1
|
Cao H, Lin J, Yuan H, Yang Z, Nie M, Pathak JL, Yuan ZG, Yu M. The emerging role of Toxoplasma gondii in periodontal diseases and underlying mechanisms. Front Immunol 2024; 15:1464108. [PMID: 39430742 PMCID: PMC11487530 DOI: 10.3389/fimmu.2024.1464108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024] Open
Abstract
Toxoplasma gondii (T. gondii), an obligate intracellular protozoan parasite, is increasingly recognized for its role in various human diseases, including periodontal diseases. Periodontal diseases comprise a wide range of inflammatory conditions that not only affect the supporting structures of the teeth and oral health but also contribute to systemic diseases. The parasite's ability to modulate the host's immune response and induce chronic inflammation within the periodontium is a key factor in periodontal tissue damage. Through its virulence factors, T. gondii disrupts the balance of inflammatory cytokines, leading to dysregulated immune responses, and exacerbates oxidative stress in periodontal tissues. And T. gondii invasion could affect specific proteins in host cells including HSP70, BAGs, MICs, ROPs, SAGs, and GRAs leading to periodontal tissue damage. The indirect role of the host immune response to T. gondii via natural killer cells, monocytes, macrophages, neutrophils, dendritic cells, T cells, and B cells also contributes to periodontal diseases. Understanding these complex interactions of T. gondii with host cells could unravel disease mechanisms and therapeutic targets for periodontal diseases. This review delves into the pathogenic mechanisms of T. gondii in periodontal diseases, offering a detailed exploration of both direct and indirect pathways of its impact on periodontal health.
Collapse
Affiliation(s)
- Henglong Cao
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jianfeng Lin
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hao Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zipeng Yang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Min Nie
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak L. Pathak
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zi-Guo Yuan
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Miao Yu
- Department of Periodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
- Department of Oral Health Sciences-BIOMAT, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Cerdeira CD, Brigagão MRPL. Targeting Macrophage Polarization in Infectious Diseases: M1/M2 Functional Profiles, Immune Signaling and Microbial Virulence Factors. Immunol Invest 2024; 53:1030-1091. [PMID: 38913937 DOI: 10.1080/08820139.2024.2367682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION An event of increasing interest during host-pathogen interactions is the polarization of patrolling/naive monocytes (MOs) into macrophage subsets (MФs). Therapeutic strategies aimed at modulating this event are under investigation. METHODS This review focuses on the mechanisms of induction/development and profile of MФs polarized toward classically proinflammatory (M1) or alternatively anti-inflammatory (M2) phenotypes in response to bacteria, fungi, parasites, and viruses. RESULTS AND DISCUSSION It highlights nuclear, cytoplasmic, and cell surface receptors (pattern recognition receptors/PPRs), microenvironmental mediators, and immune signaling. MФs polarize into phenotypes: M1 MФs, activated by IFN-γ, pathogen-associated molecular patterns (PAMPs, e.g. lipopolysaccharide) and membrane-bound PPRs ligands (TLRs/CLRs ligands); or M2 MФs, induced by interleukins (ILs-4, -10 and -13), antigen-antibody complexes, and helminth PAMPs. Polarization toward M1 and M2 profiles evolve in a pathogen-specific manner, with or without canonicity, and can vary widely. Ultimately, this can result in varying degrees of host protection or more severe disease outcome. On the one hand, the host is driving effective MФs polarization (M1 or M2); but on the other hand, microorganisms may skew the polarization through virulence factors to increase pathogenicity. Cellular/genomic reprogramming also ensures plasticity of M1/M2 phenotypes. Because modulation of polarization can occur at multiple points, new insights and emerging perspectives may have clinical implications during the inflammation-to-resolution transition; translated into practical applications as for therapeutic/vaccine design target to boost microbicidal response (M1, e.g. triggering oxidative burst) with specifics PAMPs/IFN-γ or promote tissue repair (M2, increasing arginase activity) via immunotherapy.
Collapse
|
3
|
Peng S, Fu H, Li R, Li H, Wang S, Li B, Sun J. A new direction in periodontitis treatment: biomaterial-mediated macrophage immunotherapy. J Nanobiotechnology 2024; 22:359. [PMID: 38907216 PMCID: PMC11193307 DOI: 10.1186/s12951-024-02592-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/28/2024] [Indexed: 06/23/2024] Open
Abstract
Periodontitis is a chronic inflammation caused by a bacterial infection and is intimately associated with an overactive immune response. Biomaterials are being utilized more frequently in periodontal therapy due to their designability and unique drug delivery system. However, local and systemic immune response reactions driven by the implantation of biomaterials could result in inflammation, tissue damage, and fibrosis, which could end up with the failure of the implantation. Therefore, immunological adjustment of biomaterials through precise design can reduce the host reaction while eliminating the periodontal tissue's long-term chronic inflammation response. It is important to note that macrophages are an active immune system component that can participate in the progression of periodontal disease through intricate polarization mechanisms. And modulating macrophage polarization by designing biomaterials has emerged as a new periodontal therapy technique. In this review, we discuss the role of macrophages in periodontitis and typical strategies for polarizing macrophages with biomaterials. Subsequently, we discuss the challenges and potential opportunities of using biomaterials to manipulate periodontal macrophages to facilitate periodontal regeneration.
