1
|
Gangoso L, Santamaría-Cervantes C, Martínez-de la Puente J, Ruiz López MJ, Figuerola J. Does malaria infection increase the risk of predation-related mortality during bird migration? iScience 2024; 27:111358. [PMID: 39640580 PMCID: PMC11617399 DOI: 10.1016/j.isci.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/02/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
The migratory culling hypothesis posits that infected individuals are less likely to survive long-distance migration due to physiological and behavioral effects, but this lacks empirical evidence. Here, we tested this hypothesis by sampling 357 passerines from 11 species during their autumn migration to wintering grounds in two different areas, i) at a stopover in southern Spain, and ii) in the Canary Islands, where they were drifted and preyed upon by Eleonora's falcons while en route to the southern Sahara. Molecular detection of infections by Plasmodium, Haemoproteus, and Leucocytozoon was conducted on bird samples. A higher prevalence of both Plasmodium and Haemoproteus was observed in birds preyed upon by falcons. While a complete understanding of the mechanistic effects of haemosporidian infections on migration performance needs experimental validation, our approach suggests that infection reduces migration success by increasing mortality due to route deviations and/or predation.
Collapse
Affiliation(s)
- Laura Gangoso
- Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain
| | | | - Josué Martínez-de la Puente
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Ciber de Epidemiología y Salud Pública, Madrid, Spain
| | - María José Ruiz López
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Ciber de Epidemiología y Salud Pública, Madrid, Spain
| | - Jordi Figuerola
- Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
- Ciber de Epidemiología y Salud Pública, Madrid, Spain
| |
Collapse
|
2
|
Steele C, Ragonese IG, Majewska AA. Extent and impacts of winter breeding in the North American monarch butterfly. CURRENT OPINION IN INSECT SCIENCE 2023; 59:101077. [PMID: 37336490 DOI: 10.1016/j.cois.2023.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Since the 1960s, scientists have observed the North American monarch butterfly (Danaus plexippus) continuing reproductive activities past the fall migration and into the winter months when the climate is mild. Recent work suggests that small populations of winter breeding monarchs are present in western and southeastern USA, as well as northwestern Mexico, with new winter breeding populations forming in areas where non-native milkweeds are planted. The year-round presence of milkweed plants and temperatures suitable for immature monarch development are vital factors allowing for winter breeding. Non-native milkweeds, in conjunction with novel barriers to migration, are likely contributing to the rise in winter breeding behavior. Warmer climates are already impacting milkweed phenology and range, possibly favoring winter breeding behavior. Similar pressures but different implications are expected for eastern and western winter breeding monarchs given the differences in the migration ecology, milkweed species, and climate changes in the two regions.
Collapse
Affiliation(s)
- Christen Steele
- Department of Ecology and Evolutionary Biology, Tulane University, 1430 Annunciation St, New Orleans, LA 70130, USA
| | - Isabella G Ragonese
- Odum School of Ecology, University of Georgia, 140 E Green Street, Athens, GA 30602, USA
| | - Ania A Majewska
- Department of Physiology and Pharmacology College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA.
| |
Collapse
|
3
|
Shaw AK, Torstenson M, Craft ME, Binning SA. Gaps in modelling animal migration with evolutionary game theory: infection can favour the loss of migration. Philos Trans R Soc Lond B Biol Sci 2023; 378:20210506. [PMID: 36934748 PMCID: PMC10024995 DOI: 10.1098/rstb.2021.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/03/2022] [Indexed: 03/21/2023] Open
Abstract
Ongoing environmental changes alter how natural selection shapes animal migration. Understanding how these changes play out theoretically can be done using evolutionary game theoretic (EGT) approaches, such as looking for evolutionarily stable strategies. Here, we first describe historical patterns of how EGT models have explored different drivers of migration. We find that there are substantial gaps in both the taxa (mammals, amphibians, reptiles, insects) and mechanisms (mutualism, interspecific competition) included in past EGT models of migration. Although enemy interactions, including parasites, are increasingly considered in models of animal migration, they remain the least studied of factors for migration considered to date. Furthermore, few papers look at changes in migration in response to perturbations (e.g. climate change, new species interactions). To address this gap, we present a new EGT model to understand how infection with a novel parasite changes host migration. We find three possible outcomes when migrants encounter novel parasites: maintenance of migration (despite the added infection cost), loss of migration (evolutionary shift to residency) or population collapse, depending on the risk and cost of getting infected, and the cost currency. Our work demonstrates how emerging infection can alter animal behaviour such as migration. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.
