1
|
Valadbeigi H, Khoshnood S, Negahdari B, Maleki A, Mohammadinejat M, Haddadi MH. Mixed oral biofilms are controlled by the interspecies interactions of Fusobacterium nucleatum. Oral Dis 2024; 30:3582-3590. [PMID: 38009960 DOI: 10.1111/odi.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Fusobacterium nucleatum (F. nucleatum) is an integral component of supra- and subgingival biofilms, especially more prevalent in subgingival areas during both periodontal health and disease. AIMS In this review, we explore the physical, metabolic, and genetic interactions that influence the role of F. nucleatum in the formation of mixed oral biofilms. The role of F. nucleatum in antibiotic resistance in oral biofilms was discussed and some therapeutic strategies were proposed. METHODS PubMed, Scopus, Google Scholar, and the Web of Science were extensively searched for English-language reports. RESULTS F. nucleatum-derived proteins such as RadD, Fap2, FomA, and CmpA are involved in direct interactions contributing to biofilm formation, while autoinducer-2 and putrescine are involved in metabolic interactions. Both groups are essential for the formation and persistence of oral biofilms. This study highlights the clinical relevance of targeted interactions of F. nucleatum in supra- and subgingival oral biofilms. CONCLUSIONS By focusing on these interactions, researchers and clinicians can develop more effective strategies to prevent biofilm-related disease and reduce the spread of antibiotic resistance. Further research in this area is warranted to explore the potential therapeutic interventions that can be derived from understanding the interactions of F. nucleatum in oral biofilm dynamics.
Collapse
Affiliation(s)
- Hassan Valadbeigi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Medya Mohammadinejat
- Department of Medicinal Chemistry, Faculty of Chemistry, North-Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
2
|
Zhang L, Leng XX, Qi J, Wang N, Han JX, Tao ZH, Zhuang ZY, Ren Y, Xie YL, Jiang SS, Li JL, Chen H, Zhou CB, Cui Y, Chen X, Wang Z, Zhang ZZ, Hong J, Chen HY, Jiang W, Chen YX, Zhao X, Yu J, Fang JY. The adhesin RadD enhances Fusobacterium nucleatum tumour colonization and colorectal carcinogenesis. Nat Microbiol 2024; 9:2292-2307. [PMID: 39169124 DOI: 10.1038/s41564-024-01784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/15/2024] [Indexed: 08/23/2024]
Abstract
Fusobacterium nucleatum can bind to host cells and potentiate intestinal tumorigenesis. Here we used a genome-wide screen to identify an adhesin, RadD, which facilitates the attachment of F. nucleatum to colorectal cancer (CRC) cells in vitro. RadD directly binds to CD147, a receptor overexpressed on CRC cell surfaces, which initiated a PI3K-AKT-NF-κB-MMP9 cascade, subsequently enhancing tumorigenesis in mice. Clinical specimen analysis showed that elevated radD gene levels in CRC tissues correlated positively with activated oncogenic signalling and poor patient outcomes. Finally, blockade of the interaction between RadD and CD147 in mice effectively impaired F. nucleatum attachment and attenuated F. nucleatum-induced oncogenic response. Together, our study provides insights into an oncogenic mechanism driven by F. nucleatum RadD and suggests that the RadD-CD147 interaction could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Lu Zhang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Xu Leng
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ni Wang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhi-Hang Tao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Yan Zhuang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimeng Ren
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Le Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Shan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Lu Li
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng-Bei Zhou
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun Cui
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zi-Zhen Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao-Yan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weihong Jiang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Dong PT, Shi W, He X, Borisy GG. Adhesive interactions within microbial consortia can be differentiated at the single-cell level through expansion microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600639. [PMID: 38979233 PMCID: PMC11230439 DOI: 10.1101/2024.06.25.600639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Investigating microbe-microbe interactions at the single-cell level is critical to unraveling the ecology and dynamics of microbial communities. In many situations, microbes assemble themselves into densely packed multi-species biofilms. The density and complexity pose acute difficulties for visualizing individual cells and analyzing their interactions. Here, we address this problem through an unconventional application of expansion microscopy, which allows for the 'decrowding' of individual bacterial cells within a multispecies community. Expansion microscopy generally has been carried out under isotropic expansion conditions and used as a resolution-enhancing method. In our variation of expansion microscopy, we carry out expansion under heterotropic conditions; that is, we expand the space between bacterial cells but not the space within individual cells. The separation of individual bacterial cells from each other reflects the competition between the expansion force pulling them apart and the adhesion force holding them together. We employed heterotropic expansion microscopy to study the relative strength of adhesion in model biofilm communities. These included mono and dual-species Streptococcus biofilms, and a three-species synthetic community (Fusobacterium nucleatum, Streptococcus mutans, and Streptococcus sanguinis) under conditions that facilitated interspecies coaggregation. Using adhesion mutants, we investigated the interplay between F. nucleatum outer membrane protein RadD and different Streptococcus species. We also examined the Schaalia-TM7 epibiont association. Quantitative proximity analysis was used to evaluate the separation of individual microbial members. Our study demonstrates that heterotropic expansion microscopy can 'decrowd' dense biofilm communities, improve visualization of individual bacterial members, and enable analysis of microbe-microbe adhesive interactions at the single-cell level.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| | - Gary G. Borisy
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA 02142, USA
| |
Collapse
|
4
|
Galaski J, Rishiq A, Liu M, Bsoul R, Bergson A, Lux R, Bachrach G, Mandelboim O. Fusobacterium nucleatum subsp. nucleatum RadD binds Siglec-7 and inhibits NK cell-mediated cancer cell killing. iScience 2024; 27:110157. [PMID: 38952680 PMCID: PMC11215305 DOI: 10.1016/j.isci.2024.110157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/23/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Fusobacterium nucleatum is an oral commensal bacterium that can colonize extraoral tumor entities, such as colorectal cancer and breast cancer. Recent studies revealed its ability to modulate the immune response in the tumor microenvironment (TME), promoting cancer progression and metastasis. Importantly, F. nucleatum subsp. animalis was shown to bind to Siglec-7 via lipopolysaccharides, leading to a pro-inflammatory profile in human monocyte-derived dendritic cells. In this study, we show that F. nucleatum subsp. nucleatum RadD binds to Siglec-7 on NK cells, thereby inhibiting NK cell-mediated cancer cell killing. We demonstrate that this binding is dependent on arginine residue R124 in Siglec-7. Finally, we determine that this binding is independent of the known interaction of RadD with IgA. Taken together, our findings elucidate the targeting of Siglec-7 by F. nucleatum subsp. nucleatum RadD as a means to modulate the NK cell response and potentially promoting immune evasion and tumor progression.
Collapse
Affiliation(s)
- Johanna Galaski
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Medical Microbiology and Hygiene, Medical Centre University of Freiburg, Freiburg, Germany
| | - Ahmed Rishiq
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Mingdong Liu
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Reem Bsoul
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Almog Bergson
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| | - Renate Lux
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Gilad Bachrach
- The Institute of Dental Sciences, The Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | - Ofer Mandelboim
- The Concern Foundation Laboratories at the Lautenberg Center for General and Tumor Immunology, Department of Immunology and Cancer Research, Institute for Medical Research Israel Canada (IMRIC), Faculty of Medicine, The Hebrew University Medical School, Jerusalem, Israel
| |
Collapse
|
5
|
Wang X, Chen L, Teng Y, Xie W, Huang L, Wu J, Wang H, Xie S. Effect of three oral pathogens on the TMA-TMAO metabolic pathway. Front Cell Infect Microbiol 2024; 14:1413787. [PMID: 38836053 PMCID: PMC11148326 DOI: 10.3389/fcimb.2024.1413787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Background Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.
Collapse
Affiliation(s)
- Xixuan Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liyuan Chen
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ye Teng
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weige Xie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lingyan Huang
- Nantong Stomatological Hospital, Affiliated Nantong Stomatological Hospital of Nantong University, Nantong, China
| | - Juan Wu
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongwei Wang
- Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Sijing Xie
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Li Y, Xiang Y, Ren H, Zhang C, Hu Z, Leng W, Xia L. Association between periodontitis and dental caries: a systematic review and meta-analysis. Clin Oral Investig 2024; 28:306. [PMID: 38727727 PMCID: PMC11087323 DOI: 10.1007/s00784-024-05687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVES Recent evidence suggested a link between periodontitis (PD) and dental caries, but the trends and nature of this association remained unclear. The overall aim of this study was to critically assess the correlation of two disorders. METHODS A comprehensive search was conducted within the PUBMED and EMBASE databases including grey literatures up to July 5th, 2023. The Newcastle-Ottawa scale was used to qualitatively evaluate the risk of bias. RESULTS Overall, 18 studies were included. In terms of caries risk in PD patients, the prevalence of caries was increased by PD (OR = 1.57, 95%CI:1.20-2.07), both in crown (OR = 1.03, 95%CI:1.01-1.05) and root caries (OR = 2.10, 95%CI:1.03-4.29). Odds of caries were also raised by PD severity (OR moderate = 1.38, 95%CI:1.15-1.66; OR severe = 2.14, 95%CI:1.74-2.64). Besides, patients with PD exhibited a higher mean number of decayed, missing and filled teeth (DMFT) and decayed and filled root teeth (DFR) [weighted mean difference (WMD)DMFT = 0.87, 95%CI: -0.03-1.76; WMDDFR = 1.13, 95%CI: 0.48-1.78]. Likewise, patients with caries had an elevated risk of PD (OR = 1.79, 95%CI:1.36-2.35). However, Streptococcus mutans, one of the main pathogens of caries, was negatively correlated with several main pathogens of periodontitis. CONCLUSIONS This study indicated a positive correlation between dental caries and periodontitis clinically, while the two disease-associated pathogens were antagonistic. CLINICAL RELEVANCE Further research, including clinical cohort studies and mechanisms of pathogens interaction is needed on this link for better prevention and treatment of PD and caries. In addition, innovative prevention strategies need to be developed and incorporated in dental practices to prevent these two highly prevalent oral diseases.
