Pharmaceutical Sciences, Junwani, Bhilai, 490020, India
| | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| |
Collapse
|
6
|
Liu W, Wang J, Zhang C, Bao Z, Wu L. Curcumin nanoemulsions inhibit oral squamous cell carcinoma cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation: A preliminary study. Oral Dis 2023; 29:3183-3192. [PMID: 35689522 DOI: 10.1111/odi.14271] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/02/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Accumulating evidence indicates that curcumin (CUR) has anticancer properties in various cancers including oral squamous cell carcinoma (OSCC), but CUR is greatly restricted in clinical studies and applications due to its low bioavailability. Interestingly, the bioavailability of CUR was found to be significantly improved using loaded lipid nanoemulsions (NEs). OBJECTIVES To investigate the effect of CUR-NEs on cell proliferation of OSCC HSC-3 cells in vitro, and explore the potential mechanism of this effect in a preliminary study. RESULTS CUR-NEs exhibited significantly cytotoxic effects on OSCC cells in a dose-dependent manner, compared with the control. The percentage of cells in proliferative phases (S + G2/M) was gradually decreased in a dose- or time-dependent manner caused by CUR-NEs. Moreover, CUR-NEs downregulated the protein expression of PI3K/Akt/mTOR and upregulated the expression of miR-199a that targeted PI3K in a dose- or time-dependent manner in OSCC cells. Importantly, CUR-NEs cloud effectively counteract the influence on cell proliferation of OSCC cells and the proliferative phases of cell cycle caused by miR-199a inhibitor a time-dependent manner. CONCLUSIONS This in vitro preliminary study indicated that CUR-NEs may be an effective therapeutic agent for OSCC. Such effects could be related to inhibition of OSCC cell proliferation by PI3K/Akt/mTOR suppression and miR-199a upregulation.
Collapse
Affiliation(s)
- Wei Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Fengcheng Hospital of Fengxian District, Shanghai Ninth People's Hospital Fengcheng Branch Hospital, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Fengcheng Hospital of Fengxian District, Shanghai Ninth People's Hospital Fengcheng Branch Hospital, Shanghai, China
| | - Chenping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Zhexuan Bao
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Department of Oral Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lan Wu
- Shanghai Key Laboratory of Stomatology, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Jiao Tong University, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Bhattacharjee B, Syeda AF, Rynjah D, Hussain SM, Chandra Bora S, Pegu P, Sahu RK, Khan J. Pharmacological impact of microRNAs in head and neck squamous cell carcinoma: Prevailing insights on molecular pathways, diagnosis, and nanomedicine treatment. Front Pharmacol 2023; 14:1174330. [PMID: 37205904 PMCID: PMC10188950 DOI: 10.3389/fphar.2023.1174330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023] Open
Abstract
Head and neck squamous cell carcinoma is a disease that most commonly produce tumours from the lining of the epithelial cells of the lips, larynx, nasopharynx, mouth, or oro-pharynx. It is one of the most deadly forms of cancer. About one to two percent of all neo-plasm-related deaths are attributed to head and neck squamous cell carcinoma, which is responsible for about six percent of all cancers. MicroRNAs play a critical role in cell proliferation, differentiation, tumorigenesis, stress response, triggering apoptosis, and other physiological process. MicroRNAs regulate gene expression and provide new diagnostic, prognostic, and therapeutic options for head and neck squamous cell carcinoma. In this work, the role of molecular signaling pathways related to head and neck squamous cell carcinoma is emphasized. We also provide an overview of MicroRNA downregulation and overexpression and its role as a diagnostic and prognostic marker in head and neck squamous cell carcinoma. In recent years, MicroRNA nano-based therapies for head and neck squamous cell carcinoma have been explored. In addition, nanotechnology-based alternatives have been discussed as a promising strategy in exploring therapeutic paradigms aimed at improving the efficacy of conventional cytotoxic chemotherapeutic agents against head and neck squamous cell carcinoma and attenuating their cytotoxicity. This article also provides information on ongoing and recently completed clinical trials for therapies based on nanotechnology.
