1
|
Kobsar A, Wiebecke S, Weber K, Koessler A, Kuhn S, Boeck M, Zeller-Hahn J, Koessler J. Effect of toxins from different periodontitis-associated bacteria on human platelet function. Mol Oral Microbiol 2024; 39:468-476. [PMID: 39056428 DOI: 10.1111/omi.12480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/22/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND Periodontitis is caused by a dysbiosis of oral bacteria resulting in alveolar bone destruction and teeth loss. The role of platelets in pathogenesis of periodontitis is a subject of research. The release of toxins from periodontitis-associated bacteria may influence platelet function and contribute to the modulation of hemostatic or inflammatory responses. Therefore, we explored platelet function upon exposure to defined toxins: leukotoxin A from Aggregatibacter actinomycetemcomitans (LtxA), a synthetic version of the C14-Tri-LAN-Gly peptide from Fusobacterium nucleatum (C14), and lipopolysaccharides from Porphyromonas gingivalis (LPS). METHODS Light transmission aggregometry was performed after the addition of toxins to platelet-rich plasma in different doses. Flow cytometry was used to identify inhibitory effects of toxins by measuring phosphorylation of the vaso-dilator-stimulated phosphoprotein or to identify activating effects by the detection of CD62P expression. The release of chemokines derived from washed platelets was determined by immunoassays. RESULTS Collagen-induced threshold aggregation values were diminished upon incubation with LtxA and C14, accompanied with an increase of vaso-dilator-stimulated phosphoprotein (VASP) phosphorylation, indicating platelet inhibition. In contrast, LPS did not affect aggregation but slightly enhanced CD62P expression under co-stimulation with low-dose thrombin pointing to slight platelet activation. The three toxins did not relevantly influence the secretion of chemokines. CONCLUSIONS Although weak, the investigated toxins differently influenced human platelet function. LtxA and C14 mediated inhibitory effects, whereas LPS contributed to a slight activation of platelets. Further analysis of specific cellular responses mediated by bacterial toxins may render novel targets and suggestions for the treatment of periodontitis.
Collapse
Affiliation(s)
- Anna Kobsar
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| | - Sophie Wiebecke
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| | - Katja Weber
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| | - Angela Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| | - Sabine Kuhn
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| | - Markus Boeck
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| | - Julia Zeller-Hahn
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| | - Juergen Koessler
- Institute of Transfusion Medicine and Haemotherapy, University of Wuerzburg, Wurzburg, Germany
| |
Collapse
|
2
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
3
|
Talapko J, Juzbašić M, Meštrović T, Matijević T, Mesarić D, Katalinić D, Erić S, Milostić-Srb A, Flam J, Škrlec I. Aggregatibacter actinomycetemcomitans: From the Oral Cavity to the Heart Valves. Microorganisms 2024; 12:1451. [PMID: 39065217 PMCID: PMC11279289 DOI: 10.3390/microorganisms12071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Aggregatibacter actinomycetemcomitans (A. actinomycetecomitans) is a Gram-negative bacterial species that is an essential component of the oral microbiota. Due to its aggregative properties, it plays a role in the pathogenesis of human diseases. The presence of the surface proteins Fim, Briae, and microvesicles enables the bacterium to adhere to the epithelial surface and the tooth's surface. The presence of leukotoxin A (LtxA), which plays an important role in the pathogenicity of the bacterium, has been associated with both periodontitis and the etiology of rheumatoid arthritis (RA). A. actinomycetecomitans is also associated with several other systemic diseases and complications, such as endocarditis and different abscesses. In addition to leukotoxin A, A. actinomycetecomitans possesses several different virulence factors, including bacteriocins, chemotaxis inhibitory factors, cytotoxic factors, Fc-binding proteins, immunosuppressive factors, lipopolysaccharide collagenase, fibroblast inhibitory factors, antibiotic resistance determinants, adhesins, invasive factors and factors that inhibit the function of polymorphonuclear leukocytes. The ability of A. actinomycetemcomitans lipopolysaccharide to induce macrophages to secrete the interleukins IL-1, IL-1β, and tumor necrosis factor (TNF) is of considerable importance. The primary etiologic factor in the pathogenesis of periodontal disease is the oral biofilm colonized by anaerobic bacteria. Among these, A. actinomycetemcomitans occupies an important place as a facultative anaerobic bacterium. In addition, A. actinomycetemcomitans possesses many virulence factors that contribute to its potential to cause cancer. This article provides an overview of the virulence factors of A. actinomycetecomitans and its association with various systemic diseases, its oncogenic potential, and the treatment options for infections caused by A. actinomycetecomitans.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| | - Martina Juzbašić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| | - Tomislav Meštrović
- University Centre Varaždin, University North, 42000 Varaždin, Croatia
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
- Department for Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Tatjana Matijević
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Department of Dermatology and Venereology, Clinical Hospital Center Osijek, 31000 Osijek, Croatia
| | - Dora Mesarić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Andrea Milostić-Srb
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| | - Josipa Flam
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (D.K.)
