1
|
Nunley K, McGhee KE. Detection of relatedness in chemical alarm cues by a selfing vertebrate depends on population and the life stage producing the alarm cue. Behav Processes 2024; 219:105056. [PMID: 38782306 DOI: 10.1016/j.beproc.2024.105056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Aquatic prey have impressive abilities to extract information from a variety of chemical cues. For example, they can use the alarm cues released by wounded individuals during a predator attack to learn about predation risk, and they can also distinguish kin from non-kin individuals during interactions. However, it remains unclear whether animals can combine this information on predation risk with kin recognition of the particular individuals under threat. To examine how the relatedness of the individuals in alarm cue affects behaviour we used the self-fertilizing hermaphroditic mangrove rivulus (Kryptolebias marmoratus), in which lineages produce genetically identical offspring through selfing. We explored this in two populations that differ in their level of outcrossing. We measured activity before and after exposure to alarm cue made from individuals (either adults or embryos) from their own lineage or an unrelated lineage from the same population. Fish responded weakly to embryo alarm cues, but tended to reduce their activity more when the alarm cues were from an unrelated lineage compared to alarm cues from their own lineage, particularly in fish from the outcrossing population. In contrast, there was no effect of cue relatedness on the response to adult alarm cues but there was a strong population effect. Specifically, individuals from the outcrossing population tended to react more strongly to alarm cues compared to individuals from the predominantly selfing population. We discuss the potential roles of the major histocompatibility complex in cue detection, differences between adult vs embryo alarm cues in terms of concentration and information, and underlying differences among populations and genetic lineages in their production and detection of chemical cues. Whether this kin recognition offers adaptive benefits or is simply a consequence of being able to detect relatedness in living individuals would be an exciting area for future research.
Collapse
Affiliation(s)
- Kaitlyn Nunley
- Department of Biology, The University of the South, Sewanee, TN37383, USA
| | - Katie E McGhee
- Department of Biology, The University of the South, Sewanee, TN37383, USA.
| |
Collapse
|
2
|
Meuthen D, Salahinejad A, Chivers DP, Ferrari MCO. Transgenerational plasticity of exploratory behavior and a hidden cost of mismatched risk environments between parental sexes. Sci Rep 2023; 13:19737. [PMID: 37957198 PMCID: PMC10643415 DOI: 10.1038/s41598-023-46269-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
We require a better understanding of the relative contribution of different modes of non-genetic inheritance in behavioral trait development. Thus, we investigate variation in exploratory behavior, which is ecologically relevant and a target of selection. The metabolic hypothesis predicts exploratory behavior to be size-dependent across taxa. This size-dependency is cancelled out under high perceived risk, allowing us to determine the transgenerationally integrated estimated level of risk. Using fathead minnows Pimephales promelas, we manipulated perceived risk in mothers, fathers, caring males and offspring through continuous exposure to either conspecific alarm cues or to a control water treatment. In 1000 four-month old offspring, we determined body sizes and exploratory behavior. Perceived high risk in mothers, followed by personal risk, was most effective in eliminating size-dependent behavior whereas effects of paternal risk on offspring behavioral development were substantially weaker. When maternal risk is high, environmental mismatches between parents prevented offspring from responding appropriately to personal high risk. The environment of the caring male also impacted offspring behavior to a greater extent than that of its genetic parents. Our study highlights the high relative importance of maternal, personal and caring male risk environments and showcases potential costs of an environmental mismatch between parental sexes.
Collapse
Affiliation(s)
- Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| |
Collapse
|
3
|
Rabezanahary ANA, Piette M, Missawi O, Garigliany MM, Kestemont P, Cornet V. Microplastics alter development, behavior, and innate immunity responses following bacterial infection during zebrafish embryo-larval development. CHEMOSPHERE 2023; 311:136969. [PMID: 36306963 DOI: 10.1016/j.chemosphere.2022.136969] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/25/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Although the hazards of microplastics (MPs) have been explored, no complete data exists on the effect of MPs on the egg chorion. This study aims to evaluate the modification of immune responses, metabolism, and behavior of zebrafish larvae (Danio rerio) depending on the moment of exposure. Larvae were exposed to 5 μm polystyrene microbeads at a concentration of 0, 100, or 1000 μg/l, according to a specified times of exposure (0-4, 4-8, 0-8 days postfertilization (dpf)), followed by a bacterial challenge at 8 dpf. After every 4 and 8 dpf, swimming activity, gene expression related to oxidative stress and immune system responses were assessed. During embryonic development, larvae exposed to a concentration of 1000 μg/l MPs already showed a significantly reduced tail coiling frequency, yolk sac resorption and heartbeat. At 8 dpf, swimming activity was altered, even without ingestion and a few days after the end of MP exposure. Our results indicated a difference in immune system (nfkb, il1β) and apoptosis (casp3a, bcl2) related gene expression depending on the timing of MP exposure, which highlighted a contrasting sensitivity according to the exposure time in MP studies. This study brings new insight into how MPs might affect zebrafish larvae health and development even without ingestion.