Collapse
Affiliation(s)
- Yixin Li
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yonggang Xiang
- Department of Ophthalmology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Haixia Ren
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ziqiu Hu
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Weidong Leng
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Lingyun Xia
- Department of Stomatology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
7
|
Xu J, Yu L, Ye S, Ye Z, Yang L, Xu X. Oral microbiota-host interaction: the chief culprit of alveolar bone resorption. Front Immunol 2024; 15:1254516. [PMID: 38455060 PMCID: PMC10918469 DOI: 10.3389/fimmu.2024.1254516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/02/2024] [Indexed: 03/09/2024] Open
Abstract
There exists a bidirectional relationship between oral health and general well-being, with an imbalance in oral symbiotic flora posing a threat to overall human health. Disruptions in the commensal flora can lead to oral diseases, while systemic illnesses can also impact the oral cavity, resulting in the development of oral diseases and disorders. Porphyromonas gingivalis and Fusobacterium nucleatum, known as pathogenic bacteria associated with periodontitis, play a crucial role in linking periodontitis to accompanying systemic diseases. In periodontal tissues, these bacteria, along with their virulence factors, can excessively activate the host immune system through local diffusion, lymphatic circulation, and blood transmission. This immune response disruption contributes to an imbalance in osteoimmune mechanisms, alveolar bone resorption, and potential systemic inflammation. To restore local homeostasis, a deeper understanding of microbiota-host interactions and the immune network phenotype in local tissues is imperative. Defining the immune network phenotype in periodontal tissues offers a promising avenue for investigating the complex characteristics of oral plaque biofilms and exploring the potential relationship between periodontitis and associated systemic diseases. This review aims to provide an overview of the mechanisms underlying Porphyromonas gingivalis- and Fusobacterium nucleatum-induced alveolar bone resorption, as well as the immunophenotypes observed in host periodontal tissues during pathological conditions.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
8
|
Liu H, Yu Y, Dong A, Elsabahy M, Yang Y, Gao H. Emerging strategies for combating Fusobacterium nucleatum in colorectal cancer treatment: Systematic review, improvements and future challenges. EXPLORATION (BEIJING, CHINA) 2024; 4:20230092. [PMID: 38854496 PMCID: PMC10867388 DOI: 10.1002/exp.20230092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/16/2023] [Indexed: 06/11/2024]
Abstract
Colorectal cancer (CRC) is generally characterized by a high prevalence of Fusobacterium nucleatum (F. nucleatum), a spindle-shaped, Gram-negative anaerobe pathogen derived from the oral cavity. This tumor-resident microorganism has been closely correlated with the occurrence, progression, chemoresistance and immunosuppressive microenvironment of CRC. Furthermore, F. nucleatum can specifically colonize CRC tissues through adhesion on its surface, forming biofilms that are highly resistant to commonly used antibiotics. Accordingly, it is crucial to develop efficacious non-antibiotic approaches to eradicate F. nucleatum and its biofilms for CRC treatment. In recent years, various antimicrobial strategies, such as natural extracts, inorganic chemicals, organic chemicals, polymers, inorganic-organic hybrid materials, bacteriophages, probiotics, and vaccines, have been proposed to combat F. nucleatum and F. nucleatum biofilms. This review summarizes the latest advancements in anti-F. nucleatum research, elucidates the antimicrobial mechanisms employed by these systems, and discusses the benefits and drawbacks of each antimicrobial technology. Additionally, this review also provides an outlook on the antimicrobial specificity, potential clinical implications, challenges, and future improvements of these antimicrobial strategies in the treatment of CRC.
Collapse
Affiliation(s)
- Hongyu Liu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Yunjian Yu
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical EngineeringInner Mongolia UniversityHohhotP. R. China
| | - Mahmoud Elsabahy
- Department of PharmaceuticsFaculty of PharmacyAssiut UniversityAssiutEgypt
| | - Ying‐Wei Yang
- International Joint Research Laboratory of Nano‐Micro Architecture ChemistryCollege of ChemistryJilin UniversityChangchunP. R. China
| | - Hui Gao
- State Key Laboratory of Separation Membranes and Membrane ProcessesSchool of Materials Science and EngineeringTiangong UniversityTianjinP. R. China
| |
Collapse
|
9
|
Shin H, Baek Y, Lee D, Xu Y, Kwon Y, Jo I, Ha NC. Structural and Functional Analyses of the Flavoprotein Disulfide Reductase FN0820 of Fusobacterium nucleatum. J Microbiol 2023; 61:1033-1041. [PMID: 38117463 DOI: 10.1007/s12275-023-00095-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response. Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I FDR family, exhibited a higher activity of a Cu2+-dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog 5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results have implications for developing new treatment strategies against pathogens that defend the host immune response with Group I FDRs.
Collapse
Affiliation(s)
- Hyunwoo Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeongjin Baek
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dukwon Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inseong Jo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
10
|
G C B, Zhou P, Naha A, Gu J, Wu C. Development of a xylose-inducible promoter and riboswitch combination system for manipulating gene expression in Fusobacterium nucleatum. Appl Environ Microbiol 2023; 89:e0066723. [PMID: 37695289 PMCID: PMC10537658 DOI: 10.1128/aem.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/05/2023] [Indexed: 09/12/2023] Open
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducer concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum. LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum. IMPORTANCE Fusobacterium nucleatum, an anaerobic bacterium prevalent in the human oral cavity, is strongly linked to periodontitis and can colonize areas beyond the oral cavity, such as the placenta and gastrointestinal tract, causing adverse pregnancy outcomes and promoting colorectal cancer growth. Given F. nucleatum's clinical significance, research is underway to develop targeted therapies to inhibit its growth or eradicate the bacterium specifically. Essential genes, crucial for bacterial survival, growth, and reproduction, are promising drug targets. A leak-free-inducible gene expression system is needed for studying these genes, enabling conditional gene knockouts and elucidating the importance of those essential genes. Our study identified lepB as the essential gene by first generating a conditional gene mutation in F. nucleatum. Combining a xylose-inducible system with a riboswitch facilitated the analysis of essential genes in F. nucleatum, paving the way for potential drug development targeting this bacterium for various clinical applications.
Collapse
Affiliation(s)
- Bibek G C
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Arindam Naha
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Jianhua Gu
- Houston Methodist Hospital Research Institute, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
11
|
Pignatelli P, Nuccio F, Piattelli A, Curia MC. The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis. Microorganisms 2023; 11:2358. [PMID: 37764202 PMCID: PMC10537357 DOI: 10.3390/microorganisms11092358] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
In recent years, several studies have suggested a strong association of microorganisms with several human cancers. Two periodontopathogenic species in particular have been mentioned frequently: Fusobacterium nucleatum (F. nucleatum) and Porphyromonas gingivalis. Chronic periodontal disease has been reported to be a risk factor for oral squamous cell carcinoma (OSCC), colorectal cancer (CRC) and pancreatic cancer. F. nucleatum is a Gram-negative anaerobic bacterium that lives in the oral cavity, urogenital, intestinal and upper digestive tract. It plays a significant role as a co-aggregation factor, with almost all bacterial species that participate in oral plaque formation acting as a bridge between early and late colonizers. F. nucleatum, gives an important inflammatory contribution to tumorigenesis progression and is associated with epithelial-derived malignancies, such as OSCC and CRC. F. nucleatum produces an adhesion protein, FadA, which binds to VE-cadherin on endothelial cells and to E-cadherins on epithelial cells. The last binding activates oncogenic pathways, such as Wnt/βcatenin, in oral and colorectal carcinogenesis. F. nucleatum also affects immune response because its Fap2 protein interacts with an immune receptor named TIGIT present on some T cells and natural killer cells inhibiting immune cells activities. Morover, F. nucleatum release outer membrane vesicles (OMVs), which induce the production of proinflammatory cytokines and initiating inflammation. F. nucleatum migrates from the oral cavity and reaches the colon hematogenously but it is not known if in the bloodstream it reaches the CRC as free, erythrocyte-bound bacteria or in OMV. F. nucleatum abundance in CRC tissue has been inversely correlated with overall survival (OS). The prevention and treatment of periodontal disease through the improvement of oral hygiene should be included in cancer prevention protocols. FadA virulence factors may also serve as novel targets for therapeutic intervention of oral and colorectal cancer.