Collapse
Affiliation(s)
- Shumin Peng
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Haojie Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Rui Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
| | - Hui Li
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100069, China
| | - Shuyuan Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Bingyan Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China
- Academy of Medical Sciences at Zhengzhou University, Zhengzhou, 45000, China
| | - Jingjing Sun
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 45000, China.
| |
Collapse
|
4
|
Blancas-Luciano BE, Becker-Fauser I, Zamora-Chimal J, Jiménez-García L, Lara-Martínez R, Pérez-Torres A, González del Pliego M, Aguirre-Benítez EL, Fernández-Presas AM. Cystatin C: immunoregulation role in macrophages infected with Porphyromonas gingivalis. PeerJ 2024; 12:e17252. [PMID: 38708345 PMCID: PMC11067906 DOI: 10.7717/peerj.17252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Background Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1β) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingeborg Becker-Fauser
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Hospital General de México, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Jiménez-García
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Reyna Lara-Martínez
- Departamento de Biología Celular. Facultad de Ciencias, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Margarita González del Pliego
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elsa Liliana Aguirre-Benítez
- Departamento de Embriología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitologia, Facultad de Medicina, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Investigación en Ciencias de la Salud, Huixquilucan, Universidad Anáhuac, Estado de México, México
| |
Collapse
|
5
|
Ferrà-Cañellas MDM, Garcia-Sureda L. Exploring the Potential of Micro-Immunotherapy in the Treatment of Periodontitis. Life (Basel) 2024; 14:552. [PMID: 38792574 PMCID: PMC11122531 DOI: 10.3390/life14050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis, characterized by the progressive destruction of dental support tissues due to altered immune responses, poses a significant concern for public health. This condition involves intricate interactions between the immune response and oral microbiome, where innate and adaptive immune responses, with their diverse cell populations and inflammatory mediators, play crucial roles in this immunopathology. Indeed, cytokines, chemokines, growth factors, and immune cells perform key functions in tissue remodeling. Focusing on periodontal therapies, our attention turns to micro-immunotherapy (MI), employing low doses (LDs) and ultra-low doses (ULDs) of immunological signaling molecules like cytokines, growth factors, and hormones. Existing studies across various fields lay the groundwork for the application of MI in periodontitis, highlighting its anti-inflammatory and regenerative potential in soft tissue models based on in vitro research. In summary, this review underscores the versatility and potential of MI in managing periodontal health, urging further investigations to solidify its clinical integration. MI supports an innovative approach by modulating immune responses at low doses to address periodontitis.
Collapse
Affiliation(s)
- Maria del Mar Ferrà-Cañellas
- Preclinical Research Department, Labo’Life España, 07330 Consell, Spain
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
6
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
7
|
Kinskey JC, Huda TI, Gozlan EC, Quach JU, Arturo JF, Chobrutskiy A, Chobrutskiy BI, Blanck G. The presence of intratumoral Porphyromonas gingivalis correlates with a previously defined pancreatic adenocarcinoma, immune cell expression phenotype and with tumor resident, adaptive immune receptor features. Carcinogenesis 2023; 44:411-417. [PMID: 37195907 DOI: 10.1093/carcin/bgad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 05/19/2023] Open
Abstract
The association between pancreatic adenocarcinoma (PAAD) and the pancreatic microbiome is not fully understood, although bacteria may decrease the effectiveness of chemotherapy and lead to anti-apoptotic, pro-inflammatory microenvironments. To better understand the relationship between the PAAD microbiome and the microenvironment, we identified Porphyromonas gingivalis-positive PAAD samples and found a strong association between intratumoral P. gingivalis and: (i) an immune cell gene expression phenotype previously defined by others as gene program 7; and (ii) recovery of immunoglobulin recombination, sequencing reads. We applied a novel chemical complementarity scoring algorithm, suitable for a big data setting, and determined that the previously established P. gingivalis antigen, rpgB had a reduced chemical complementarity with T-cell receptor (TCR) complementarity-determining region-3 amino acid sequences recovered from PAAD samples with P. gingivalis in comparison to TCR-rpgB chemical complementarity represented by the PAAD samples that lacked P. gingivalis. This finding strengthens the existing body of evidence correlating P. gingivalis with PAAD, which may have implications for the treatment and prognosis of patients. Furthermore, demonstrating the correlation of P. gingivalis and gene program 7 raises the question of whether P. gingivalis infection is responsible for the gene program 7 subdivision of PAAD?