Collapse
Affiliation(s)
- Andry Ny Aina Rabezanahary
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Mathilde Piette
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Omayma Missawi
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Mutien-Marie Garigliany
- University of Liège, Laboratory of Veterinary Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Liège, Belgium
| | - Patrick Kestemont
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium
| | - Valérie Cornet
- University of Namur, Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, Namur, Belgium.
| |
Collapse
|
4
|
Feugere L, Scott VF, Rodriguez-Barucg Q, Beltran-Alvarez P, Wollenberg Valero KC. Thermal stress induces a positive phenotypic and molecular feedback loop in zebrafish embryos. J Therm Biol 2021; 102:103114. [PMID: 34863478 DOI: 10.1016/j.jtherbio.2021.103114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Aquatic organisms must cope with both rising and rapidly changing temperatures. These thermal changes can affect numerous traits, from molecular to ecological scales. Biotic stressors are already known to induce the release of chemical cues which trigger behavioural responses in other individuals. In this study, we infer whether fluctuating temperature, as an abiotic stressor, may similarly induce stress-like responses in individuals not directly exposed to the stressor. To test this hypothesis, zebrafish (Danio rerio) embryos were exposed for 24 h to fluctuating thermal stress, to medium in which another embryo was thermally stressed before ("stress medium"), and to a combination of these. Growth, behaviour, expression of molecular markers, and of whole-embryo cortisol were used to characterise the thermal stress response and its propagation between embryos. Both fluctuating high temperature and stress medium significantly accelerated development, by shifting stressed embryos from segmentation to pharyngula stages, and altered embryonic activity. Importantly, we found that the expression of sulfide:quinone oxidoreductase (SQOR), the antioxidant gene SOD1, and of interleukin-1β (IL-1β) were significantly altered by stress medium. This study illustrates the existence of positive thermal stress feedback loops in zebrafish embryos where heat stress can induce stress-like responses in conspecifics, but which might operate via different molecular pathways. If similar effects also occur under less severe heat stress regimes, this mechanism may be relevant in natural settings as well.
Collapse
Affiliation(s)
- Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Victoria F Scott
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom; Energy and Environment Institute, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Quentin Rodriguez-Barucg
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Pedro Beltran-Alvarez
- Department of Biomedical Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom
| | - Katharina C Wollenberg Valero
- Department of Biological and Marine Sciences, University of Hull, Cottingham Road, Kingston Upon Hull, HU6 7RX, United Kingdom.
| |
Collapse
|
5
|
Meuthen D, Ferrari MCO, Chivers DP. Paternal care effects outweigh gamete-mediated and personal environment effects during the transgenerational estimation of risk in fathead minnows. BMC Ecol Evol 2021; 21:187. [PMID: 34635051 PMCID: PMC8507329 DOI: 10.1186/s12862-021-01919-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/24/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Individuals can estimate risk by integrating prenatal with postnatal and personal information, but the relative importance of different information sources during the transgenerational response is unclear. The estimated level of risk can be tested using the cognitive rule of risk allocation, which postulates that under consistent high-risk, antipredator efforts should decrease so that individual metabolic requirements can be satisfied. Here we conduct a comprehensive study on transgenerational risk transmission by testing whether risk allocation occurs across 12 treatments that consist of different maternal, paternal, parental care (including cross-fostering) and offspring risk environment combinations in the fathead minnow Pimephales promelas, a small cyprinid fish with alloparental care. In each risk environment, we manipulated perceived risk by continuously exposing individuals from birth onwards to conspecific alarm cues or a control water treatment. Using 2810 1-month old individuals, we then estimated shoaling behaviour prior to and subsequent to a novel mechanical predator disturbance. RESULTS Overall, shoals estimating risk to be high were denser during the prestimulus period, and, following the risk allocation hypothesis, resumed normal shoaling densities faster following the disturbance. Treatments involving parental care consistently induced densest shoals and greatest levels of risk allocation. Although prenatal risk environments did not relate to paternal care intensity, greater care intensity induced more risk allocation when parents provided care for their own offspring as opposed to those that cross-fostered fry. In the absence of care, parental effects on shoaling density were relatively weak and personal environments modulated risk allocation only when parental risk was low. CONCLUSIONS Our study highlights the high relative importance of parental care as opposed to other information sources, and its function as a mechanism underlying transgenerational risk transmission.