Collapse
Affiliation(s)
- Pamela Pignatelli
- COMDINAV DUE, Nave Cavour, Italian Navy, Stazione Navale Mar Grande, 74122 Taranto, Italy;
| | - Federica Nuccio
- MARICENSELEZ ANCONA, Centro di Selezione M.M., Italian Navy, 60127 Ancona, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University for Health Sciences, 00131 Rome, Italy;
- Facultad de Medicina, UCAM Universidad Católica San Antonio de Murcia, 30107 Murcia, Spain
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
12
|
Shi T, Wang J, Dong J, Hu P, Guo Q. Periodontopathogens Porphyromonas gingivalis and Fusobacterium nucleatum and Their Roles in the Progression of Respiratory Diseases. Pathogens 2023; 12:1110. [PMID: 37764918 PMCID: PMC10535846 DOI: 10.3390/pathogens12091110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
The intricate interplay between oral microbiota and the human host extends beyond the confines of the oral cavity, profoundly impacting the general health status. Both periodontal diseases and respiratory diseases show high prevalence worldwide and have a marked influence on the quality of life for the patients. Accumulating studies are establishing a compelling association between periodontal diseases and respiratory diseases. Here, in this review, we specifically focus on the key periodontal pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum and dissect their roles in the onset and course of respiratory diseases, mainly pneumonia, chronic obstructive pulmonary disease, lung cancer, and asthma. The mechanistic underpinnings and molecular processes on how P. gingivalis and F. nucleatum contribute to the progression of related respiratory diseases are further summarized and analyzed, including: induction of mucus hypersecretion and chronic airway inflammation; cytotoxic effects to disrupt the morphology and function of respiratory epithelial cells; synergistic pathogenic effects with respiratory pathogens like Streptococcus pneumoniae and Pseudomonas aeruginosa. By delving into the complex relationship to periodontal diseases and periodontopathogens, this review helps unearth novel insights into the etiopathogenesis of respiratory diseases and inspires the development of potential therapeutic avenues and preventive strategies.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Pingyue Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Robinson AV, Allen-Vercoe E. Strain specificity in fusobacterial co-aggregation with colorectal cancer-relevant species. Anaerobe 2023; 82:102758. [PMID: 37423597 DOI: 10.1016/j.anaerobe.2023.102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVES The purpose of the present study was to characterize co-aggregation interactions between isolates of Fusobacterium nucleatum subsp. animalis and other colorectal cancer (CRC)-relevant species. METHODS Co-aggregation interactions were assessed by comparing optical density values following 2-h stationary strain co-incubations to strain optical density values when incubated alone. Co-aggregation was characterized between strains from a previously isolated, CRC biopsy-derived community and F. nucleatum subsp. animalis, a species linked to CRC and known to be highly aggregative. Interactions were also investigated between the fusobacterial isolates and strains sourced from alternate human gastrointestinal samples whose closest species match aligned with species in the CRC biopsy-derived community. RESULTS Co-aggregation interactions were observed to be strain-specific, varying between both F. nucleatum subsp. animalis strains and different strains of the same co-aggregation partner species. F. nucleatum subsp. animalis strains were observed to co-aggregate strongly with several taxa linked to CRC: Campylobacter concisus, Gemella spp., Hungatella hathewayi, and Parvimonas micra. CONCLUSIONS Co-aggregation interactions suggest the ability to encourage the formation of biofilms, and colonic biofilms, in turn, have been linked to promotion and/or progression of CRC. Co-aggregation between F. nucleatum subsp. animalis and CRC-linked species such as C. concisus, Gemella spp., H. hathewayi, and P. micra may contribute to both biofilm formation along CRC lesions and to disease progression.
Collapse
Affiliation(s)
- Avery V Robinson
- University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada.
| | | |
Collapse
|
14
|
Bibek GC, Zhou P, Naha A, Gu J, Wu C. Development of a Xylose-Inducible Promoter and Riboswitch Combination System for Manipulating Gene Expression in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538132. [PMID: 37163003 PMCID: PMC10168284 DOI: 10.1101/2023.04.24.538132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Inducible gene expression systems are important for studying bacterial gene function, yet most exhibit leakage. In this study, we engineered a leakage-free hybrid system for precise gene expression controls in Fusobacterium nucleatum by integrating the xylose-inducible expression system with the theophylline-responsive riboswitch. This innovative method enables concurrent control of target gene expression at both transcription and translation initiation levels. Using luciferase and the indole-producing enzyme tryptophanase (TnaA) as reporters, we demonstrated that the hybrid system displays virtually no observable signal in the absence of inducers. We employed this system to express FtsX, a protein related to fusobacterial cytokinesis, in an ftsX mutant strain, unveiling a dose-dependent manner in FtsX production. Without inducers, cells form long filaments, while increasing FtsX levels by increasing inducers concentrations led to a gradual reduction in cell length until normal morphology was restored. Crucially, this system facilitated essential gene investigation, identifying the signal peptidase lepB gene as vital for F. nucleatum . LepB's essentiality stems from depletion, affecting outer membrane biogenesis and cell division. This novel hybrid system holds the potential for advancing research on essential genes and accurate gene regulation in F. nucleatum .
Collapse
|
15
|
Zhu Y, Zhi Q, Zhang C, Gu Y, Liu S, Qiao S, Lai H. Debridement of contaminated implants using air-polishing coupled with pH-responsive maximin H5-embedded metal-organic frameworks. Front Bioeng Biotechnol 2023; 11:1124107. [PMID: 36777249 PMCID: PMC9908744 DOI: 10.3389/fbioe.2023.1124107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
The primary goal of peri-implantitis treatments remains the decontamination of implant surfaces exposed to polymicrobial biofilms and renders biocompatibility. In this study, we reported a synergistic strategy for the debridement and re-osteogenesis of contaminated titanium by using erythritol air abrasion (AA) coupled with an as-synthesized pH-responsive antimicrobial agent. Here, the anionic antibacterial peptide Maximin H5 C-terminally deaminated isoform (MH5C) was introduced into the Zeolitic Imidazolate Frameworks (ZIF-8) via a one-pot synthesis process. The formed MH5C@ZIF-8 nanoparticles (NPs) not only possessed suitable stability, but also guarantee the slow-release effect of MH5C. Antibacterial experiments revealed that MH5C@ZIF-8 NPs exhibited excellent antimicrobial abilities toward pathogenic bacteria of peri-implantitis, confirming ZIF-8 NPs as efficient nanoplatforms for delivering antibacterial peptide. To evaluate the comprehensive debridement efficiency, single-species as well as mixed-species biofilms were successively established on commercially used titanium surfaces and decontaminated with different methods: removed only by erythritol air abrasion, treated merely with MH5C@ZIF-8 NPs, or received both managements. The results demonstrated that only erythritol air abrasion accompanied with MH5C@ZIF-8 NPs at high concentrations eliminated almost all retained bacteria and impeded biofilm rehabilitation, while neither erythritol air abrasion nor MH5C@ZIF-8 NPs alone could achieve this. Subsequently, we evaluated the re-osteogenesis on previously contaminated surfaces which were treated with different debridement methods afterwards. We found that cell growth and osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) in the group received both treatments (AA + MH5C@ZIF-8) were higher than those in other groups. Our work emphasized the great potential of the synergistic therapy as a credible alternative for removing microorganisms and rendering re-osseointegration on contaminated implant surfaces, boding well for the comprehensive applications in peri-implantitis treatments.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qiang Zhi
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chunan Zhang
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingxin Gu
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shuli Liu
- National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Shuli Liu, ; Shichong Qiao, ; Hongchang Lai,
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Shuli Liu, ; Shichong Qiao, ; Hongchang Lai,
| | - Hongchang Lai
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,National Clinical Research Center for Oral Diseases, Shanghai, China,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Shuli Liu, ; Shichong Qiao, ; Hongchang Lai,
| |
Collapse
|
16
|
Biofilm ecology associated with dental caries: Understanding of microbial interactions in oral communities leads to development of therapeutic strategies targeting cariogenic biofilms. ADVANCES IN APPLIED MICROBIOLOGY 2023; 122:27-75. [PMID: 37085193 DOI: 10.1016/bs.aambs.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
A biofilm is a sessile community characterized by cells attached to the surface and organized into a complex structural arrangement. Dental caries is a biofilm-dependent oral disease caused by infection with cariogenic pathogens, such as Streptococcus mutans, and associated with frequent exposure to a sugar-rich diet and poor oral hygiene. The virulence of cariogenic biofilms is often associated with the spatial organization of S. mutans enmeshed with exopolysaccharides on tooth surfaces. However, in the oral cavity, S. mutans does not act alone, and several other microbes contribute to cariogenic biofilm formation. Microbial communities in cariogenic biofilms are spatially organized into complex structural arrangements of various microbes and extracellular matrices. The balance of microbiota diversity with reduced diversity and a high proportion of acidogenic-aciduric microbiota within the biofilm is closely related to the disease state. Understanding the characteristics of polymicrobial biofilms and the association of microbial interactions within the biofilm (e.g., symbiosis, cooperation, and competition) in terms of their potential role in the pathogenesis of oral disease would help develop new strategies for interventions in virulent biofilm formation.
Collapse
|
17
|
Blostein F, Bhaumik D, Davis E, Salzman E, Shedden K, Duhaime M, Bakulski KM, McNeil DW, Marazita ML, Foxman B. Evaluating the ecological hypothesis: early life salivary microbiome assembly predicts dental caries in a longitudinal case-control study. MICROBIOME 2022; 10:240. [PMID: 36567334 PMCID: PMC9791751 DOI: 10.1186/s40168-022-01442-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/01/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Early childhood caries (ECC)-dental caries (cavities) occurring in primary teeth up to age 6 years-is a prevalent childhood oral disease with a microbial etiology. Streptococcus mutans was previously considered a primary cause, but recent research promotes the ecologic hypothesis, in which a dysbiosis in the oral microbial community leads to caries. In this incident, density sampled case-control study of 189 children followed from 2 months to 5 years, we use the salivary bacteriome to (1) prospectively test the ecological hypothesis of ECC in salivary bacteriome communities and (2) identify co-occurring salivary bacterial communities predicting future ECC. RESULTS Supervised classification of future ECC case status using salivary samples from age 12 months using bacteriome-wide data (AUC-ROC 0.78 95% CI (0.71-0.85)) predicts future ECC status before S. mutans can be detected. Dirichlet multinomial community state typing and co-occurrence network analysis identified similar robust and replicable groups of co-occurring taxa. Mean relative abundance of a Haemophilus parainfluenzae/Neisseria/Fusobacterium periodonticum group was lower in future ECC cases (0.14) than controls (0.23, P value < 0.001) in pre-incident visits, positively correlated with saliva pH (Pearson rho = 0.33, P value < 0.001) and reduced in individuals who had acquired S. mutans by the next study visit (0.13) versus those who did not (0.20, P value < 0.01). In a subset of whole genome shotgun sequenced samples (n = 30), case plaque had higher abundances of antibiotic production and resistance gene orthologs, including a major facilitator superfamily multidrug resistance transporter (MFS DHA2 family PBH value = 1.9 × 10-28), lantibiotic transport system permease protein (PBH value = 6.0 × 10-6) and bacitracin synthase I (PBH value = 5.6 × 10-6). The oxidative phosphorylation KEGG pathway was enriched in case plaque (PBH value = 1.2 × 10-8), while the ABC transporter pathway was depleted (PBH value = 3.6 × 10-3). CONCLUSIONS Early-life bacterial interactions predisposed children to ECC, supporting a time-dependent interpretation of the ecological hypothesis. Bacterial communities which assemble before 12 months of age can promote or inhibit an ecological succession to S. mutans dominance and cariogenesis. Intragenera competitions and intergenera cooperation between oral taxa may shape the emergence of these communities, providing points for preventive interventions. Video Abstract.