Collapse
Affiliation(s)
- Jacob C Kinskey
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Taha I Huda
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Etienne C Gozlan
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jessica U Quach
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Juan F Arturo
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrea Chobrutskiy
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Boris I Chobrutskiy
- Department of Internal Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Zou Z, Fang J, Ma W, Guo J, Shan Z, Ma D, Hu Q, Wen L, Wang Z. Porphyromonas gingivalis Gingipains Destroy the Vascular Barrier and Reduce CD99 and CD99L2 Expression To Regulate Transendothelial Migration. Microbiol Spectr 2023; 11:e0476922. [PMID: 37199607 PMCID: PMC10269447 DOI: 10.1128/spectrum.04769-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
Porphyromonas gingivalis is an important periodontal pathogen that can cause vascular injury and invade local tissues through the blood circulation, and its ability to evade leukocyte killing is critical to its distal colonization and survival. Transendothelial migration (TEM) is a series of that enable leukocytes to squeeze through endothelial barriers and migrate into local tissues to perform immune functions. Several studies have shown that P. gingivalis-mediated endothelial damage initiates a series of proinflammatory signals that promote leukocyte adhesion. However, whether P. gingivalis is involved in TEM and thus influences immune cell recruitment remains unknown. In our study, we found that P. gingivalis gingipains could increase vascular permeability and promote Escherichia coli penetration by downregulating platelet/endothelial cell adhesion molecule 1 (PECAM-1) expression in vitro. Furthermore, we demonstrated that although P. gingivalis infection promoted monocyte adhesion, the TEM capacity of monocytes was substantially impaired, which might be due to the reduced CD99 and CD99L2 expression on gingipain-stimulated endothelial cells and leukocytes. Mechanistically, gingipains mediate CD99 and CD99L2 downregulation, possibly through the inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In addition, our in vivo model confirmed the role of P. gingivalis in promoting vascular permeability and bacterial colonization in the liver, kidney, spleen, and lung and in downregulating PECAM-1, CD99, and CD99L2 expression in endothelial cells and leukocytes. IMPORTANCE P. gingivalis is associated with a variety of systemic diseases and colonizes in distal locations in the body. Here, we found that P. gingivalis gingipains degrade PECAM-1 to promote bacterial penetration while simultaneously reducing leukocyte TEM capacity. A similar phenomenon was also observed in a mouse model. These findings established P. gingivalis gingipains as the key virulence factor in modulating the permeability of the vascular barrier and TEM processes, which may provide a new rationale for the distal colonization of P. gingivalis and its associated systemic diseases.
Collapse
Affiliation(s)
- Zhaolei Zou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Wanting Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Junyi Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhongyan Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Da Ma
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Qiannan Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Fan X, Zheng S, Chen C, Lin L, Wang H, Shen Y, Pan Y, Li C. Sialidase facilitates Porphyromonas gingivalis immune evasion by reducing M1 polarization, antigen presentation, and phagocytosis of infected macrophages. Front Cell Infect Microbiol 2023; 13:1173899. [PMID: 37325520 PMCID: PMC10266273 DOI: 10.3389/fcimb.2023.1173899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Background Porphyromonas gingivalis (P. gingivalis), a major pathogen of periodontitis, can evade host immune defenses. Previously, we found that P. gingivalis W83 sialidase gene mutant strain (ΔPG0352) was more easily cleared by macrophages. The aims of this study were to investigate the effects of sialidase in P. gingivalis on the polarization, antigen presentation, and phagocytosis of infected macrophages and to clarify the mechanism of P. gingivalis immune evasion. Methods Human monocytes U937 were differentiated to macrophages and infected with P. gingivalis W83, ΔPG0352, comΔPG0352, and Escherichia coli (E. coli). The phagocytosis of macrophages was observed by transmission electron microscopy and flow cytometry. ELISA or Griess reaction were used to examine the levels of interleukin-12 (IL-12), inducible nitric oxide synthase (iNOS) and interleukin-10 (IL-10), and the expressions of CD68, CD80 and CD206 were determined by flow cytometry. The expression of major histocompatibility complex-II (MHC-II) was detected by immunofluorescence. A rat periodontitis model was established to determine the M1 and M2 polarization of macrophages. Results Compare with P. gingivalis W83, ΔPG0352 increased the levels of IL-12, iNOS, CD80, and MHC-II and inhibited the levels of IL-10 and CD206. Macrophages phagocytosed 75.4% of ΔPG0352 and 59.5% of P. gingivalis W83. In the rat periodontitis model, the levels of M1 and M2 macrophages in P. gingivalis W83 group were both higher than those in ΔPG0352 group, while the ratio of M1/M2 was higher in the ΔPG0352 group. Alveolar bone absorption was lower in ΔPG0352 group. Conclusion Sialidase facilitates P. gingivalis immune evasion by reducing M1 polarization, antigen presentation, and phagocytosis of infected macrophages.
Collapse
Affiliation(s)
- Xiaomiao Fan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Shaowen Zheng
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Chen Chen
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Li Lin
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Hongyan Wang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong, China
| | - Yaping Pan
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| | - Chen Li
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang, Liaoning, China
| |
Collapse
|
10
|
Ruan Q, Guan P, Qi W, Li J, Xi M, Xiao L, Zhong S, Ma D, Ni J. Porphyromonas gingivalis regulates atherosclerosis through an immune pathway. Front Immunol 2023; 14:1103592. [PMID: 36999040 PMCID: PMC10043234 DOI: 10.3389/fimmu.2023.1103592] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/01/2023] [Indexed: 03/15/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease, involving a pathological process of endothelial dysfunction, lipid deposition, plaque rupture, and arterial occlusion, and is one of the leading causes of death in the world population. The progression of AS is closely associated with several inflammatory diseases, among which periodontitis has been shown to increase the risk of AS. Porphyromonas gingivalis (P. gingivalis), presenting in large numbers in subgingival plaque biofilms, is the “dominant flora” in periodontitis, and its multiple virulence factors are important in stimulating host immunity. Therefore, it is significant to elucidate the potential mechanism and association between P. gingivalis and AS to prevent and treat AS. By summarizing the existing studies, we found that P. gingivalis promotes the progression of AS through multiple immune pathways. P. gingivalis can escape host immune clearance and, in various forms, circulate with blood and lymph and colonize arterial vessel walls, directly inducing local inflammation in blood vessels. It also induces the production of systemic inflammatory mediators and autoimmune antibodies, disrupts the serum lipid profile, and thus promotes the progression of AS. In this paper, we summarize the recent evidence (including clinical studies and animal studies) on the correlation between P. gingivalis and AS, and describe the specific immune mechanisms by which P. gingivalis promotes AS progression from three aspects (immune escape, blood circulation, and lymphatic circulation), providing new insights into the prevention and treatment of AS by suppressing periodontal pathogenic bacteria.
