1
|
Wang YJ, Tüzün N, De Meester L, Feuchtmayr H, Sentis A, Stoks R. Rapid evolution of unimodal but not of linear thermal performance curves in Daphnia magna. Proc Biol Sci 2023; 290:20222289. [PMID: 36629114 PMCID: PMC9832573 DOI: 10.1098/rspb.2022.2289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Species may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea Daphnia magna. The heat-selected Daphnia showed evolutionary shifts of the unimodal TPCs for survival, fecundity at first clutch and intrinsic population growth rate toward higher optimum temperatures, and a less pronounced downward curvature indicating a better ability to keep fitness high across a range of high temperatures. We detected no evolution of the linear TPCs for somatic growth, mass and development rate, and for the traits related to energy gain (ingestion rate) and costs (metabolic rate). As a result, also the relative thermal slope of energy gain versus energy costs did not vary. These results suggest the overall (rather than per capita) top-down impact of D. magna may increase under rapid thermal evolution.
Collapse
Affiliation(s)
- Ying-Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), 12587 Berlin, Germany
| | - Luc De Meester
- Laboratory of Aquatic Ecology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei (IGB), 12587 Berlin, Germany
- Institute of Biology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Heidrun Feuchtmayr
- UK Centre for Ecology and Hydrology, Lancaster Environment Center, Lancaster LA1 4AP, UK
| | - Arnaud Sentis
- INRAE, Aix-Marseille Université, UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Debériotstraat 32, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Pottier P, Burke S, Zhang RY, Noble DWA, Schwanz LE, Drobniak SM, Nakagawa S. Developmental plasticity in thermal tolerance: Ontogenetic variation, persistence, and future directions. Ecol Lett 2022; 25:2245-2268. [PMID: 36006770 DOI: 10.1111/ele.14083] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 01/07/2023]
Abstract
Understanding the factors affecting thermal tolerance is crucial for predicting the impact climate change will have on ectotherms. However, the role developmental plasticity plays in allowing populations to cope with thermal extremes is poorly understood. Here, we meta-analyse how thermal tolerance is initially and persistently impacted by early (embryonic and juvenile) thermal environments by using data from 150 experimental studies on 138 ectothermic species. Thermal tolerance only increased by 0.13°C per 1°C change in developmental temperature and substantial variation in plasticity (~36%) was the result of shared evolutionary history and species ecology. Aquatic ectotherms were more than three times as plastic as terrestrial ectotherms. Notably, embryos expressed weaker but more heterogenous plasticity than older life stages, with numerous responses appearing as non-adaptive. While developmental temperatures did not have persistent effects on thermal tolerance overall, persistent effects were vastly under-studied, and their direction and magnitude varied with ontogeny. Embryonic stages may represent a critical window of vulnerability to changing environments and we urge researchers to consider early life stages when assessing the climate vulnerability of ectotherms. Overall, our synthesis suggests that developmental changes in thermal tolerance rarely reach levels of perfect compensation and may provide limited benefit in changing environments.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha Burke
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Rose Y Zhang
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa E Schwanz
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Atkins RL, Clancy KM, Ellis WT, Osenberg CW. Thermal Traits Vary with Mass and across Populations of the Marsh Periwinkle, Littoraria irrorata. THE BIOLOGICAL BULLETIN 2022; 242:173-196. [PMID: 35767414 DOI: 10.1086/719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractPhysiological processes influence how individuals perform in various environmental contexts. The basis of such processes, metabolism, scales allometrically with body mass and nonlinearly with temperature, as described by a thermal performance curve. Past studies of thermal performance curves tend to focus on effects of temperature on a single body size or population, rather than variation in the thermal performance curve across sizes and populations. Here, we estimate intraspecific variation in parameters of the thermal performance curve in the salt marsh gastropod Littoraria irrorata. First, we quantify the thermal performance curve for respiration rate as a function of both temperature and body size in Littoraria and evaluate whether the thermal parameters and body size scaling are interdependent. Next, we quantify how parameters in the thermal performance curve for feeding rate vary between three Littoraria populations that occur along a latitudinal gradient. Our work suggests that the thermal traits describing Littoraria respiration are dependent on body mass and that both the thermal traits and the mass scaling of feeding vary across sites. We found limited evidence to suggest that mass scaling of Littoraria feeding or respiration rates depends on temperature. Variation in the thermal performance curves interacts with the size structure of the Littoraria population to generate divergent population-level responses to temperature. These results highlight the importance of considering variation in population size structure and physiological allometry when attempting to predict how temperature change will affect physiological responses and consumer-resource interactions.