Collapse
Affiliation(s)
- Freida Blostein
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Deesha Bhaumik
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Elyse Davis
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Elizabeth Salzman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Kerby Shedden
- Department of Statistics, University of Michigan, Ann Arbor, MI USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Melissa Duhaime
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI USA
| | - Kelly M. Bakulski
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI USA
| | - Daniel W. McNeil
- Department of Psychology, West Virginia University, WVA, Morgantown, USA
- Department of Dental Practice & Rural Health, West Virginia University, Morgantown, WV USA
| | - Mary L. Marazita
- Department of Oral and Craniofacial Sciences, Center for Craniofacial and Dental Genetics, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA USA
- Clinical and Translational Sciences Institute, and Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI USA
| |
Collapse
|
18
|
Lu YT, Wang SH, Liou ML, Lee CY, Li YX, Lu YC, Hsin CH, Yang SF, Chen YY, Chang TH. Microbiota dysbiosis in odontogenic rhinosinusitis and its association with anaerobic bacteria. Sci Rep 2022; 12:21023. [PMID: 36470924 PMCID: PMC9722704 DOI: 10.1038/s41598-022-24921-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Odontogenic rhinosinusitis is a subtype of rhinosinusitis associated with dental infection or dental procedures and has special bacteriologic features. Previous research on the bacteriologic features of odontogenic rhinosinusitis has mainly used culture-dependent methods. The variation of microbiota between odontogenic and nonodontogenic rhinosinusitis as well as the interplay between the involved bacteria have not been explored. Therefore, we enrolled eight odontogenic rhinosinusitis cases and twenty nonodontogenic rhinosinusitis cases to analyze bacterial microbiota through 16S rRNA sequencing. Significant differences were revealed by the Shannon diversity index (Wilcoxon test p = 0.0003) and PERMANOVA test based on weighted UniFrac distance (Wilcoxon test p = 0.001) between odontogenic and nonodontogenic samples. Anaerobic bacteria such as Porphyromonas, Fusobacterium, and Prevotella were significantly dominant in the odontogenic rhinosinusitis group. Remarkably, a correlation between different bacteria was also revealed by Pearson's correlation. Staphylococcus was highly positively associated with Corynebacterium, whereas Fusobacterium was highly negatively correlated with Prophyromonas. According to our results, the microbiota in odontogenic rhinosinusitis, predominantly anaerobic bacteria, was significantly different from that in nonodontogenic rhinosinusitis, and the interplay between specific bacteria may a major cause of this subtype of rhinosinusitis.
Collapse
Affiliation(s)
- Yen-Ting Lu
- grid.411641.70000 0004 0532 2041Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ,grid.452771.2Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan ,grid.411645.30000 0004 0638 9256Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan ,grid.411641.70000 0004 0532 2041School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shao-Hung Wang
- grid.412046.50000 0001 0305 650XDepartment of Microbiology, Immunology and Biopharmaceuticals, National Chiayi University, Chiayi, Taiwan
| | - Ming-Li Liou
- grid.413051.20000 0004 0444 7352Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu City, Taiwan
| | - Cheng-Yang Lee
- grid.412896.00000 0000 9337 0481Office of Information Technology, Taipei Medical University, Taipei City, Taiwan
| | - Yu-Xuan Li
- grid.412896.00000 0000 9337 0481Office of Information Technology, Taipei Medical University, Taipei City, Taiwan
| | - Ying-Chou Lu
- grid.452771.2Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Chung-Han Hsin
- grid.411641.70000 0004 0532 2041Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ,grid.411645.30000 0004 0638 9256Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan ,grid.411641.70000 0004 0532 2041School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- grid.411641.70000 0004 0532 2041Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan ,grid.411645.30000 0004 0638 9256Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yih-Yuan Chen
- grid.412046.50000 0001 0305 650XDepartment of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| | - Tzu-Hao Chang
- grid.412897.10000 0004 0639 0994Clinical Big Data Research Center, Taipei Medical University Hospital, Wu-Hsing Street, Taipei City, 110 Taiwan ,grid.412896.00000 0000 9337 0481Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
Mothersole RG, Kolesnikov M, Chan ACK, Oduro E, Murphy MEP, Wolthers KR. Sequence Divergence in the Arginase Domain of Ornithine Decarboxylase/Arginase in Fusobacteriacea Leads to Loss of Function in Oral Associated Species. Biochemistry 2022; 61:1378-1391. [PMID: 35732022 DOI: 10.1021/acs.biochem.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A number of species within the Fusobacteriaceae family of Gram-negative bacteria uniquely encode for an ornithine decarboxylase/arginase (ODA) that ostensibly channels l-ornithine generated by hydrolysis of l-arginine to putrescine formation. However, two aspartate residues required for coordination to a catalytically obligatory manganese cluster of arginases are substituted for a serine and an asparagine. Curiously, these natural substitutions occur only in a clade of Fusobacterium species that inhabit the oral cavity. Herein, we expressed and isolated full-length ODA from the opportunistic oral pathogen Fusobacterium nucleatum along with the individual arginase and ornithine decarboxylase components. The crystal structure of the arginase domain reveals that it adopts the classical α/β arginase-fold, but metal ions are absent in the active site. As expected, the ureohydrolase activity with l-arginine was not detected for wild-type ODA or the isolated arginase domain. However, engineering of the complete metal coordination environment through site-directed mutagenesis restored Mn2+ binding capacity and arginase activity, although the catalytic efficiency for l-arginine was low (60-100 M-1 s-1). Full-length ODA and the isolated ODC component were able to decarboxylate both l-ornithine and l-arginine to form putrescine and agmatine, respectively, but kcat/KM of l-ornithine was ∼20-fold higher compared to l-arginine. We discuss environmental conditions that may have led to the natural selection of an inactive arginase in the oral associated species of Fusobacterium.
Collapse
Affiliation(s)
- Robert G Mothersole
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Maxim Kolesnikov
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Emmanuella Oduro
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1V 1V7, Canada
| |
Collapse
|
20
|
Wang C, Zheng C. Using Caenorhabditis elegans to Model Therapeutic Interventions of Neurodegenerative Diseases Targeting Microbe-Host Interactions. Front Pharmacol 2022; 13:875349. [PMID: 35571084 PMCID: PMC9096141 DOI: 10.3389/fphar.2022.875349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/08/2022] [Indexed: 12/02/2022] Open
Abstract
Emerging evidence from both clinical studies and animal models indicates the importance of the interaction between the gut microbiome and the brain in the pathogenesis of neurodegenerative diseases (NDs). Although how microbes modulate neurodegeneration is still mostly unclear, recent studies have started to probe into the mechanisms for the communication between microbes and hosts in NDs. In this review, we highlight the advantages of using Caenorhabditis elegans (C. elegans) to disentangle the microbe-host interaction that regulates neurodegeneration. We summarize the microbial pro- and anti-neurodegenerative factors identified using the C. elegans ND models and the effects of many are confirmed in mouse models. Specifically, we focused on the role of bacterial amyloid proteins, such as curli, in promoting proteotoxicity and neurodegeneration by cross-seeding the aggregation of endogenous ND-related proteins, such as α-synuclein. Targeting bacterial amyloid production may serve as a novel therapeutic strategy for treating NDs, and several compounds, such as epigallocatechin-3-gallate (EGCG), were shown to suppress neurodegeneration at least partly by inhibiting curli production. Because bacterial amyloid fibrils contribute to biofilm formation, inhibition of amyloid production often leads to the disruption of biofilms. Interestingly, from a list of 59 compounds that showed neuroprotective effects in C. elegans and mouse ND models, we found that about half of them are known to inhibit bacterial growth or biofilm formation, suggesting a strong correlation between the neuroprotective and antibiofilm activities. Whether these potential therapeutics indeed protect neurons from proteotoxicity by inhibiting the cross-seeding between bacterial and human amyloid proteins awaits further investigations. Finally, we propose to screen the long list of antibiofilm agents, both FDA-approved drugs and novel compounds, for their neuroprotective effects and develop new pharmaceuticals that target the gut microbiome for the treatment of NDs. To this end, the C. elegans ND models can serve as a platform for fast, high-throughput, and low-cost drug screens that target the microbe-host interaction in NDs.