Collapse
Affiliation(s)
- Qijun Ruan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Peng Guan
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weijuan Qi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Jiatong Li
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Mengying Xi
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Limin Xiao
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Sulan Zhong
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
- *Correspondence: Dandan Ma, ; Jia Ni,
| |
Collapse
|
11
|
Tsarev VN, Nikolaeva EN, Ippolitov EV, Tsareva TV, Podporin MS, Balmasova IP. Diagnostic significance of TLR2 and TLR4 receptors on lymphoid cells as a marker of the progression of periodontal inflammation associated with key periodontal pathogenic species <i>F. alocis</i> and <i>P. gingivalis</i>. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2022. [DOI: 10.36233/0372-9311-336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of the work was to evaluate the diagnostic value of TLR2 and TLR4 expression on periodontal and peripheral blood lymphoid cells by immunofluorescence microscopy in patients with chronic periodontitis associated with key periodontal pathogenic species Filifactor alocis, Porphyromonas gingivalis.
Materials and methods. The study included 150 patients 88 (59%) women and 62 (41%) men aged 18 to 73 years with chronic periodontitis in the acute phase (CP) and 32 people without signs of chronic periodontal inflammation. To confirm the diagnosis of periodontitis, the Multident-5 PCR kit was used (detection of P. gingivalis, Prevotella intermedia, Tannerella forsythia, Treponema denticola, Aggregatibacter actinomycetemcomitans), as well as rt-PCR for F. alocis and P. gingivalis in the contents of the periodontal pocket (NPF GenLab, Russia). To evaluate cells carrying CD282 and CD284 markers, gingival fluid flushes from the periodontal pocket with Hanks' solution were used. The isolated cells were stained with antibodies to CD282 markers (corresponding to TLR2 receptor) or CD284 (corresponding to TLR4 receptor) labeled with FITC, and fixed with paraformaldehyde for subsequent immunofluorescence microscopy.
Results. The expression of TLR2 and TLR4 on peripheral blood and gingival fluid leukocytes was studied in individuals with healthy periodontitis and patients with chronic periodontitis associated with F. alocis, P. gingivalis. According to the results of PCR, the detection rate of F. alocis and P. gingivalis was 64 and 62.7%, respectively, which confirmed their dominance in the microbial association. It was found that the expression of TLR2 and TLR4 on peripheral blood lymphoid cells varied in humans. The possible diagnostic significance of this phenomenon in assessing the progression of chronic periodontitis is discussed.
Conclusion. In patients with chronic periodontitis associated with the dominance of periodontopathogenic species F. alocis, P. gingivalis, the multidirectional expression of TLR2 and TLR4 on peripheral blood cells was observed, which may have diagnostic significance in assessing the progression of periodontal diseases.
Collapse
|
12
|
Tissue Levels of CD80, CD163 and CD206 and Their Ratios in Periodontal and Peri-Implant Health and Disease. Curr Issues Mol Biol 2022; 44:4704-4713. [PMID: 36286036 PMCID: PMC9600944 DOI: 10.3390/cimb44100321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to compare tissue levels of CD80 (pro-inflammatory macrophage-related surface marker), CD163, and CD206 (anti-inflammatory macrophage-related surface markers), and their ratios in periodontal and peri-implant health and disease. Altogether, 36 tissue samples were obtained from 36 participants with clinically healthy gingiva (n = 10), healthy peri-implant mucosa (n = 8), periodontitis lesions (n = 9), and peri-implantitis lesions (n = 9). CD80, CD163, and CD206 levels were assessed with immunoblotting. CD163 levels were found to be decreased (p = 0.004), and the CD80/CD163 ratio was found to be elevated (p = 0.002) in periodontitis lesions compared to healthy gingiva. Peri-implantitis lesions showed a tendency towards a higher CD80/CD163 ratio than in healthy peri-implant mucosa with a borderline difference (p = 0.054). No statistically significant difference was detected in CD80, CD163, and CD206 levels of periodontitis lesions when compared to peri-implantitis, and in healthy gingiva when compared to healthy peri-implant mucosa. A disruption in CD80/CD163 balance seems to be related to the pathogenesis of periodontitis and peri-implantitis, being less prominent in the latter. The reason behind this phenomenon may be either suppressed CD163 expression or reduced CD163+ anti-inflammatory macrophage abundance.