Collapse
Affiliation(s)
- Denis Meuthen
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
- Evolutionary Biology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Maud C O Ferrari
- Department of Veterinary Biomedical Sciences, WCVM, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| |
Collapse
|
6
|
Zhang YT, Chen M, He S, Fang C, Chen M, Li D, Wu D, Chernick M, Hinton DE, Bo J, Xie L, Mu J. Microplastics decrease the toxicity of triphenyl phosphate (TPhP) in the marine medaka (Oryzias melastigma) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143040. [PMID: 33129518 DOI: 10.1016/j.scitotenv.2020.143040] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Plastics have been recognized as a serious threat to the environment. Besides their own toxicity, microplastics can interact with other environmental pollutants, acting as carriers and potentially modulating their toxicity. In this study, the toxicity of polystyrene (PS) microplastic fragments (plain PS; carboxylated PS, PS-COOH and aminated PS, PS-NH2) and triphenyl phosphate (TPhP) (an emerging organophosphate flame retardant) at the environmentally relevant concentrations to the marine medaka (Oryzias melastigma) larvae was investigated. Larvae were exposed to 20 μg/L of microplastic fragments or 20 and 100 μg/L of TPhP or a combination of both for 7 days. The results showed that the three microplastics did not affect the larval locomotor activity. For TPhP, the larval moving duration and distance moved were significantly decreased by the TPhP exposure, with a maximum decrease of 43.5% and 59.4% respectively. Exposure to 100 μg/L TPhP respectively down-regulated the expression levels of sine oculis homeobox homologue 3 (six3) and short wavelength-sensitive type 2 (sws2) by 19.1% and 41.7%, suggesting that TPhP might disturb eye development and photoreception and consequently the low locomotor activity in the larvae. Interestingly, during the binary mixture exposure, the presence of PS, PS-COOH or PS-NH2 reversed the low locomotor activity induced by 100 μg/L TPhP to the normal level. Relative to the larvae from the 100 μg/L TPhP group, the movement duration and distance moved were increased by approximately 60% and 100%, respectively, in the larvae from the TPhP + PS, TPhP + PS-COOH and TPhP + PS-NH2 groups. However, the gene expression profiles were distinct among the fish from the TPhP + PS, TPhP + PS-COOH and TPhP + PS-NH2 groups, implying different mechanisms underlying the reversal of the locomotor activity. The findings in this study challenge the general view that microplastics aggravate the toxicity of the adsorbed pollutants, and help better understand the environmental risk of microplastic pollution.
Collapse
Affiliation(s)
- Yu Ting Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Mengyun Chen
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Shuiqing He
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Mingliang Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong Wu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicant and Toxicology, Collage of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Jingli Mu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Institute of Oceanography, Minjiang University, Fuzhou 350108, China.
| |
Collapse
|
7
|
Atherton JA, McCormick MI. Parents know best: transgenerational predator recognition through parental effects. PeerJ 2020; 8:e9340. [PMID: 32596050 PMCID: PMC7306219 DOI: 10.7717/peerj.9340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/20/2020] [Indexed: 11/30/2022] Open
Abstract
In highly biodiverse systems, such as coral reefs, prey species are faced with predatory threats from numerous species. Recognition of predators can be innate, or learned, and can help increase the chance of survival. Research suggests that parental exposure to increased predatory threats can affect the development, behaviour, and ultimately, success of their offspring. Breeding pairs of damselfish (Acanthochromis polyacanthus) were subjected to one of three olfactory and visual treatments (predator, herbivore, or control), and their developing embryos were subsequently exposed to five different chemosensory cues. Offspring of parents assigned to the predator treatment exhibited a mean increase in heart rate two times greater than that of offspring from parents in herbivore or control treatments. This increased reaction to a parentally known predator odour suggests that predator-treated parents passed down relevant threat information to their offspring, via parental effects. This is the first time transgenerational recognition of a specific predator has been confirmed in any species. This phenomenon could influence predator-induced mortality rates and enable populations to adaptively respond to fluctuations in predator composition and environmental changes.