Collapse
Affiliation(s)
| | - Ayesha Farhana Syeda
- Department of Pharmaceutics, Unaiza College of Pharmacy, Qassim University, Unaizah, Saudi Arabia
| | | | - Shalam M. Hussain
- Department of Clinical Pharmacy, College of Nursing and Health Sciences, Al-Rayyan Medical College, Madinah, Saudi Arabia
| | | | - Padmanath Pegu
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand, India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| |
Collapse
|
8
|
Synthesis and anti-plasmodial activity of isoandrographolide acetals. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Malik Z, Parveen R, Abass S, Irfan Dar M, Husain SA, Ahmad S. Receptor-Mediated Targeting in Breast Cancer through Solid Lipid Nanoparticles and Its Mechanism. Curr Drug Metab 2022; 23:800-817. [PMID: 35430962 DOI: 10.2174/1389200223666220416213639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticles have gained prominence in many areas and domains worldwide, such as metallic NP, carbon dots, quantum dots, polymeric NP, nano-suspension, nanocrystals, solid lipid nanoparticles (SLN), etc. and have been applied in the field of medicine as nanomedicine with promising results. Rise in cancer mortality rate has been an issue for a long time with female breast cancer as one of the most detected cancers. No permanent treatment has been developed till date could combat breast cancer with minimum side effects that are not long-lasting as there is no proper technique through which the anticancer drugs can recognize benign or malignant or normal cells that causes systematic toxicity. Advancement in technology has led to the discovery of many biological pathways and mechanisms. Tumor cells or cancer cells overexpress some high-affinity receptors that can be targeted to deliver the anticancer drugs at specific site using these pathways and mechanisms. Solid lipid nanoparticles (SLN) are among some of the excellent drug delivery systems, especially stealth SLN (sSLN). SLN, when conjugated with a ligand (called as sSLN), has affinity and specificity towards a specific receptor, and can deliver the drug in breast cancer cells overexpressing the receptors. Using this technique, various investigations have reported better anti-breast cancer activity than simple SLN (non-conjugated to ligand or no receptor targeting). This review includes the investigations and data on receptor-mediated targeting in breast cancer from 2010 to 2021 by searching different databases. Overall, information on SLN in different cancers is reviewed. In vivo investigations, pharmacokinetics, biodistribution, and stability are discussed to describe the efficacy of sSLN. Investigations included in this review demonstrate that sSLN delivers the drug by overcoming the biological barriers and shows enhanced and better activity than non-conjugated SLN which also verifies that a lesser concentration of drug can show anti-breast cancer activity. The efficacy of medicines could be increased with lower cancer deaths through stealth-SLN. Due to the low cost of synthesis, biocompatibility and easy to formulate, more study is needed in vitro and in vivo so that this novel technique could be utilized in the treatment of human breast cancer.
Collapse
Affiliation(s)
- Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sageer Abass
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Irfan Dar
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.,Proteomics and Bioinformatics Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
10
|
Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment. MATERIALS 2022; 15:ma15062086. [PMID: 35329542 PMCID: PMC8951645 DOI: 10.3390/ma15062086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Head and neck cancers rank sixth among the most common cancers today, and the survival rate has remained virtually unchanged over the past 25 years, due to late diagnosis and ineffective treatments. They have two main risk factors, tobacco and alcohol, and human papillomavirus infection is a secondary risk factor. These cancers affect areas of the body that are fundamental for the five senses. Therefore, it is necessary to treat them effectively and non-invasively as early as possible, in order to do not compromise vital functions, which is not always possible with conventional treatments (chemotherapy or radiotherapy). In this sense, nanomedicine plays a key role in the treatment and diagnosis of head and neck cancers. Nanomedicine involves using nanocarriers to deliver drugs to sites of action and reducing the necessary doses and possible side effects. The main purpose of this review is to give an overview of the applications of nanocarrier systems to the diagnosis and treatment of head and neck cancer. Herein, several types of delivery strategies, radiation enhancement, inside-out hyperthermia, and theragnostic approaches are addressed.
Collapse
|
11
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
12
|
Mishra A, Shaik HA, Sinha RK, Shah BR. Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health. Molecules 2021; 26:7036. [PMID: 34834128 PMCID: PMC8622020 DOI: 10.3390/molecules26227036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Plants consistently synthesize and accumulate medically valuable secondary metabolites which can be isolated and clinically tested under in vitro conditions. An advancement with such important phytochemical production has been recognized and utilized as herbal drugs. Bioactive andrographolide (AGL; C20H30O5) isolated from Andrographis paniculate (AP) (Kalmegh) is a diterpenoid lactones having multifunctional medicinal properties including anti-manic, anti-inflammatory, liver, and lung protective. AGL is known for its immunostimulant activity against a variety of microbial infections thereby, regulating classical and alternative macrophage activation, Ag-specific antibody production during immune disorder therapy. In vitro studies with AGL found it to be effective against multiple tumors, neuronal disorders, diabetes, pneumonia, fibrosis, and other diverse therapeutic misadventures. Generally, virus-based diseases like ZIKA, influenza A virus subtype (H1NI), Ebola (EBOV), Dengue (DENV), and coronavirus (COVID-19) epidemics have greatly increased scientific interest and demands to develop more effective and economical immunomodulating drugs with minimal side effects. Trials and in vitro pharmacological studies with AGL and medicinally beneficial herbs might contribute to benefit the human population without using chemical-based synthetic drugs. In this review, we have discussed the possible role of AGL as a promising herbal-chemo remedy during human diseases, viral infections and as an immunity booster.