| |
Collapse
|
4
|
Kalfas S, Pour ZK, Claesson R, Johansson A. Leukotoxin A Production and Release by JP2 and Non-JP2 Genotype Aggregatibacter actinomycetemcomitans in Relation to Culture Conditions. Pathogens 2024; 13:569. [PMID: 39057796 PMCID: PMC11279835 DOI: 10.3390/pathogens13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Aggressive forms of periodontitis, especially in young patients, are often associated with an increased proportion of the Gram-negative bacterium Aggregatibacter actinomycetemcomitans of the microbiota of the affected periodontal sites. One of the virulence factors of A. actinomycetemcomitans is a leukotoxin (LtxA) that induces a pro-inflammatory cell death process in leukocytes. A. actinomycetemcomitans exhibits a large genetic diversity and different genotypes vary in LtxA production capacity. The genotype JP2 is a heavy LtxA producer due to a 530-base pair deletion in the promoter for the toxin genes, and this trait has been associated with an increased pathogenic potential. The present study focused on the production and release of LtxA by different A. actinomycetemcomitans genotypes and serotypes under various growth conditions. Four different strains of this bacterium were cultured in two different culture broths, and the amount of LtxA bound to the bacterial surface or released into the broths was determined. The cultures were examined during the logarithmic and the early stationary phases of growth. The JP2 genotype exhibited the highest LtxA production among the strains tested, and production was not affected by the growth phase. The opposite was observed with the other strains. The composition of the culture broth had no effect on the growth pattern of the tested strains. However, the abundant release of LtxA from the bacterial surface into the culture broth was found in the presence of horse serum. Besides confirming the enhanced leucotoxicity of the JP2 genotype, the study provides new data on LtxA production in the logarithmic and stationary phases of growth and the effect of media composition on the release of the toxin from the bacterial membrane.
Collapse
Affiliation(s)
- Sotirios Kalfas
- Department of Preventive Dentistry, Periodontology and Implant Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Zahra Khayyat Pour
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| | - Rolf Claesson
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| | - Anders Johansson
- Department of Odontology, Umeå University, 90187 Umeå, Sweden; (Z.K.P.); (R.C.)
| |
Collapse
|
5
|
Borcan AM, Olariu MC, Costea EL, Radu G, Simoiu M. Aggregatibacter actinomycetemcomitans endocarditis in an adult patient with patent ductus arteriosus. Germs 2024; 14:210-215. [PMID: 39493741 PMCID: PMC11527487 DOI: 10.18683/germs.2024.1433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 11/05/2024]
Abstract
Introduction Aggregatibacter (Actinobacillus) actinomycetemcomitans is a commensal bacterial pathogen in the human oral cavity. It can, however, represent the source of local or systemic infections with serious evolution, in particular infective endocarditis. We present a particular case of an adult male patient with infective endocarditis with A. actinomycetemcomitans and patent ductus arteriosus (PDA). Case report A 37-year-old patient, chronic ethanol user, is hospitalized for altered general condition, persistent cough, left chest pain, headache and dizziness, symptoms evolving for about 3 weeks. The clinical examination revealed crackling pulmonary rales present basally bilaterally, as well as numerous cavities and dental abscesses. Chest radiography showed mixed left hiliobasal pneumonia. Chest CT depicted pulmonary abscess and two filling defects in the pulmonary artery trunk, possible thrombotic/vegetative images/mediastinal thrombotic/adenopathic images. Broad spectrum antibiotic treatment was initiated. Transthoracic ultrasonography visualized persistence of ductus arteriosus and an echodense formation attached to the lateral wall of the pulmonary artery trunk. Following positive blood cultures for Aggregatibacter actinomycetemcomitans, the diagnosis of infective endocarditis was established and antibiotic treatment was de-escalated to ceftriaxone according to the antibiogram. The clinical course under treatment was slowly favorable, the patient was discharged on request on day 44 with continued treatment at home. Conclusions Infective endocarditis caused by Aggregatibacter actinomycetemcomitans should be considered in patients with altered general condition and congenital cardiovascular defects. In the present case, the patient presented two risk factors, namely poor dental hygiene and PDA.