Collapse
|
4
|
Grainger TN, Levine JM. Rapid evolution of life-history traits in response to warming, predation and competition: A meta-analysis. Ecol Lett 2021; 25:541-554. [PMID: 34850533 DOI: 10.1111/ele.13934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
Although studies quantifying evolutionary change in response to the selective pressures that organisms face in the wild have demonstrated that organisms can evolve rapidly, we lack a systematic assessment of the frequency, magnitude and direction of rapid evolutionary change across taxa. To address this gap, we conducted a meta-analysis of 58 studies that document the effects of warming, predation or competition on the evolution of body size, development rate or fecundity in natural or experimental animal populations. We tested whether there was a consistent effect of any selective agent on any trait, whether the direction of these effects align with theoretical predictions, and whether the three agents select in opposing directions on any trait. Overall, we found weak effects of all three selective agents on trait evolution: none of our nine traits by selective agent combinations had an overall effect that differed from zero, only 31% of studies had a significant within-study effect, and attributes of the included studies generally did not account for between-study variation in results. One notable exception was that predation targeting adults consistently resulted in the evolution of smaller prey body size. We discuss potential causes of these generally weak responses and consider how our results inform the ongoing development of eco-evolutionary research.
Collapse
Affiliation(s)
- Tess Nahanni Grainger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.,Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
5
|
Stuble KL, Des Roches S, Ambrose A, Brown KC, Cooper H, Hilton T, Sinervo B, Fox LR. Regional Networks of Biological Field Stations to Study Climate Change. Bioscience 2021. [DOI: 10.1093/biosci/biab048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Field stations are platforms for documenting patterns and processes in ecosystems and are critical for understanding how anthropogenic climate change reshapes nature. Although networks of field stations have been used to identify patterns at continental to global scales, these broad, sparsely distributed networks miss variation in climate change at local and regional scales. We propose that regional-scale research networks are essential for addressing the myriad of ecological and evolutionary challenges—including management and mitigation options—that cannot be answered by more broadly distributed networks or by individual field sites. We discuss our experiences leveraging natural areas throughout California at the Institute for the Study of Ecological and Evolutionary Climate Impacts. We then explore benefits and challenges of networking research at spatial scales congruent with regional patterns of climate variation and climate change, the challenges of sustained infrastructure and research support, and opportunities for future regional-scale research networks.
Collapse
Affiliation(s)
| | | | - Anthony Ambrose
- Forest ecologist, University of California, Berkeley, Berkeley, California, and serves as executive director of the Marmot Society, in McKinleyville, California, United States
| | - Kevin C Brown
- University of California, Santa Barbara, Santa Barbara, California, United States
| | - Helen Cooper
- Monterey Bay Aquarium, Monterey, California, United States
| | - Timothy Hilton
- University of California, Santa Cruz, Santa Cruz, California, United States
| | - Barry Sinervo
- University of California, Santa Cruz, Santa Cruz, California, United States
| | | |
Collapse
|
6
|
Symons CC, Schulhof MA, Cavalheri HB, Shurin JB. Legacy effects of fish but not elevation influence lake ecosystem response to environmental change. J Anim Ecol 2020; 90:662-672. [PMID: 33251623 DOI: 10.1111/1365-2656.13398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
How communities reorganize during climate change depends on the distribution of diversity within ecosystems and across landscapes. Understanding how environmental and evolutionary history constrain community resilience is critical to predicting shifts in future ecosystem function. The goal of our study was to understand how communities with different histories respond to environmental change with regard to shifts in elevation (temperature, nutrients) and introduced predators. We hypothesized that community responses to the environment would differ in ways consistent with local adaptation and initial trait structure. We transplanted plankton communities from lakes at different elevations with and without fish in the Sierra Nevada Mountains in California to mesocosms at different elevations with and without fish. We examined the relative importance of the historical and experimental environment on functional (size structure, effects on lower trophic levels), community (zooplankton composition, abundance and biomass) and population (individual species abundance and biomass) responses. Communities originating from different elevations produced similar biomass at each elevation despite differences in species composition; that is, the experimental elevation, but not the elevation of origin, had a strong effect on biomass. Conversely, we detected a legacy effect of predators on plankton in the fishless environment. Daphnia pulicaria that historically coexisted with fish reached greater biomass under fishless conditions than those from fishless lakes, resulting in greater zooplankton community biomass and larger average size. Therefore, trait variation among lake populations determined the top-down effects of fish predators. In contrast, phenotypic plasticity and local diversity were sufficient to maintain food web structure in response to changing environmental conditions associated with elevation.