Collapse
|
13
|
Sao P, Chand Y, Al-Keridis LA, Saeed M, Alshammari N, Singh S. Classifying Integrated Signature Molecules in Macrophages of Rheumatoid Arthritis, Osteoarthritis, and Periodontal Disease: An Omics-Based Study. Curr Issues Mol Biol 2022; 44:3496-3517. [PMID: 36005137 PMCID: PMC9406916 DOI: 10.3390/cimb44080241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA), osteoarthritis (OA), and periodontal disease (PD) are chronic inflammatory diseases that are globally prevalent, and pose a public health concern. The search for a potential mechanism linking PD to RA and OA continues, as it could play a significant role in disease prevention and treatment. Recent studies have linked RA, OA, and PD to Porphyromonas gingivalis (PG), a periodontal bacterium, through a similar dysregulation in an inflammatory mechanism. This study aimed to identify potential gene signatures that could assist in early diagnosis as well as gain insight into the molecular mechanisms of these diseases. The expression data sets with the series IDs GSE97779, GSE123492, and GSE24897 for macrophages of RA, OA synovium, and PG stimulated macrophages (PG-SM), respectively, were retrieved and screened for differentially expressed genes (DEGs). The 72 common DEGs among RA, OA, and PG-SM were further subjected to gene–gene correlation analysis. A GeneMANIA interaction network of the 47 highly correlated DEGs comprises 53 nodes and 271 edges. Network centrality analysis identified 15 hub genes, 6 of which are DEGs (API5, ATE1, CCNG1, EHD1, RIN2, and STK39). Additionally, two significantly up-regulated non-hub genes (IER3 and RGS16) showed interactions with hub genes. Functional enrichment analysis of the genes showed that “apoptotic regulation” and “inflammasomes” were among the major pathways. These eight genes can serve as important signatures/targets, and provide new insights into the molecular mechanism of PG-induced RA, OA, and PD.
Collapse
Affiliation(s)
- Prachi Sao
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Yamini Chand
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Correspondence: (L.A.A.-K.); (S.S.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Sachidanand Singh
- Faculty of Biotechnology, Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki 225003, Uttar Pradesh, India
- Department of Biotechnology, Vignan’s Foundation for Science, Technology, and Research (Deemed to be University), Vadlamudi, Guntur 522213, Andhra Pradesh, India
- Department of Biotechnology, Smt. S. S. Patel Nootan Science & Commerce College, Sankalchand Patel University, Visnagar 384315, Gujarat, India
- Correspondence: (L.A.A.-K.); (S.S.)
| |
Collapse
|
14
|
Polarization Profiles of T Lymphocytes and Macrophages Responses in Periodontitis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:195-208. [PMID: 35612799 DOI: 10.1007/978-3-030-96881-6_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Periodontitis is a multifactorial, chronic inflammatory disease affecting the supporting structures of teeth triggered by the complex interactions between a dysbiotic bacterial biofilm and the host's immune response that results in the characteristic loss of periodontal attachment and alveolar bone. The differential phenotypic presentations of periodontitis emerge from inter-individual differences in immune response regulatory mechanisms. The monocyte-macrophage system has a crucial role in innate immunity and the initiation of the T and B lymphocyte adaptive immune responses. Macrophages involve a heterogeneous cell population that shows wide plasticity and differentiation dynamics. In response to the inflammatory milieu, they can skew at the time of TLR ligation to predominant M1 -pro-inflammatory- or M2 -anti-inflammatory/healing- functional phenotypes. The perpetuation of inflammation by M1 macrophages leads to the recruitment of the adaptive immune response, promoting Th1, Th17, and Th22 differentiation, which are directly associated with periodontal breakdown. In contrast, M2 macrophages induce Th2 and Treg responses which are associated with periodontal homeostasis. In this article, we review the recent advances comprising the role of macrophages and lymphocyte polarization profiles and their reprogramming as potential therapeutic strategies. For this purpose, we reviewed the available literature targeting periodontitis, macrophage, and lymphocyte subpopulations with an emphasis in the later 5 years. The active reprogramming of macrophages and lymphocytes polarization crosstalk opens a promising area for therapeutic development.
Collapse
|
15
|
Sun X, Gao J, Meng X, Lu X, Zhang L, Chen R. Polarized Macrophages in Periodontitis: Characteristics, Function, and Molecular Signaling. Front Immunol 2021; 12:763334. [PMID: 34950140 PMCID: PMC8688840 DOI: 10.3389/fimmu.2021.763334] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/04/2021] [Indexed: 12/23/2022] Open
Abstract
Periodontitis (PD) is a common chronic infectious disease. The local inflammatory response in the host may cause the destruction of supporting periodontal tissue. Macrophages play a variety of roles in PD, including regulatory and phagocytosis. Moreover, under the induction of different factors, macrophages polarize and form different functional phenotypes. Among them, M1-type macrophages with proinflammatory functions and M2-type macrophages with anti-inflammatory functions are the most representative, and both of them can regulate the tendency of the immune system to exert proinflammatory or anti-inflammatory functions. M1 and M2 macrophages are involved in the destructive and reparative stages of PD. Due to the complex microenvironment of PD, the dynamic development of PD, and various local mediators, increasing attention has been given to the study of macrophage polarization in PD. This review summarizes the role of macrophage polarization in the development of PD and its research progress.