Collapse
Affiliation(s)
| | - Chaogu Zheng
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
21
|
Mesa F, Mesa-López MJ, Egea-Valenzuela J, Benavides-Reyes C, Nibali L, Ide M, Mainas G, Rizzo M, Magan-Fernandez A. A New Comorbidity in Periodontitis: Fusobacterium nucleatum and Colorectal Cancer. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58040546. [PMID: 35454384 PMCID: PMC9029306 DOI: 10.3390/medicina58040546] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
There is very recent and strong evidence relating Fusobacterium nucleatum to colorectal cancer. In this narrative review, we update the knowledge about gingival dysbiosis and the characteristics of Fusobacterium nucleatum as one of the main bacteria related to periodontitis. We provide data on microbiome, epidemiology, risk factors, prognosis, and treatment of colorectal cancer, one of the most frequent tumours diagnosed and whose incidence increases every year. We describe, from its recent origin, the relationship between this bacterium and this type of cancer and the knowledge and emerging mechanisms that scientific evidence reveals in an updated way. A diagram provided synthesizes the pathogenic mechanisms of this relationship in a comprehensive manner. Finally, the main questions and further research perspectives are presented.
Collapse
Affiliation(s)
- Francisco Mesa
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain;
| | - Maria José Mesa-López
- Gastroenterology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain; (M.J.M.-L.); (J.E.-V.)
| | - Juan Egea-Valenzuela
- Gastroenterology Service, Virgen de la Arrixaca University Hospital, 30120 Murcia, Spain; (M.J.M.-L.); (J.E.-V.)
| | - Cristina Benavides-Reyes
- Department of Operative Dentistry, School of Dentistry, University of Granada, 18071 Granada, Spain;
| | - Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (L.N.); (M.I.); (G.M.)
| | - Mark Ide
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (L.N.); (M.I.); (G.M.)
| | - Giuseppe Mainas
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK; (L.N.); (M.I.); (G.M.)
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, 90133 Palermo, Italy;
| | - Antonio Magan-Fernandez
- Department of Periodontics, School of Dentistry, University of Granada, 18071 Granada, Spain;
- Correspondence:
| |
Collapse
|
22
|
Groeger S, Zhou Y, Ruf S, Meyle J. Pathogenic Mechanisms of Fusobacterium nucleatum on Oral Epithelial Cells. FRONTIERS IN ORAL HEALTH 2022; 3:831607. [PMID: 35478496 PMCID: PMC9037381 DOI: 10.3389/froh.2022.831607] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/28/2022] Open
Abstract
Periodontitis is an oral chronic inflammatory disease and may cause tooth loss in adults. Oral epithelial cells provide a barrier for bacteria and participate in the immune response. Fusobacterium nucleatum (F. nucleatum) is one of the common inhabitants of the oral cavity and has been identified as a potential etiologic bacterial agent of oral diseases, such as periodontitis and oral carcinomas. F. nucleatum has been shown to be of importance in the development of diverse human cancers. In the dental biofilm, it exhibits a structural role as a bridging organism, connecting primary colonizers to the largely anaerobic secondary colonizers. It expresses adhesins and is able to induce host cell responses, including the upregulation of defensins and the release of chemokines and interleukins. Like other microorganisms, its detection is achieved through germline-encoded pattern-recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs). By identification of the pathogenic mechanisms of F. nucleatum it will be possible to develop effective methods for the diagnosis, prevention, and treatment of diseases in which a F. nucleatum infection is involved. This review summarizes the recent progress in research targeting F. nucleatum and its impact on oral epithelial cells.
Collapse
Affiliation(s)
- Sabine Groeger
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
- *Correspondence: Sabine Groeger
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Joerg Meyle
- Department of Periodontology, Justus-Liebig-University of Giessen, Giessen, Germany
| |
Collapse
|
23
|
Chen Y, Shi T, Li Y, Huang L, Yin D. Fusobacterium nucleatum: The Opportunistic Pathogen of Periodontal and Peri-Implant Diseases. Front Microbiol 2022; 13:860149. [PMID: 35369522 PMCID: PMC8966671 DOI: 10.3389/fmicb.2022.860149] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Peri-implant diseases are considered to be a chronic destructive inflammatory destruction/damage occurring in soft and hard peri-implant tissues during the patient’s perennial use after implant restoration and have attracted much attention because of their high incidence. Although most studies seem to suggest that the pathogenesis of peri-implant diseases is similar to that of periodontal diseases and that both begin with microbial infection, the specific mechanism of peri-implant diseases remains unclear. As an oral opportunistic pathogen, Fusobacterium nucleatum (F. nucleatum) has been demonstrated to be vital for the occurrence and development of many oral infectious diseases, especially periodontal diseases. More notably, the latest relevant studies suggest that F. nucleatum may contribute to the occurrence and development of peri-implant diseases. Considering the close connection between peri-implant diseases and periodontal diseases, a summary of the role of Fusobacterium nucleatum in periodontal diseases may provide more research directions and ideas for the peri-implantation mechanism. In this review, we summarize the effects of F. nucleatum on periodontal diseases by biofilm formation, host infection, and host response, and then we establish the relationship between periodontal and peri-implant diseases. Based on the above aspects, we discuss the importance and potential value of F. nucleatum in peri-implant diseases.
Collapse
|
24
|
A Potential “Vitaminic Strategy” against Caries and Halitosis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus mutans and Fusobacterium nucleatum are two key bacteria of the oral microbiota. Due to their ability to form biofilms on oral tissues, they are both involved in the onset of the most common oral diseases. F. nucleatum is also the principal producer of hydrogen sulfide (H2S), causative of the awkward bad breath of halitosis. In this study, the oral product Vea® Oris, made by vitamin E and capric/caprylic acid only, was evaluated as a potential treatment for the most common oral diseases. Different concentrations of the product were tested against both S. mutans and F. nucleatum. The effect on planktonic and biofilm growth was investigated for both strains, and for F. nucleatum, the influence on H2S production was evaluated. From our data, the product did not relevantly reduce the planktonic growth of both strains, whereas it validly counteracted biofilm assemblage. Moreover, an interesting trend of H2S reduction was highlighted. Overall, these results suggested, on the one hand, a synergistic antimicrobial–antibiofilm action of two Vea® Oris components and, together, potential modulation activity on H2S production. However, the study should be implemented to confirm these only preliminary findings, certainly extending the panel of tested bacteria and using alternative methods of detection.
Collapse
|
25
|
Chen Y, Huang Z, Tang Z, Huang Y, Huang M, Liu H, Ziebolz D, Schmalz G, Jia B, Zhao J. More Than Just a Periodontal Pathogen –the Research Progress on Fusobacterium nucleatum. Front Cell Infect Microbiol 2022; 12:815318. [PMID: 35186795 PMCID: PMC8851061 DOI: 10.3389/fcimb.2022.815318] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Fusobacterium nucleatum is a common oral opportunistic bacterium that can cause different infections. In recent years, studies have shown that F. nucleatum is enriched in lesions in periodontal diseases, halitosis, dental pulp infection, oral cancer, and systemic diseases. Hence, it can promote the development and/or progression of these conditions. The current study aimed to assess research progress in the epidemiological evidence, possible pathogenic mechanisms, and treatment methods of F. nucleatum in oral and systemic diseases. Novel viewpoints obtained in recent studies can provide knowledge about the role of F. nucleatum in hosts and a basis for identifying new methods for the diagnosis and treatment of F. nucleatum-related diseases.
Collapse
Affiliation(s)
- Yuanxin Chen
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhijie Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Mingshu Huang
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dirk Ziebolz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Gerhard Schmalz
- Department of Cariology, Endodontology and Periodontology, University of Leipzig, Leipzig, Germany
| | - Bo Jia
- Department of Oral Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| | - Jianjiang Zhao
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, China
- *Correspondence: Bo Jia, ; Jianjiang Zhao,
| |
Collapse
|
26
|
Liu T, Yang R, Zhou J, Lu X, Yuan Z, Wei X, Guo L. Interactions Between Streptococcus gordonii and Fusobacterium nucleatum Altered Bacterial Transcriptional Profiling and Attenuated the Immune Responses of Macrophages. Front Cell Infect Microbiol 2022; 11:783323. [PMID: 35071038 PMCID: PMC8776643 DOI: 10.3389/fcimb.2021.783323] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/15/2021] [Indexed: 12/24/2022] Open
Abstract
Interspecies coaggregation promotes transcriptional changes in oral bacteria, affecting bacterial pathogenicity. Streptococcus gordonii (S. gordonii) and Fusobacterium nucleatum (F. nucleatum) are common oral inhabitants. The present study investigated the transcriptional profiling of S. gordonii and F. nucleatum subsp. polymorphum in response to the dual-species coaggregation using RNA-seq. Macrophages were infected with both species to explore the influence of bacterial coaggregation on both species' abilities to survive within macrophages and induce inflammatory responses. Results indicated that, after the 30-min dual-species coaggregation, 116 genes were significantly up-regulated, and 151 genes were significantly down-regulated in S. gordonii; 97 genes were significantly down-regulated, and 114 genes were significantly up-regulated in F. nucleatum subsp. polymorphum. Multiple S. gordonii genes were involved in the biosynthesis and export of cell-wall proteins and carbohydrate metabolism. F. nucleatum subsp. polymorphum genes were mostly associated with translation and protein export. The coaggregation led to decreased expression levels of genes associated with lipopolysaccharide and peptidoglycan biosynthesis. Coaggregation between S. gordonii and F. nucleatum subsp. polymorphum significantly promoted both species' intracellular survival within macrophages and attenuated the production of pro-inflammatory cytokines IL-6 and IL-1β. Physical interactions between these two species promoted a symbiotic lifestyle and repressed macrophage's killing and pro-inflammatory responses.