Collapse
Affiliation(s)
- Allison K. Shaw
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Martha Torstenson
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Meggan E. Craft
- Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| | - Sandra A. Binning
- Département de sciences biologiques, Université de Montréal, Montréal, Québec, H3C 3J7, Canada
| |
Collapse
|
4
|
Binning SA, Craft ME, Zuk M, Shaw AK. How to study parasites and host migration: a roadmap for empiricists. Biol Rev Camb Philos Soc 2022; 97:1161-1178. [DOI: 10.1111/brv.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra A. Binning
- Département de sciences biologiques Université de Montréal 1375 Ave. Thérèse‐Lavoie‐Roux Montréal QC H2V 0B3 Canada
| | - Meggan E. Craft
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| | - Marlene Zuk
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| | - Allison K. Shaw
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| |
Collapse
|
5
|
Zilio G, Nørgaard LS, Petrucci G, Zeballos N, Gougat-Barbera C, Fronhofer EA, Kaltz O. Parasitism and host dispersal plasticity in an aquatic model system. J Evol Biol 2021; 34:1316-1325. [PMID: 34157176 DOI: 10.1111/jeb.13893] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
Dispersal is a central determinant of spatial dynamics in communities and ecosystems, and various ecological factors can shape the evolution of constitutive and plastic dispersal behaviours. One important driver of dispersal plasticity is the biotic environment. Parasites, for example, influence the internal condition of infected hosts and define external patch quality. Thus, state-dependent dispersal may be determined by infection status and context-dependent dispersal by the abundance of infected hosts in the population. A prerequisite for such dispersal plasticity to evolve is a genetic basis on which natural selection can act. Using interconnected microcosms, we investigated dispersal in experimental populations of the freshwater protist Paramecium caudatum in response to the bacterial parasite Holospora undulata. For a collection of 20 natural host strains, we found substantial variation in constitutive dispersal and to a lesser degree in dispersal plasticity. First, infection tended to increase or decrease dispersal relative to uninfected controls, depending on strain identity, indicative of state-dependent dispersal plasticity. Infection additionally decreased host swimming speed compared to the uninfected counterparts. Second, for certain strains, there was a weak negative association between dispersal and infection prevalence, such that uninfected hosts dispersed less when infection was more frequent in the population, indicating context-dependent dispersal plasticity. Future experiments may test whether the observed differences in dispersal plasticity are sufficiently strong to be picked up by natural selection. The evolution of dispersal plasticity as a strategy to mitigate parasite effects spatially may have important implications for epidemiological dynamics.
Collapse
Affiliation(s)
- Giacomo Zilio
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | - Louise S Nørgaard
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,School of Biological Sciences, Monash University, Melbourne, Vic., Australia
| | - Giovanni Petrucci
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | - Nathalie Zeballos
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France.,CEFE, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| | | | | | - Oliver Kaltz
- ISEM, CNRS, EPHE, IRD, University of Montpellier, Montpellier, France
| |
Collapse
|
6
|
Poulin R, de Angeli Dutra D. Animal migrations and parasitism: reciprocal effects within a unified framework. Biol Rev Camb Philos Soc 2021; 96:1331-1348. [PMID: 33663012 DOI: 10.1111/brv.12704] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022]
Abstract
Migrations, i.e. the recurring, roundtrip movement of animals between distant and distinct habitats, occur among diverse metazoan taxa. Although traditionally linked to avoidance of food shortages, predators or harsh abiotic conditions, there is increasing evidence that parasites may have played a role in the evolution of migration. On the one hand, selective pressures from parasites can favour migratory strategies that allow either avoidance of infections or recovery from them. On the other hand, infected animals incur physiological costs that may limit their migratory abilities, affecting their speed, the timing of their departure or arrival, and/or their condition upon reaching their destination. During migration, reduced immunocompetence as well as exposure to different external conditions and parasite infective stages can influence infection dynamics. Here, we first explore whether parasites represent extra costs for their hosts during migration. We then review how infection dynamics and infection risk are affected by host migration, thereby considering parasites as both causes and consequences of migration. We also evaluate the comparative evidence testing the hypothesis that migratory species harbour a richer parasite fauna than their closest free-living relatives, finding general support for the hypothesis. Then we consider the implications of host migratory behaviour for parasite ecology and evolution, which have received much less attention. Parasites of migratory hosts may achieve much greater spatial dispersal than those of non-migratory hosts, expanding their geographical range, and providing more opportunities for host-switching. Exploiting migratory hosts also exerts pressures on the parasite to adapt its phenology and life-cycle duration, including the timing of major developmental, reproduction and transmission events. Natural selection may even favour parasites that manipulate their host's migratory strategy in ways that can enhance parasite transmission. Finally, we propose a simple integrated framework based on eco-evolutionary feedbacks to consider the reciprocal selection pressures acting on migratory hosts and their parasites. Host migratory strategies and parasite traits evolve in tandem, each acting on the other along two-way causal paths and feedback loops. Their likely adjustments to predicted climate change will be understood best from this coevolutionary perspective.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | | |
Collapse
|