Collapse
Affiliation(s)
- Alina Maria Borcan
- MD, PhD, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, No. 8 Eroii Sanitari Boulevard, Bucharest, 050474, Romania, and Department of Microbiology, National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| | - Mihaela Cristina Olariu
- MD, PhD, Department of Infectious Diseases I, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, No. 8 Eroii Sanitari Boulevard, Bucharest, 050474, Romania, and National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| | - Elena Liliana Costea
- MD, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, No. 8 Eroii Sanitari Boulevard, Bucharest, 050474, Romania
| | - Georgiana Radu
- MD, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, No. 8 Eroii Sanitari Boulevard, Bucharest, 050474, Romania
| | - Mădălina Simoiu
- MD, PhD, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, No. 8 Eroii Sanitari Boulevard, Bucharest, 050474, Romania, and National Institute for Infectious Diseases "Prof. Dr. Matei Balş", No. 1 Dr. Calistrat Grozovici street, Bucharest, 021105, Romania
| |
Collapse
|
6
|
Zhao J, Kuang L, Hu A, Zhang Q, Yang D, Wang C. OGNNMDA: a computational model for microbe-drug association prediction based on ordered message-passing graph neural networks. Front Genet 2024; 15:1370013. [PMID: 38689654 PMCID: PMC11058190 DOI: 10.3389/fgene.2024.1370013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024] Open
Abstract
In recent years, many excellent computational models have emerged in microbe-drug association prediction, but their performance still has room for improvement. This paper proposed the OGNNMDA framework, which applied an ordered message-passing mechanism to distinguish the different neighbor information in each message propagation layer, and it achieved a better embedding ability through deeper network layers. Firstly, the method calculates four similarity matrices based on microbe functional similarity, drug chemical structure similarity, and their respective Gaussian interaction profile kernel similarity. After integrating these similarity matrices, it concatenates the integrated similarity matrix with the known association matrix to obtain the microbe-drug heterogeneous matrix. Secondly, it uses a multi-layer ordered message-passing graph neural network encoder to encode the heterogeneous network and the known association information adjacency matrix, thereby obtaining the final embedding features of the microbe-drugs. Finally, it inputs the embedding features into the bilinear decoder to get the final prediction results. The OGNNMDA method performed comparative experiments, ablation experiments, and case studies on the aBiofilm, MDAD and DrugVirus datasets using 5-fold cross-validation. The experimental results showed that OGNNMDA showed the strongest prediction performance on aBiofilm and MDAD and obtained sub-optimal results on DrugVirus. In addition, the case studies on well-known drugs and microbes also support the effectiveness of the OGNNMDA method. Source codes and data are available at: https://github.com/yyzg/OGNNMDA.
Collapse
Affiliation(s)
- Jiabao Zhao
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Linai Kuang
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - An Hu
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Qi Zhang
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Dinghai Yang
- School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, China
| | - Chunxiang Wang
- Hunan Institute of Engineering College of textile and clothing, Xiangtan, China
| |
Collapse
|
7
|
Lin HH, Wu YS, Chang MT, Shyur LF, Lin YL. Plant-derived galactolipids enhance specific antibody production and induce class-switch as vaccine adjuvant. Vaccine 2024; 42:782-794. [PMID: 38199923 DOI: 10.1016/j.vaccine.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024]
Abstract
Various plant-derived compounds can activate immune responses against bacterial infections, and this property contributes to them being developed as effective and safe adjuvants for vaccines. This study evaluated the potential adjuvant effects of a galactolipid-enriched fraction generated from the medicinal plant Crassocephalum rabens (designated CRA). Heat shock protein 60 of periodontal disease pathogen Actinobacillus actinomycetemcomitans (AaHSP60) was taken as an antigen and mixed with CRA. The AaHSP60/CRA mixture was then injected intraperitoneally into the BALB/c mice. Titers and affinity of specific antibodies were measured by ELISA. Cytokine profiles in mouse serum or culture media of AaHSP60/CRA-treated splenocytes were analyzed by cytokine multiplex assay and ELISA kits. B cell differentiation and macrophage activation were determined by phenotyping. CRA dramatically enhanced specific antibody titers and induced Ig class switch, as shown by increases in the IgG2a, IgG2b, and IgG3 proportions of total Ig in mouse serum. Furthermore, CRA-induced anti-AaHSP60 antibodies had cross-reactivity to other bacterial HSP60s. Cell-based and animal results demonstrated that CRA induced the release of IL-21 and B cell activating factor (BAFF), which stimulated B cell differentiation. CRA enhanced cell proliferation, uptake ability, and antigen presentation in mouse phagocytes. CRA served as a vaccine adjuvant that enhance mouse immunity against pathogenic antigens. CRA strengthened the activation and capabilities of phagocytes and B cells. Therefore, CRA may be a promising adjuvant for bacterial vaccines including periodontal disease.