Collapse
Affiliation(s)
- Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jiani Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Zijian Yuan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
27
|
Wang S, Liu Y, Li J, Zhao L, Yan W, Lin B, Guo X, Wei Y. Fusobacterium nucleatum Acts as a Pro-carcinogenic Bacterium in Colorectal Cancer: From Association to Causality. Front Cell Dev Biol 2021; 9:710165. [PMID: 34490259 PMCID: PMC8417943 DOI: 10.3389/fcell.2021.710165] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common cancer worldwide with complex etiology. Fusobacterium nucleatum (F. nucleatum), an oral symbiotic bacterium, has been linked with CRC in the past decade. A series of gut microbiota studies show that CRC patients carry a high abundance of F. nucleatum in the tumor tissue and fecal, and etiological studies have clarified the role of F. nucleatum as a pro-carcinogenic bacterium in various stages of CRC. In this review, we summarize the biological characteristics of F. nucleatum and the epidemiological associations between F. nucleatum and CRC, and then highlight the mechanisms by which F. nucleatum participates in CRC progression, metastasis, and chemoresistance by affecting cancer cells or regulating the tumor microenvironment (TME). We also discuss the research gap in this field and give our perspective for future studies. These findings will pave the way for manipulating gut F. nucleatum to deal with CRC in the future.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jun Li
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Zhao
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yan
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baiqiang Lin
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Guo
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunwei Wei
- Department of Oncological and Endoscopic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Queen J, Domingue JC, White JR, Stevens C, Udayasuryan B, Nguyen TTD, Wu S, Ding H, Fan H, McMann M, Corona A, Larman TC, Verbridge SS, Housseau F, Slade DJ, Drewes JL, Sears CL. Comparative Analysis of Colon Cancer-Derived Fusobacterium nucleatum Subspecies: Inflammation and Colon Tumorigenesis in Murine Models. mBio 2021; 13:e0299121. [PMID: 35130731 PMCID: PMC8822350 DOI: 10.1128/mbio.02991-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023] Open
Abstract
Fusobacteria are commonly associated with human colorectal cancer (CRC), but investigations are hampered by the absence of a stably colonized murine model. Further, Fusobacterium nucleatum subspecies isolated from human CRC have not been investigated. While F. nucleatum subspecies are commonly associated with CRC, their ability to induce tumorigenesis and contributions to human CRC pathogenesis are uncertain. We sought to establish a stably colonized murine model and to understand the inflammatory potential and virulence genes of human CRC F. nucleatum, representing the 4 subspecies, animalis, nucleatum, polymorphum, and vincentii. Five human CRC-derived and two non-CRC derived F. nucleatum strains were tested for colonization, tumorigenesis, and cytokine induction in specific-pathogen-free (SPF) and/or germfree (GF) wild-type and ApcMin/+ mice, as well as in vitro assays and whole-genome sequencing (WGS). SPF wild-type and ApcMin/+ mice did not achieve stable colonization with F. nucleatum, whereas certain subspecies stably colonized some GF mice but without inducing colon tumorigenesis. F. nucleatum subspecies did not form in vivo biofilms or associate with the mucosa in mice. In vivo inflammation was inconsistent across subspecies, whereas F. nucleatum induced greater cytokine responses in a human colorectal cell line, HCT116. While F. nucleatum subspecies displayed genomic variability, no distinct virulence genes associated with human CRC strains were identified that could reliably distinguish these strains from non-CRC clinical isolates. We hypothesize that the lack of F. nucleatum-induced tumorigenesis in our model reflects differences in human and murine biology and/or a synergistic role for F. nucleatum in concert with other bacteria to promote carcinogenesis. IMPORTANCE Colon cancer is a leading cause of cancer morbidity and mortality, and it is hypothesized that dysbiosis in the gut microbiota contributes to colon tumorigenesis. Fusobacterium nucleatum, a member of the oropharyngeal microbiome, is enriched in a subset of human colon tumors. However, it is unclear whether this genetically varied species directly promotes tumor formation, modulates mucosal immune responses, or merely colonizes the tumor microenvironment. Mechanistic studies to address these questions have been stymied by the lack of an animal model that does not rely on daily orogastric gavage. Using multiple murine models, in vitro assays with a human colon cancer cell line, and whole-genome sequencing analysis, we investigated the proinflammatory and tumorigenic potential of several F. nucleatum clinical isolates. The significance of this research is development of a stable colonization model of F. nucleatum that does not require daily oral gavages in which we demonstrate that a diverse library of clinical isolates do not promote tumorigenesis.
Collapse
Affiliation(s)
- Jessica Queen
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jada C. Domingue
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Courtney Stevens
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Barath Udayasuryan
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Tam T. D. Nguyen
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Shaoguang Wu
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hua Ding
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Hongni Fan
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Madison McMann
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alina Corona
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Tatianna C. Larman
- Division of Gastrointestinal and Liver Pathology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Scott S. Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Franck Housseau
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel J. Slade
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia, USA
| | - Julia L. Drewes
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cynthia L. Sears
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Huang X, She L, Liu H, Liu P, Chen J, Chen Y, Zhou W, Lu Y, Lin J. Study of oral microorganisms contributing to non-carious cervical lesions via bacterial interaction and pH regulation. J Cell Mol Med 2021; 25:3103-3112. [PMID: 33591640 PMCID: PMC7957269 DOI: 10.1111/jcmm.16370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/07/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
There is a lack of evidence about the relationship between microorganisms and non‐carious cervical lesions (NCCLs) due to limited technologies. A group of 78 patients was enrolled for microbial 16S rRNA sequencing of dental plaques on normal and defective cervical surfaces. Parallel data from 39 patients were analysed with paired t tests, and Fusobacteriales exhibited significantly less distribution on NCCLs than on normal surfaces. As a result, Fusobacterium nucleatum, the most common oral bacterial strain belonging to the order Fusobacteriales, was selected for further research. From a scanning electron microscopy (SEM) scan, the tooth surface with Fusobacterium nucleatum and Streptococcus mutans culture was more intact than that without Fusobacterium nucleatum. Furthermore, the calcium contents in groups with Fusobacterium nucleatum were significantly higher than that without it. In further mechanistic research, Fusobacterium nucleatum was demonstrated to adhere to and disturb other organisms as well as producing alkaline secretions to neutralize the deleterious acidic environment, protecting the tooth structure. In conclusion, microorganisms and NCCLs were confirmed directly related through adherent bacterial interactions and pH regulation. The research provides a new perspective and experimental evidence for the relation between microorganisms and NCCLs, which guides clinical treatment and preventive dentistry in the future.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Lin She
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Huanhuan Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Pingping Liu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jue Chen
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| | - Yingcong Chen
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Wenjie Zhou
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Youguang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jun Lin
- Institute of Applied Genomics, Fuzhou University, Fuzhou, China.,College of Biological Science and Engineering, Fuzhou University, Fuzhou, China.,Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
30
|
Huangfu SC, Zhang WB, Zhang HR, Li Y, Zhang YR, Nie JL, Chu XD, Chen CS, Jiang HP, Pan JH. Clinicopathological and prognostic significance of Fusobacterium nucleatum infection in colorectal cancer: a meta-analysis. J Cancer 2021; 12:1583-1591. [PMID: 33613745 PMCID: PMC7890333 DOI: 10.7150/jca.50111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background: This study aimed to clarify the relationship between F. nucleatum levels and the prognosis of CRC, which is still controversial. Methods: Relevant articles were searched on PubMed, Web of Science, PMC and Embase up to April 7, 2020. Outcomes of interest included clinical characteristics, molecular characteristic and survival analysis. HR (OR), odds ratios (OR) and 95% confidence interval (CI) were calculated to explore the prognostic value and relationship of clinical characteristics of Fusobacterium nucleatum in CRC. Results: A total of 3626 CRC patients from 13 eligible studies were included. High levels of F. nucleatum were associated with worse prognosis, as such parameters as overall survival (OS) (hazard ratio [HR] = 1.40, 95% confidence interval [CI]: 1.40 - 1.63, P < 0.0001), disease-free survival (DFS) (HR = 1.71, 95% CI: 1.29-2.26, P = 0.0002), and cancer-specific survival (OR= 1.93, 95% CI: 1.42-2.62, P <0.0001). F. nucleatum levels were related with T3-T4 stage (OR = 2.20, 95% CI: 1.66-2.91, P < 0.00001), M1 stage (OR = 2.11, 95% CI: 1.25-3.56, P = 0.005), poor tumor differentiation (OR = 1.83, 95% CI: 1.11-3.03, P =0.02), microsatellite instability-high (OR = 2.53, 95% CI: 1.53-4.20, P = 0.0003), and KRAS mutation (OR =1.27, 95% CI: 1.00-1.61, P=0.05) showed. Conclusions: High levels of F. nucleatum suggest a poor prognosis and are associated with tumor growth, distant metastasis, poor differentiation, MSI-high, and KRAS mutation in CRC patients.
Collapse
Affiliation(s)
- Shu-Chen Huangfu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Wen-Bin Zhang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hao-Ran Zhang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yang Li
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Yi-Ran Zhang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jin-Lin Nie
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Xiao-Dong Chu
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Chang-Shun Chen
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Hai-Ping Jiang
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Jing-Hua Pan
- Department of General Surgery, the First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
31
|
Șurlin P, Nicolae FM, Șurlin VM, Pătrașcu Ș, Ungureanu BS, Didilescu AC, Gheonea DI. Could Periodontal Disease through Periopathogen Fusobacterium Nucleatum be an Aggravating Factor for Gastric Cancer? J Clin Med 2020; 9:jcm9123885. [PMID: 33260439 PMCID: PMC7761398 DOI: 10.3390/jcm9123885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease affects the supporting tissues of the teeth, being a chronic inflammatory disease caused by specific microorganisms from subgingival biofilm. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that acts as a periodontal pathogen, being an important factor in linking Gram-positive and Gram-negative bacteria in the periodontal biofilm, but its involvement in systemic diseases has also been found. Several studies regarding the implication of Fusobacterium nucleatum in gastro-enterological cancers have been conducted. The present review aims to update and systematize the latest information about Fusobacterium nucleatum in order to evaluate the possibility of an association between periodontal disease and the evolution of gastroenterological cancers through the action of Fusobacterium nucleatum, highlighting gastric cancer. This would motivate future research on the negative influence of periodontal pathology on the evolution of gastric cancer in patients suffering from both pathologies.