Collapse
Affiliation(s)
- Xiaoyu Sun
- *Correspondence: Lei Zhang, ; Xiaoyu Sun,
| | | | | | | | - Lei Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, Department of Periodontology, Stomatologic Hospital & College, Anhui Medical University, Hefei, China
| | | |
Collapse
|
16
|
Wang X, Jia Y, Wen L, Mu W, Wu X, Liu T, Liu X, Fang J, Luan Y, Chen P, Gao J, Nguyen KA, Cui J, Zeng G, Lan P, Chen Q, Cheng B, Wang Z. Porphyromonas gingivalis Promotes Colorectal Carcinoma by Activating the Hematopoietic NLRP3 Inflammasome. Cancer Res 2021; 81:2745-2759. [PMID: 34003774 DOI: 10.1158/0008-5472.can-20-3827] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
Porphyromonas gingivalis (P. gingivalis) is a keystone periodontal pathogen associated with various digestive cancers. However, whether P. gingivalis can promote colorectal cancer and the underlying mechanism associated with such promotion remains unclear. In this study, we found that P. gingivalis was enriched in human feces and tissue samples from patients with colorectal cancer compared with those from patients with colorectal adenoma or healthy subjects. Cohort studies demonstrated that P. gingivalis infection was associated with poor prognosis in colorectal cancer. P. gingivalis increased tumor counts and tumor volume in the ApcMin/+ mouse model and increased tumor growth in orthotopic rectal and subcutaneous carcinoma models. Furthermore, orthotopic tumors from mice exposed to P. gingivalis exhibited tumor-infiltrating myeloid cell recruitment and a proinflammatory signature. P. gingivalis promoted colorectal cancer via NLRP3 inflammasome activation in vitro and in vivo. NLRP3 chimeric mice harboring orthotopic tumors showed that the effect of NLRP3 on P. gingivalis pathogenesis was mediated by hematopoietic sources. Collectively, these data suggest that P. gingivalis contributes to colorectal cancer neoplasia progression by activating the hematopoietic NLRP3 inflammasome. SIGNIFICANCE: This study demonstrates that the periodontal pathogen P. gingivalis can promote colorectal tumorigenesis by recruiting myeloid cells and creating a proinflammatory tumor microenvironment. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/10/2745/F1.large.jpg.
Collapse
Affiliation(s)
- Xi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiqun Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.,Stomatology Center, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Liling Wen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenxin Mu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianrui Wu
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Liu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiangqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Fang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yizhao Luan
- State Key Laboratory of Ophthalmology, Guangdong Provincial Key Lab of Ophthalmology and Visual Science, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ping Chen
- Department of Gastroenterology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jinlong Gao
- Institute of Dental Research, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ky-Anh Nguyen
- Institute of Dental Research, Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Gucheng Zeng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Lan
- Department of Colorectal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianming Chen
- The Affiliated Hospital of Stomatology, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Zhi Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
17
|
Microbial Lipid A Remodeling Controls Cross-Presentation Efficiency and CD8 T Cell Priming by Modulating Dendritic Cell Function. Infect Immun 2021; 89:IAI.00335-20. [PMID: 33257533 DOI: 10.1128/iai.00335-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022] Open
Abstract
The majority of Gram-negative bacteria elicit a potent immune response via recognition of lipid A expressed on the outer bacterial membrane by the host immune receptor Toll-like receptor 4 (TLR4). However, some Gram-negative bacteria evade detection by TLR4 or alter the outcome of TLR4 signaling by modification of lipid A species. Although the role of lipid A modifications on host innate immunity has been examined in some detail, it is currently unclear how lipid A remodeling influences host adaptive immunity. One prototypic Gram-negative bacterium that modifies its lipid A structure is Porphyromonas gingivalis, an anaerobic pathobiont that colonizes the human periodontium and induces chronic low-grade inflammation that is associated with periodontal disease as well as a number of systemic inflammatory disorders. P. gingivalis produces dephosphorylated and deacylated lipid A structures displaying altered activities at TLR4. Here, we explored the functional role of P. gingivalis lipid A modifications on TLR4-dependent innate and adaptive immune responses in mouse bone marrow-derived dendritic cells (BMDCs). We discovered that lipid A 4'-phosphate removal is required for P. gingivalis to evade BMDC-dependent proinflammatory cytokine responses and markedly limits the bacterium's capacity to induce beta interferon (IFN-β) production. In addition, lipid A 4'-phosphatase activity prevents canonical bacterium-induced delay in antigen degradation, which leads to inefficient antigen cross-presentation and a failure to cross-prime CD8 T cells specific for a P. gingivalis-associated antigen. We propose that lipid A modifications produced by this bacterium alter host TLR4-dependent adaptive immunity to establish chronic infections associated with a number of systemic inflammatory disorders.