Collapse
Affiliation(s)
- Han-Huei Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yi-Shin Wu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Meng-Ting Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Lie-Fen Shyur
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Translational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Ling Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Afrasiabi S, Chiniforush N, Partoazar A, Goudarzi R. The role of bacterial infections in rheumatoid arthritis development and novel therapeutic interventions: Focus on oral infections. J Clin Lab Anal 2023:e24897. [PMID: 37225674 DOI: 10.1002/jcla.24897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) represents a primary public health challenge, which is a major source of pain, disability, and socioeconomic effects worldwide. Several factors contribute to its pathogenesis. Infections are an important concern in RA patients, which play a key role in mortality risk. Despite major advances in the clinical treatment of RA, long-term use of disease-modifying anti-rheumatic drugs can cause serious adverse effects. Therefore, effective strategies for developing novel prevention and RA-modifying therapeutic interventions are sorely needed. OBJECTIVE This review investigates the available evidence on the interplay between various bacterial infections, particularly oral infections and RA, and focuses on some potential interventions such as probiotics, photodynamic therapy, nanotechnology, and siRNA that can have therapeutic effects.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Chiniforush
- Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, California, USA
| |
Collapse
|
9
|
Fu Y, Maaβ S, Cavallo FM, de Jong A, Raangs E, Westra J, Buist G, Becher D, van Dijl JM. Differential Virulence of Aggregatibacter actinomycetemcomitans Serotypes Explained by Exoproteome Heterogeneity. Microbiol Spectr 2023; 11:e0329822. [PMID: 36541765 PMCID: PMC9927298 DOI: 10.1128/spectrum.03298-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans (Aa) is a Gram-negative bacterial pathogen associated with periodontitis and nonoral diseases like rheumatoid arthritis and Alzheimer´s disease. Aa isolates with the serotypes a, b, and c are globally most prevalent. Importantly, isolates displaying these serotypes have different clinical presentations. While serotype b isolates are predominant in severe periodontitis, serotypes a and c are generally encountered in mild periodontitis or healthy individuals. It is currently unknown how these differences are reflected in the overall secretion of virulence factors. Therefore, this study was aimed at a comparative analysis of exoproteomes from different clinical Aa isolates with serotypes a, b, or c by mass spectrometry, and a subsequent correlation of the recorded exoproteome profiles with virulence. Overall, we identified 425 extracellular proteins. Significant differences in the exoproteome composition of isolates with different serotypes were observed in terms of protein identification and abundance. In particular, serotype a isolates presented more extracellular proteins than serotype b or c isolates. These differences are mirrored in their virulence in infection models based on human salivary gland epithelial cells and neutrophils. Remarkably, serotype a isolates displayed stronger adhesive capabilities and induced more lysis of epithelial cells and neutrophils than serotype b or c isolates. Conversely, serotype c isolates showed relatively low leukotoxicity, while provoking NETosis to similar extents as serotype a and b isolates. Altogether, we conclude that the differential virulence presentation by Aa isolates with the dominant serotypes a, b, or c can be explained by their exoproteome heterogeneity. IMPORTANCE Periodontitis is an inflammatory disease that causes progressive destruction of alveolar bone and supporting tissues around the teeth, ultimately resulting in tooth loss. The bacterium Aggregatibacter actinomycetemcomitans (Aa) is a prevalent causative agent of periodontitis, but this oral pathogen is also associated with serious extraoral diseases like rheumatoid arthritis and Alzheimer's disease. Clinical Aa isolates are usually distinguished by serotyping, because of known serotype-specific differences in virulence. Aa with serotype b is associated with aggressive forms of periodontitis, while isolates with serotypes a or c are usually encountered in cases of mild periodontitis or healthy individuals. The molecular basis for these differences in virulence was so far unknown. In the present study, we pinpoint serotype-specific differences in virulence factor production by clinical Aa isolates. We consider these findings important, because they provide new leads for future preventive or therapeutic approaches to fight periodontitis and associated morbidities.