Collapse
Affiliation(s)
- Petra Șurlin
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Flavia Mirela Nicolae
- Department of Periodontology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (F.M.N.); (V.M.S.)
| | - Valeriu Marin Șurlin
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
- Correspondence: (F.M.N.); (V.M.S.)
| | - Ștefan Pătrașcu
- Department 1st of Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Bogdan Silviu Ungureanu
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| | - Andreea Cristiana Didilescu
- Department of Embriology, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania;
| | - Dan Ionuț Gheonea
- Department of Gastroenterology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (B.S.U.); (D.I.G.)
| |
Collapse
|
32
|
Manoharan L, Brundin M, Rakhimova O, Chávez de Paz L, Romani Vestman N. New Insights into the Microbial Profiles of Infected Root Canals in Traumatized Teeth. J Clin Med 2020; 9:jcm9123877. [PMID: 33260621 PMCID: PMC7760719 DOI: 10.3390/jcm9123877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
Traumatic dental injuries in young individuals are often exposed to the invasion of oral microorganisms that leads to pulp necrosis. Infective necrosis in permanent teeth not-fully-developed causes aberrant root formation. Regeneration endodontic treatments (RETs) have shown promising results by promoting continued root development by stem cells. Critical to the success of RET is the thorough disinfection of the pulpal space. To establish effective antimicrobial protocols for root canal disinfection, the invading microorganisms need to be identified. In the present study, we use a combination of culture-based and high-throughput molecular sequencing techniques to investigate the microbial profiles from traumatized teeth (30 cases) and controls, i.e., teeth with pulp infections not caused by trauma (32 cases). Overall, a high microbial diversity in traumatized necrotic teeth was observed. Eubacterium yurii subsps. yurii and margaretiae, as well as key ‘bridging oral species’ F. nucleatum sp., Polymorphum and Corynebacterium matruchotti, were highly associated with traumatized teeth. The microbial compositions of traumatized teeth differed considerably from those of infected teeth not caused by trauma. Age and tooth position also influence microbial compositions. In conclusion, we show that the root canal microflora of traumatized teeth is highly diverse, and it differs from root canal infections not caused by trauma.
Collapse
Affiliation(s)
- Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), Lund University, 22362 Lund, Sweden;
| | - Malin Brundin
- Department of Endodontics, Umeå University, 90187 Umeå, Sweden;
| | - Olena Rakhimova
- Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| | | | - Nelly Romani Vestman
- Department of Endodontics, County Council of Västerbotten, 90189 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Correspondence:
| |
Collapse
|
33
|
Manzer HS, Nobbs AH, Doran KS. The Multifaceted Nature of Streptococcal Antigen I/II Proteins in Colonization and Disease Pathogenesis. Front Microbiol 2020; 11:602305. [PMID: 33329493 PMCID: PMC7732690 DOI: 10.3389/fmicb.2020.602305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022] Open
Abstract
Streptococci are Gram-positive bacteria that belong to the natural microbiota of humans and animals. Certain streptococcal species are known as opportunistic pathogens with the potential to cause severe invasive disease. Antigen I/II (AgI/II) family proteins are sortase anchored cell surface adhesins that are nearly ubiquitous across streptococci and contribute to many streptococcal diseases, including dental caries, respiratory tract infections, and meningitis. They appear to be multifunctional adhesins with affinities to various host substrata, acting to mediate attachment to host surfaces and stimulate immune responses from the colonized host. Here we will review the literature including recent work that has demonstrated the multifaceted nature of AgI/II family proteins, focusing on their overlapping and distinct functions and their important contribution to streptococcal colonization and disease.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Angela H. Nobbs
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
34
|
Li Q, Tan L, Wang H, Kou Y, Shi X, Zhang S, Pan Y. Fusobacterium nucleatum Interaction with Pseudomonas aeruginosa Induces Biofilm-Associated Antibiotic Tolerance via Fusobacterium Adhesin A. ACS Infect Dis 2020; 6:1686-1696. [PMID: 32320601 DOI: 10.1021/acsinfecdis.9b00402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Respiratory infections with Pseudomonas aeruginosa or Fusobacterium nucleatum are associated with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) and failure in antibiotic treatment. However, the impact of these dual-species interactions on the severity of chronic obstructive pulmonary disease (COPD) and biofilm antibiotic susceptibility remains poorly understood. This study demonstrated that F. nucleatum frequently coexisted with P. aeruginosa in the respiratory tract, and the number of F. nucleatum was negatively correlated with the lung function of AECOPD patients. The coculture of P. aeruginosa and F. nucleatum promoted bacterial proliferation and induced antibiotic tolerance through the formation of a dense biofilm surrounded by excessive Pel and Psl polysaccharides. Moreover, Fusobacterium adhesin A (FadA), rather than F. nucleatum spent medium, induced antibiotic tolerance of the P. aeruginosa biofilm. These results indicate that F. nucleatum is a biomarker of lung function decline in AECOPD patients and interacts with P. aeruginosa in vitro to resist antibiotics via FadA, which would be a potential anti-infective target of these dual-species infection.
Collapse
Affiliation(s)
- Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Lisi Tan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Hongyan Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Yurong Kou
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Xiaoting Shi
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Shuwei Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| | - Yaping Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, Liaoning 110002, China
| |
Collapse
|
35
|
Liu T, Liu J, Liu J, Yang R, Lu X, He X, Shi W, Guo L. Interspecies Interactions Between Streptococcus Mutans and Streptococcus Agalactiae in vitro. Front Cell Infect Microbiol 2020; 10:344. [PMID: 32733820 PMCID: PMC7358462 DOI: 10.3389/fcimb.2020.00344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023] Open
Abstract
Streptococcus mutans is an oral species closely associated with dental caries. As an early oral colonizer, S. mutans utilizes interspecies coaggregation to promote the colonization of subsequent species and affect polymicrobial pathogenesis. Previous studies have confirmed several adhering partner species of S. mutans, including Candida albicans and Fusobacterium nucleatum. In this study, we discovered new intergeneric co-adherence between S. mutans and the saliva isolate Streptococcus agalactiae (GBS-SI101). Research shows that GBS typically colonizes the human gastrointestinal and vaginal tracts. It is responsible for adverse pregnancy outcomes and life-threatening infections in neonates and immunocompromised people. Our results revealed that GtfB and GtfC of S. mutans, which contributed to extracellular polysaccharide synthesis, promoted coaggregation of S. mutans with GBS-SI101. In addition, oral streptococci, including Streptococcus sanguinis, Streptococcus gordonii and S. mutans, barely inhibited the growth of GBS-SI101. This study indicated that S. mutans could help GBS integrate into the Streptococcus-associated oral polymicrobial community and become a resident species in the oral cavity, increasing the risk of oral infections.
Collapse
Affiliation(s)
- Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianwei Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
36
|
Vandeplassche E, Sass A, Ostyn L, Burmølle M, Kragh KN, Bjarnsholt T, Coenye T, Crabbé A. Antibiotic susceptibility of cystic fibrosis lung microbiome members in a multispecies biofilm. Biofilm 2020; 2:100031. [PMID: 33447816 PMCID: PMC7798459 DOI: 10.1016/j.bioflm.2020.100031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022] Open
Abstract
The lungs of cystic fibrosis (CF) patients are often chronically colonized by multiple microbial species that can form biofilms, including the major CF pathogen Pseudomonas aeruginosa. Herewith, lower microbial diversity in CF airways is typically associated with worse health outcomes. In an attempt to treat CF lung infections patients are frequently exposed to antibiotics, which may affect microbial diversity. This study aimed at understanding if common antibiotics that target P. aeruginosa influence microbial diversity. To this end, a microaerophilic multispecies biofilm model of frequently co-isolated members of the CF lung microbiome (Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus anginosus, Achromobacter xylosoxidans, Rothia mucilaginosa, and Gemella haemolysans) was exposed to antipseudomonal antibiotics. We found that antibiotics that affected several dominant species (i.e. ceftazidime, tobramycin) resulted in higher species evenness compared to colistin, which is only active against P. aeruginosa. Furthermore, susceptibility of individual species in the multispecies biofilm following antibiotic treatment was compared to that of the respective single-species biofilms, showing no differences. Adding three anaerobic species (Prevotella melaninogenica, Veillonella parvula, and Fusobacterium nucleatum) to the multispecies biofilm did not influence antibiotic susceptibility. In conclusion, our study demonstrates antibiotic-dependent effects on microbial community diversity of multispecies biofilms comprised of CF microbiome members.