Collapse
|
18
|
Zeng F, Liu Y, Huang W, Qing H, Kadowaki T, Kashiwazaki H, Ni J, Wu Z. Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid β accumulation after Porphyromonas gingivalis infection. J Neurochem 2020; 158:724-736. [PMID: 32441775 PMCID: PMC8451939 DOI: 10.1111/jnc.15096] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/16/2022]
Abstract
Cerebrovascular‐related amyloidogenesis is found in over 80% of Alzheimer's disease (AD) cases, and amyloid β (Aβ) generation is increased in the peripheral macrophages during infection of Porphyromonas gingivalis (P. gingivalis), a causal bacterium for periodontitis. In this study, we focused on receptor for advanced glycation end products (RAGE), the key molecule involves in Aβ influx after P. gingivalis infection to test our hypothesis that Aβ transportation from periphery into the brain, known as “Aβ influx,” is enhanced by P. gingivalis infection. Using cultured hCMEC/D3 cell line, in comparison to uninfected cells, directly infection with P. gingivalis (multiplicity of infection, MOI = 5) significantly increased a time‐dependent RAGE expression resulting in a dramatic increase in Aβ influx in the hCMEC/D3 cells; the P. gingivalis‐up‐regulated RAGE expression was significantly decreased by NF‐κB and Cathepsin B (CatB)‐specific inhibitors, and the P.gingivalis‐increased IκBα degradation was significantly decreased by CatB‐specific inhibitor. Furthermore, the P. gingivalis‐increased Aβ influx was significantly reduced by RAGE‐specific inhibitor. Using 15‐month‐old mice (C57BL/6JJmsSlc, female), in comparison to non‐infection mice, systemic P. gingivalis infection for three consecutive weeks (1 × 108 CFU/mouse, every 3 days, intraperitoneally) significantly increased the RAGE expression in the CD31‐positive endothelial cells and the Aβ loads around the CD31‐positive cells in the mice's brains. The RAGE expression in the CD31‐positive cells was positively correlated with the Aβ loads. These observations demonstrate that the up‐regulated RAGE expression in cerebral endothelial cells mediates the Aβ influx after P. gingivalis infection, and CatB plays a critical role in regulating the NF‐κB/RAGE expression.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Yicong Liu
- The Affiliated Stomatology Hospital, School of Medical, Zhejiang University, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Zhejiang, China
| | - Wanyi Huang
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Faculty of Dental Science, OBT Research Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Zeng F, Liu Y, Huang W, Qing H, Kadowaki T, Kashiwazaki H, Ni J, Wu Z. Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid β accumulation after Porphyromonas gingivalis infection. J Neurochem 2020. [PMID: 32441775 DOI: 10.1111/jnc.15073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebrovascular-related amyloidogenesis is found in over 80% of Alzheimer's disease (AD) cases, and amyloid β (Aβ) generation is increased in the peripheral macrophages during infection of Porphyromonas gingivalis (P. gingivalis), a causal bacterium for periodontitis. In this study, we focused on receptor for advanced glycation end products (RAGE), the key molecule involves in Aβ influx after P. gingivalis infection to test our hypothesis that Aβ transportation from periphery into the brain, known as "Aβ influx," is enhanced by P. gingivalis infection. Using cultured hCMEC/D3 cell line, in comparison to uninfected cells, directly infection with P. gingivalis (multiplicity of infection, MOI = 5) significantly increased a time-dependent RAGE expression resulting in a dramatic increase in Aβ influx in the hCMEC/D3 cells; the P. gingivalis-up-regulated RAGE expression was significantly decreased by NF-κB and Cathepsin B (CatB)-specific inhibitors, and the P.gingivalis-increased IκBα degradation was significantly decreased by CatB-specific inhibitor. Furthermore, the P. gingivalis-increased Aβ influx was significantly reduced by RAGE-specific inhibitor. Using 15-month-old mice (C57BL/6JJmsSlc, female), in comparison to non-infection mice, systemic P. gingivalis infection for three consecutive weeks (1 × 108 CFU/mouse, every 3 days, intraperitoneally) significantly increased the RAGE expression in the CD31-positive endothelial cells and the Aβ loads around the CD31-positive cells in the mice's brains. The RAGE expression in the CD31-positive cells was positively correlated with the Aβ loads. These observations demonstrate that the up-regulated RAGE expression in cerebral endothelial cells mediates the Aβ influx after P. gingivalis infection, and CatB plays a critical role in regulating the NF-κB/RAGE expression. Cover Image for this issue: https://doi.org/10.1111/jnc.15073.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Yicong Liu
- The Affiliated Stomatology Hospital, School of Medical, Zhejiang University, Zhejiang, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University, Zhejiang, China
| | - Wanyi Huang
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Tomoko Kadowaki
- Division of Frontier Life Science, Department of Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Junjun Ni
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Kyushu University, Fukuoka, Japan.,Faculty of Dental Science, OBT Research Center, Kyushu University, Fukuoka, Japan
| |
Collapse
|
20
|
Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J Clin Med 2019; 8:jcm8081135. [PMID: 31370168 PMCID: PMC6723779 DOI: 10.3390/jcm8081135] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/27/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is an infection-driven inflammatory disease in which the composition of biofilms plays a significant role. Dental plaque accumulation at the gingival margin initiates an inflammatory response that, in turn, causes microbial alterations and may lead to drastic consequences in the periodontium of susceptible individuals. Chronic inflammation affects the gingiva and can proceed to periodontitis, which characteristically results in irreversible loss of attachment and alveolar bone. Periodontitis appears typically in adult-aged populations, but young individuals can also experience it and its harmful outcome. Advanced disease is the major cause of tooth loss in adults. In addition, periodontitis is associated with many chronic diseases and conditions affecting general health.