Collapse
Affiliation(s)
- Celia C Symons
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| | - Marika A Schulhof
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| | - Hamanda B Cavalheri
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan B Shurin
- Department of Biological Sciences, Ecology Behavior and Evolution Section, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Sävilammi T, Papakostas S, Leder EH, Vøllestad LA, Debes PV, Primmer CR. Cytosine methylation patterns suggest a role of methylation in plastic and adaptive responses to temperature in European grayling ( Thymallus thymallus) populations. Epigenetics 2020; 16:271-288. [PMID: 32660325 DOI: 10.1080/15592294.2020.1795597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Temperature is a key environmental parameter affecting both the phenotypes and distributions of organisms, particularly ectotherms. Rapid organismal responses to thermal environmental changes have been described for several ectotherms; however, the underlying molecular mechanisms often remain unclear. Here, we studied whole genome cytosine methylation patterns of European grayling (Thymallus thymallus) embryos from five populations with contemporary adaptations of early life history traits at either 'colder' or 'warmer' spawning grounds. We reared fish embryos in a common garden experiment using two temperatures that resembled the 'colder' and 'warmer' conditions of the natal natural environments. Genome-wide methylation patterns were similar in populations originating from colder thermal origin subpopulations, whereas single nucleotide polymorphisms uncovered from the same data identified strong population structure among isolated populations, but limited structure among interconnected populations. This was surprising because the previously studied gene expression response among populations was mostly plastic, and mainly influenced by the developmental temperature. These findings support the hypothesis of the magnified role of epigenetic mechanisms in modulating plasticity. The abundance of consistently changing methylation loci between two warmer-to-colder thermal origin population pairs suggests that local adaptation has shaped the observed methylation patterns. The dynamic nature of the methylomes was further highlighted by genome-wide and site-specific plastic responses. Our findings support both the presence of a plastic response in a subset of CpG loci, and the evolutionary role of methylation divergence between populations adapting to contrasting thermal environments.
Collapse
Affiliation(s)
- Tiina Sävilammi
- Department of Biology, University of Turku , Turku, Finland.,Department of Biological and Environmental Science, University of Jyväskylä , Jyväskylä, Finland
| | | | - Erica H Leder
- Department of Biology, University of Turku , Turku, Finland.,Natural History Museum, University of Oslo , Oslo, Norway
| | - L Asbjørn Vøllestad
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo , Oslo, Norway
| | - Paul V Debes
- Organismal & Evolutionary Biology Research Program, Faculty of Biological & Environmental Sciences, University of Helsinki , Helsinki, Finland.,Institute of Biotechnology, University of Helsinki , Helsinki, Finland.,Department of Aquaculture and Fish Biology, Hólar University College , Sauðárkrókur, Iceland
| | - Craig R Primmer
- Organismal & Evolutionary Biology Research Program, Faculty of Biological & Environmental Sciences, University of Helsinki , Helsinki, Finland.,Institute of Biotechnology, University of Helsinki , Helsinki, Finland
| |
Collapse
|
8
|
Jones NT, Symons CC, Cavalheri H, Pedroza-Ramos A, Shurin JB. Predators drive community reorganization during experimental range shifts. J Anim Ecol 2020; 89:2378-2388. [PMID: 32592594 DOI: 10.1111/1365-2656.13289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 05/23/2020] [Indexed: 11/30/2022]
Abstract
Increased global temperatures caused by climate change are causing species to shift their ranges and colonize new sites, creating novel assemblages that have historically not interacted. Species interactions play a central role in the response of ecosystems to climate change, but the role of trophic interactions in facilitating or preventing range expansions is largely unknown. The goal of our study was to understand how predators influence the ability of range-shifting prey to successfully establish in newly available habitat following climate warming. We hypothesized that fish predation facilitates the establishment of colonizing zooplankton populations, because fish preferentially consume larger species that would otherwise competitively exclude smaller-bodied colonists. We conducted a mesocosm experiment with zooplankton communities and their fish predators from lakes of the Sierra Nevada Mountains in California, USA. We tested the effect of fish predation on the establishment and persistence of a zooplankton community when introduced in the presence of higher- and lower-elevation communities at two experimental temperatures in field mesocosms. We found that predators reduce the abundance of larger-bodied residents from the alpine and facilitate the establishment of new lower-elevation species. In addition, fish predation and warming independently reduced the average body size of zooplankton by up to 30%. This reduction in body size offset the direct effect of warming-induced increases in population growth rates, leading to no net change in zooplankton biomass or trophic cascade strength. We found support for a shift to smaller species with climate change through two mechanisms: (a) the direct effects of warming on developmental rates and (b) size-selective predation that altered the identity of species' that could colonize new higher elevation habitat. Our results suggest that predators can amplify the rate of range shifts by consuming larger-bodied residents and facilitating the establishment of new species. However, the effects of climate warming were dampened by reducing the average body size of community members, leading to no net change in ecosystem function, despite higher growth rates. This work suggests that trophic interactions play a role in the reorganization of regional communities under climate warming.
Collapse
Affiliation(s)
- Natalie T Jones
- Department of Ecology, Behavior and Evolution, The University of California, San Diego, CA, USA
| | - Celia C Symons
- Department of Ecology, Behavior and Evolution, The University of California, San Diego, CA, USA.,Department of Ecology, Behavior and Evolution, The University of California, Irvine, CA, USA
| | - Hamanda Cavalheri
- Department of Ecology, Behavior and Evolution, The University of California, San Diego, CA, USA
| | - Adriana Pedroza-Ramos
- Unidad de Ecología en Sistemas Acuáticos UDESA, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Jonathan B Shurin
- Department of Ecology, Behavior and Evolution, The University of California, San Diego, CA, USA
| |
Collapse
|