Collapse
Affiliation(s)
- Archana Mishra
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 37005 České Budějovice, Czech Republic;
| | - Haq Abdul Shaik
- Institute of Entomology, Biology Centre, Czech Academy of Science, 37005 České Budějovice, Czech Republic;
- Department of Parasitology, Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Rakesh Kumar Sinha
- Institute of Plant Genetics, Polish Academy of Sciences, 34 Strzeszynska Street, 60-479 Poznan, Poland;
| | - Bakht Ramin Shah
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 37005 České Budějovice, Czech Republic;
| |
Collapse
|
13
|
Valizadeh A, Khaleghi AA, Roozitalab G, Osanloo M. High anticancer efficacy of solid lipid nanoparticles containing Zataria multiflora essential oil against breast cancer and melanoma cell lines. BMC Pharmacol Toxicol 2021; 22:52. [PMID: 34587996 PMCID: PMC8482686 DOI: 10.1186/s40360-021-00523-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background The cancer burden is rising rapidly worldwide, and it annually causes about 8.8 million deaths worldwide. Due to chemical drugs’ side effects and the emergence of resistance, the development of new green drugs has received much attention. We aimed to investigate whether solid-lipid nanoparticles containing essential oil of Zataria multiflora (ZMSLN) enhanced the anticancer efficacy of the essential oil against breast cancer (MDA-MB-468) and melanoma (A-375) cells. Results ZMSLN was prepared by the high-pressure homogenizer method; particle size 176 ± 8 nm, polydispersity index 0.22 ± 0.1, entrapment efficiency 67 ± 5%. The essential oil showed a dose-dependent antiproliferative effect on MDA-MB-468 and A-375 cells at all examined concentrations (75, 150, 300, 600, and 1200 μg/mL). Interestingly, after treating both cells with 75 μg/mL of ZMSLN, their viabilities were reduced to under 13%. Conclusion The finding showed that ZMSLN had a distinct antiproliferative efficacy; it could thus be considered a green anticancer candidate for further in vivo and in vivo studies.
Collapse
Affiliation(s)
- Alireza Valizadeh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asghar Khaleghi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
14
|
Ruiz-Pulido G, Medina DI, Barani M, Rahdar A, Sargazi G, Baino F, Pandey S. Nanomaterials for the Diagnosis and Treatment of Head and Neck Cancers: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3706. [PMID: 34279276 PMCID: PMC8269895 DOI: 10.3390/ma14133706] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Head and neck cancer (HNC) is a category of cancers that typically arise from the nose-, mouth-, and throat-lining squamous cells. The later stage of HNC diagnosis significantly affects the patient's survival rate. This makes it mandatory to diagnose this cancer with a suitable biomarker and imaging techniques at the earlier stages of growth. There are limitations to traditional technologies for early detection of HNC. Furthermore, the use of nanocarriers for delivering chemo-, radio-, and phototherapeutic drugs represents a promising approach for improving the outcome of HNC treatments. Several studies with nanostructures focus on the development of a targeted and sustained release of anticancer molecules with reduced side effects. Besides, nanovehicles could allow co-delivering of anticancer drugs for synergistic activity to counteract chemo- or radioresistance. Additionally, a new generation of smart nanomaterials with stimuli-responsive properties have been developed to distinguish between unique tumor conditions and healthy tissue. In this light, the present article reviews the mechanisms used by different nanostructures (metallic and metal oxide nanoparticles, polymeric nanoparticles, quantum dots, liposomes, nanomicelles, etc.) to improve cancer diagnosis and treatment, provides an up-to-date picture of the state of the art in this field, and highlights the major challenges for future improvements.
Collapse
Affiliation(s)
- Gustavo Ruiz-Pulido
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Dora I Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Mexico
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-14115, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Ghasem Sargazi
- Noncommunicable Diseases Research Center, Bam University of Medical Science, Bam 76617-71967, Iran
| | - Francesco Baino
- Department of Applied Science and Technology, Institute of Materials Physics and Engineering, Politecnico di Torino, 10129 Torino, Italy
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|