Collapse
Affiliation(s)
- Jennifer A Atherton
- College of Science & Engineering, James Cook University of North Queensland, Townsville, Queensland, Australia.,ARC Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia
| | - Mark I McCormick
- College of Science & Engineering, James Cook University of North Queensland, Townsville, Queensland, Australia.,ARC Centre of Excellence for Coral Reef Studies, Townsville, Queensland, Australia
| |
Collapse
|
8
|
Robertson DN, Sullivan TJ, Westerman EL. Lack of sibling avoidance during mate selection in the butterfly Bicyclus anynana. Behav Processes 2020; 173:104062. [PMID: 31981681 DOI: 10.1016/j.beproc.2020.104062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Species susceptible to inbreeding depression are hypothesized to combat this problem through a number of different mechanisms, including kin recognition. For species with kin recognition, it is unknown if filial recognition is innate or due to prior juvenile experience with siblings. Here, we first test for the presence of kin recognition, and then test these two hypotheses for the development of filial recognition, in the butterfly Bicyclus anynana, a species that suffers from inbreeding depression when forcibly inbred but recovers within a few generations when allowed to breed freely. We evaluate whether the rapid recovery from inbreeding depression is associated with either innate or learned filial recognition. First, we determined whether females innately prefer unrelated males over sibling males using females reared in isolation and then given a choice between an unrelated and a sibling male. Then, we determined if females raised with siblings learned to detect and avoid mating with siblings as adults when provided a choice between an unrelated male and a sibling male. Finally, we determined if females raised with siblings could learn to detect and avoid mating with familiar siblings when given a choice between familiar and unfamiliar siblings. We found that females mated randomly in all three choice combinations. Observed male behavior also did not influence female mating outcome. Our results suggest that adult females do not innately avoid or learn to avoid siblings during mate selection, and that filial detection may not be as critical to reproductive fitness in B. anynana as previously thought.
Collapse
Affiliation(s)
- Deonna N Robertson
- University of Arkansas, Fayetteville 850 W. Dickson St. Fayetteville 72701 USA
| | - Timothy J Sullivan
- University of Arkansas, Fayetteville 850 W. Dickson St. Fayetteville 72701 USA; Gloucester Marine Genomics Institute, 417 Main Street, Gloucester, MA 01930 USA
| | - Erica L Westerman
- University of Arkansas, Fayetteville 850 W. Dickson St. Fayetteville 72701 USA.
| |
Collapse
|
9
|
Qiang L, Cheng J. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:226-233. [PMID: 30939402 DOI: 10.1016/j.ecoenv.2019.03.088] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/26/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Microplastics have been frequently detected in both marine and freshwater ecosystems. Their impact on aquatic organisms has raised much concern. This study investigated the impact of microplastics on zebrafish embryos and larvae, with a special focus on their swimming competence. The zebrafish embryos were exposed to microplastics starting from 4 h post fertilization. Microplastics first adhered to the embryo chorion, then entered the stomach and intestinal tract of the larvae later. In the free swimming test, exposure to 1000 μg/L (around 1.91 × 107 particles/L) of microplastics led to a significant decrease in both swimming distance and speed of zebrafish larvae under the dark condition by 3.2% and 3.5% respectively. In the alternating light-to-dark photoperiod stimulation assay, exposure to 100 and 1000 μg/L (around 1.91 × 106 and 1.91 × 107 particles/L) of microplastics caused a 4.6% and 2.6% decrease in swimming distance, and reduced the active speed by 4.9% and 2.8%, possibly as a result of inhibited dark avoidance in treated zebrafish larvae. At the molecular level, exposure to microplastics induced upregulated expression of inflammation (il1b) and oxidative stress (cat) related genes. This study demonstrates that exposure to microplastics significantly decreases larvae swimming competence, which may have significant impacts on its population fitness in the aquatic environment and further ecological consequences.
Collapse
Affiliation(s)
- Liyuan Qiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Jinping Cheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; State Key Laboratory of Marine Pollution & Department of Ocean Science, School of Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong.
| |
Collapse
|
10
|
Xia J, Elvidge CK, Cooke SJ. Niche separation, ontogeny, and heterospecific alarm responses in centrarchid sunfish. Behav Ecol 2018. [DOI: 10.1093/beheco/ary061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jigang Xia
- Laboratory of Evolutionary Physiology and Behavior, Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chris K Elvidge
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, Ottawa, ON, Canada
| |
Collapse
|