Collapse
|
21
|
Sima C, Viniegra A, Glogauer M. Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis. J Leukoc Biol 2019; 105:473-487. [PMID: 30452781 PMCID: PMC6386606 DOI: 10.1002/jlb.1ru0818-310r] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis (PD) is a chronic osteolytic disease that shares pathogenic inflammatory features with other conditions associated with nonresolving inflammation. A hallmark of PD is inflammation-mediated alveolar bone loss. Myeloid cells, in particular polymorphonuclear neutrophils (PMN) and macrophages (Mac), are essential players in PD by control of gingival biofilm pathogenicity, activation of adaptive immunity, as well as nonresolving inflammation and collateral tissue damage. Despite mounting evidence of significant innate immune implications to PD progression and healing after therapy, myeloid cell markers and targets for immune modulation have not been validated for clinical use. The remarkable plasticity of monocytes/Mac in response to local activation factors enables these cells to play central roles in inflammation and restoration of tissue homeostasis and provides opportunities for biomarker and therapeutic target discovery for management of chronic inflammatory conditions, including osteolytic diseases such as PD and arthritis. Along a wide spectrum of activation states ranging from proinflammatory to pro-resolving, Macs respond to environmental changes in a site-specific manner in virtually all tissues. This review summarizes the existing evidence on Mac immunomodulation therapies for osteolytic diseases in the broader context of conditions associated with nonresolving inflammation, and discusses osteoimmune implications of Macs in PD.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Viniegra
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Hajishengallis G, Lamont RJ. Metabolic nuclear receptors in periodontal host-microbe interactions and inflammation. Mol Oral Microbiol 2017; 32:443-445. [PMID: 28984043 DOI: 10.1111/omi.12198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- G Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R J Lamont
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| |
Collapse
|
23
|
Van Dyke TE. Pro-resolving mediators in the regulation of periodontal disease. Mol Aspects Med 2017; 58:21-36. [PMID: 28483532 DOI: 10.1016/j.mam.2017.04.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/07/2023]
Abstract
Periodontitis is an inflammatory disease of the supporting structures of the dentition that is initiated by bacteria that form a biofilm on the surface of the teeth. The pathogenesis of the disease is a result of complex interactions between the biofilm and the host response that results in dysbiosis of the microbiome and dysregulation of the inflammatory response. Current data suggest that the excess inflammation associated with periodontitis is due to a failure of resolution of inflammation pathways. In this review, the relationship between inflammation and microbial dysbiosis is examined in the context of pro-inflammation and pro-resolution mediators and their ability to modify the course of disease. The impact of local oral inflammation on systemic inflammation and the relationship of periodontitis to other inflammatory diseases, including type 2 diabetes and cardiovascular disease is reviewed. Active resolvers of inflammation, including the lipoxins and resolvins, show great promise as therapeutics for the treatment of periodontitis and other inflammatory diseases.
Collapse
|
24
|
Identification and Characterization of MicroRNA Differentially Expressed in Macrophages Exposed to Porphyromonas gingivalis Infection. Infect Immun 2017; 85:IAI.00771-16. [PMID: 28069815 DOI: 10.1128/iai.00771-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/03/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are short, noncoding RNAs involved in the regulation of several processes associated with inflammatory diseases and infection. Bacterial infection modulates miRNA expression to subvert any innate immune response. In this study we analyzed, using microarray analysis, the bacterial modulation of miRNAs in bone marrow-derived macrophages (BMMs) in which activity was induced by infection with Porphyromonas gingivalis The expression of several miRNAs was modulated 3 h postinfection (at a multiplicity of infection of 25). A bioinformatic analysis was performed to further identify pathways related to the innate immune host response under the influence of selected miRNAs. To assess the effects of the miRNAs identified on cytokine secretion (tumor necrosis factor alpha [TNF-α] and interleukin-10 [IL-10]), BMMs were transfected with selected miRNA mimics and inhibitors. Transfection with mmu-miR-155 and mmu-miR-2137 did not modify TNF-α secretion, while their inhibitors increased it. Inhibitors of mmu-miR-2137 and mmu-miR-7674 increased the secretion of the anti-inflammatory factor IL-10. In P. gingivalis-infected BMMs, mmu-miR-155-5p significantly decreased TNF-α secretion while inhibitor of mmu-miR-2137 increased IL-10 secretion. In vivo, in a mouse model of P. gingivalis-induced calvarial bone resorption, injection of mmu-miR-155-5p or anti-mmu-miR-2137 reduced the size of the lesion significantly. Furthermore, anti-mmu-miR-2137 significantly reduced inflammatory cell infiltration, osteoclast activity, and bone loss. Bioinformatic analysis demonstrated that pathways related to cytokine- and chemokine-related pathways but also osteoclast differentiation may be involved in the effects observed. This study contributes further to our understanding of P. gingivalis-induced modulation of miRNAs and their physiological effects. It highlights the potential therapeutic merits of targeting mmu-miR-155-5p and mmu-miR-2137 to control inflammation induced by P. gingivalis infection.
Collapse
|