Collapse
Affiliation(s)
- Eva Vandeplassche
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Mette Burmølle
- Department of Microbiology, University of Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Denmark
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Belgium
| |
Collapse
|
37
|
Qin W, Wang C, Jiang C, Sun J, Yu C, Jiao T. Graphene Oxide Enables the Reosteogenesis of Previously Contaminated Titanium In Vitro. J Dent Res 2020; 99:922-929. [PMID: 32320640 DOI: 10.1177/0022034520913873] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The main goal of peri-implantitis treatment is to control infection and arrest bone loss, which requires the removal of polymicrobial biofilms on the implant surface and the reduction of tissue invasion. Additionally, prognosis can be improved if reosseointegration occurs on previously contaminated implants. To evaluate whether graphene oxide (GO) can remove polymicrobial biofilms, biofilms were established on titanium surfaces in vitro and treated with different methods: group B, removed only with brushing; group G, treated with different GO concentrations (64, 128, 256, and 512 μg/mL); group GB, combined treatments of groups B and G; and group C, untreated. Subsequently, to evaluate reosteogenesis on previously contaminated titanium, 4 groups were used: groups C, B, GB-256, and GB-512 (treated with 256 and 512 μg/mL of GO, respectively). Intact clean titanium (IC) was used as a control. Additionally, cell behavior on IC treated with GB-256 (IGB-256) and GB-512 (IGB-512) was compared with that of the GB-256 and GB-512 groups, respectively. The results showed that at high concentrations (≥256 μg/mL), GO eliminated residual bacteria and inhibited biofilm reformation after brushing, whereas neither GO nor brushing alone could achieve this. Bone marrow-derived mesenchymal stem cell viability in groups GB-256 and IC was higher than that in groups GB-512, C, and B (P < 0.05). No significant difference was found between group GB-256 and group IC (P > 0.05). Osteogenic differentiation of bone marrow-derived mesenchymal stem cells in group GB-256 was higher than that in groups IC, GB-512, C, and B. No difference was found between groups IGB-256 and IGB-512 and groups GB-256 and GB-512, respectively (P > 0.05). In conclusion, 256 μg/mL of GO combined with brushing significantly removed polymicrobial biofilms that remained on the previously contaminated titanium surfaces. The bone marrow-derived mesenchymal stem cell osteogenic potential was regained or even enhanced on the titanium surfaces treated this way in vitro, which might provide a new idea for treating peri-implantitis.
Collapse
Affiliation(s)
- W Qin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - C Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - C Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - J Sun
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - C Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| | - T Jiao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, People's Republic of China
| |
Collapse
|
38
|
Brennan CA, Garrett WS. Fusobacterium nucleatum - symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2020; 17:156-166. [PMID: 30546113 DOI: 10.1038/s41579-018-0129-6] [Citation(s) in RCA: 611] [Impact Index Per Article: 152.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fusobacterium nucleatum has long been found to cause opportunistic infections and has recently been implicated in colorectal cancer; however, it is a common member of the oral microbiota and can have a symbiotic relationship with its hosts. To address this dissonance, we explore the diversity and niches of fusobacteria and reconsider historic fusobacterial taxonomy in the context of current technology. We also undertake a critical reappraisal of fusobacteria with a focus on F. nucleatum as a mutualist, infectious agent and oncogenic microorganism. In this Review, we delve into recent insights and future directions for fusobacterial research, including the current genetic toolkit, our evolving understanding of its mechanistic role in promoting colorectal cancer and the challenges of developing diagnostics and therapeutics for F. nucleatum.
Collapse
Affiliation(s)
| | - Wendy S Garrett
- Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
39
|
Shokeen B, Park J, Duong E, Rambhia S, Paul M, Weinberg A, Shi W, Lux R. Role of FAD-I in Fusobacterial Interspecies Interaction and Biofilm Formation. Microorganisms 2020; 8:E70. [PMID: 31906541 PMCID: PMC7023056 DOI: 10.3390/microorganisms8010070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/25/2019] [Accepted: 12/31/2019] [Indexed: 11/17/2022] Open
Abstract
: RadD, a major adhesin of oral fusobacteria, is part of a four-gene operon encoding the small lipoprotein FAD-I and two currently uncharacterized small proteins encoded by the rapA and rapB genes. Previously, we described a role for FAD-I in the induction of human B-defensin 2 (hBD2) upon contact with oral epithelial cells. Here, we investigated potential roles for fad-I, rapA, and rapB in interspecies interaction and biofilm formation. Gene inactivation mutants were generated for each of these genes in the nucleatum and polymorphum subspecies of Fusobacterium nucleatum and characterized for their adherence to partner species, biofilm formation, and operon transcription. Binding to Streptococcus gordonii was increased in all mutant strains with Δfad-I having the most significant effect. This increased adherence was directly proportional to elevated radD transcript levels and resulted in significantly different architecture and height of the biofilms formed by Δfad-I and S. gordonii compared to the wild-type parent. In conclusion, FAD-I is important for fusobacterial interspecies interaction as its lack leads to increased production of the RadD adhesin suggesting a role of FAD-I in its regulation. This regulatory effect does not require the presence of functional RadD.
Collapse
Affiliation(s)
- Bhumika Shokeen
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Jane Park
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Emily Duong
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sonam Rambhia
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Manash Paul
- David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Aaron Weinberg
- Department of Biological Sciences, Case Western Reserve University, Cleveland, OH 44106-4905, USA
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA 02142, USA
| | - Renate Lux
- Section of Periodontics, Division of Constitutive & Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
40
|
Diaz P, Valm A. Microbial Interactions in Oral Communities Mediate Emergent Biofilm Properties. J Dent Res 2020; 99:18-25. [PMID: 31590609 PMCID: PMC6927214 DOI: 10.1177/0022034519880157] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oral microbial communities are extraordinarily complex in taxonomic composition and comprise interdependent biological systems. The bacteria, archaea, fungi, and viruses that thrive within these communities engage in extensive cell-cell interactions, which are both beneficial and antagonistic. Direct physical interactions among individual cells mediate large-scale architectural biofilm arrangements and provide spatial proximity for chemical communication and metabolic cooperation. In this review, we summarize recent work in identifying specific molecular components that mediate cell-cell interactions and describe metabolic interactions, such as cross-feeding and exchange of electron acceptors and small molecules, that modify the growth and virulence of individual species. We argue, however, that although pairwise interaction models have provided useful information, complex community-like systems are needed to study the properties of oral communities. The networks of multiple synergistic and antagonistic interactions within oral biofilms give rise to the emergent properties of persistence, stability, and long-range spatial structure, with these properties mediating the dysbiotic transitions from health to oral diseases. A better understanding of the fundamental properties of interspecies networks will lead to the development of effective strategies to manipulate oral communities.
Collapse
Affiliation(s)
- P.I. Diaz
- Division of Periodontology, Department of Oral Health and Diagnostic Sciences, School of Dental Medicine, UConn Health, Farmington, CT, USA
| | - A.M. Valm
- Department of Biological Sciences, University at Albany, SUNY, Albany, NY, USA,A.M. Valm, Department of Biological Sciences, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222, USA.
| |
Collapse
|
41
|
Sun CH, Li BB, Wang B, Zhao J, Zhang XY, Li TT, Li WB, Tang D, Qiu MJ, Wang XC, Zhu CM, Qian ZR. The role of Fusobacterium nucleatum in colorectal cancer: from carcinogenesis to clinical management. Chronic Dis Transl Med 2019; 5:178-187. [PMID: 31891129 PMCID: PMC6926109 DOI: 10.1016/j.cdtm.2019.09.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor that affects people worldwide. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue; many studies have indicated that F. nucleatum is closely related to the colorectal carcinogenesis. In this review, we provide the latest information to reveal the related molecular mechanisms. The known virulence factors of F. nucleatum promote adhesion to intestinal epithelial cells via FadA and Fap2. Besides, Fap2 also binds to immune cells causing immunosuppression. Furthermore, F. nucleatum recruits tumor-infiltrating immune cells, thus yielding a pro-inflammatory microenvironment, which promotes colorectal neoplasia progression. F. nucleatum was also found to potentiate CRC development through toll-like receptor 2 (TLR2)/toll-like receptor 4 (TLR4) signaling and microRNA (miRNA)-21 expression. In addition, F. nucleatum increases CRC recurrence along with chemoresistance by mediating a molecular network of miRNA-18a*, miRNA-4802, and autophagy components. Moreover, viable F. nucleatum was detected in mouse xenografts of human primary colorectal adenocarcinomas through successive passages. These findings indicated that an increased number of F. nucleatum in the tissues is a biomarker for the diagnosis and prognosis of CRC, and the underlying molecular mechanism can probably provide a potential intervention treatment strategy for patients with F. nucleatum-associated CRC.
Collapse
Affiliation(s)
- Chun-Hui Sun
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris 75005, France.,Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Bin-Bin Li
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Bo Wang
- Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jing Zhao
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiao-Ying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ting-Ting Li
- Department of Gastroenterology, The Second Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Wen-Bing Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Miao-Juan Qiu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xin-Cheng Wang
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Cheng-Ming Zhu
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhi-Rong Qian
- Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
42
|
Thurnheer T, Karygianni L, Flury M, Belibasakis GN. Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models. Front Microbiol 2019; 10:1716. [PMID: 31417514 PMCID: PMC6683768 DOI: 10.3389/fmicb.2019.01716] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival “feeding”, and a subgingival biofilm model. The standard six-species supragingival and “feeding” biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the “feeding” supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Lamprini Karygianni
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Manuela Flury
- Division of Oral Microbiology and Immunology, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
43
|
Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Choo SW, Jakubovics NS. Transcriptional responses of Streptococcus gordonii
and Fusobacterium nucleatum
to coaggregation. Mol Oral Microbiol 2018; 33:450-464. [DOI: 10.1111/omi.12248] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/14/2018] [Accepted: 10/12/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Naresh V. R. Mutha
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Waleed K. Mohammed
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
- Department of Basic Science, College of Dentistry; University of Anbar; Anbar Iraq
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems (ICOS) Research Group, School of Computing; Newcastle University; Newcastle upon Tyne UK
| | - Geok Y. A. Tan
- Institute of Biological Sciences, Faculty of Science; University of Malaya; Kuala Lumpur Malaysia
| | - Siew W. Choo
- Department of Biological Sciences; Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
- Suzhou Genome Centre (SGC); Health Technologies University Research Centre (HT-URC), Xi’an Jiaotong-Liverpool University, Suzhou Dushu Lake Science and Education Innovation District; Suzhou China
| | - Nicholas S. Jakubovics
- School of Dental Sciences; Centre for Oral Health Research, Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|