Collapse
Affiliation(s)
- Yanyan Fu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Sandra Maaβ
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Francis M. Cavallo
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Anne de Jong
- University of Groningen, Groningen Biomolecular Sciences and Biotechnology Institute, Department of Molecular Genetics, Groningen, the Netherlands
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Johanna Westra
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, Groningen, the Netherlands
| | - Girbe Buist
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| | - Dörte Becher
- University of Greifswald, Institute of Microbiology, Department of Microbial Proteomics, Greifswald, Germany
| | - Jan Maarten van Dijl
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology, Groningen, the Netherlands
| |
Collapse
|
10
|
Bapat A, Lucey O, Eckersley M, Ciesielczuk H, Ranasinghe S, Lambourne J. Invasive Aggregatibacter infection: shedding light on a rare pathogen in a retrospective cohort analysis. J Med Microbiol 2022; 71. [PMID: 36748613 DOI: 10.1099/jmm.0.001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. Aggregatibacter are Gram-negative, facultatively anaerobic rods or coccobacilli that are infrequently encountered as pathogens causing infection.Hypothesis/Gap Statement. The range of invasive infection that Aggregatibacter cause is poorly described. The pathogenicity of species such as Aggregatibacter segnis is debated.Aim. To identify invasive infection due to Aggregatibacter species in a large healthcare organization and to characterize clinical syndromes, co-morbidities and risk factors.Methodology. All microbiological samples positive for Aggregatibacter species were identified by conventional culture or 16S rRNA PCR between October 2017 and March 2021. Electronic records for all patients with positive samples were reviewed and the infection syndrome classified for patients with invasive disease.Results. Twenty-seven patients with invasive infection were identified, with a statistically significant difference in species-specific patterns of invasive infection (P=0.02) and a statistically significant association with residence in the 30 % most deprived households in the UK by postcode (P<0.01). The three most common co-morbidities were periodontitis or recent dental work (29.6%), cardiovascular disease (25.9%) and diabetes (18.5 %).Conclusion. We describe a novel association of Aggregatibacter segnis with skin and soft tissue infection. The propensity of the Aggregatibacter species to cause invasive infection at different body sites and be associated with deprivation is reported. Aggregatibacter actinomycetemcomitans bacteraemia was associated with infective endocarditis, and Aggregatibacter aphrophilus was implicated in severe appendicitis and noted to cause brain abscess. Areas warranting future research include exploring the risk-factors required for invasive infection and those that may determine the species-specific differences in patterns of invasive disease.
Collapse
Affiliation(s)
- Anjaneya Bapat
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Infection, Barts Health NHS Trust, London, UK
| | - Olivia Lucey
- Division of Infection, Barts Health NHS Trust, London, UK
| | | | | | | | | |
Collapse
|
11
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
12
|
Hashai K, Chapple IL, Shapira L, Assadi W, Dadon S, Polak D. CD18 Mediates Neutrophil Imperviousness to the Aggregatibacter actinomycetemcomitans JP2 Clone in Molar-Incisor Pattern Periodontitis. Front Immunol 2022; 13:847372. [PMID: 35663998 PMCID: PMC9159298 DOI: 10.3389/fimmu.2022.847372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Molar-incisor pattern periodontitis (MIPP) in the absence of significant local risk factors or systemic disease, is a rare, early onset periodontal disease phenotype, with 0.5% to 2.5% global prevalence. The condition is characterized by impaired neutrophil function and persistent Aggregatibacter actinomycetemcomitans (JP2 clone) infection. The aim of this study was to characterize neutrophil functional responses to JP2 and to investigate the neutrophil receptors involved. Materials and Methods Neutrophils were obtained from whole blood samples of periodontally healthy and MIPP subjects and incubated with the JP2 clone or a non-JP2 clone of A. actinomycetemcomitans. Bacterial survival was tested by blood agar culture; neutrophil death was tested with propidium iodide and flow cytometry; Reactive oxygen production (ROS) was measured with 2',7'-dichlorofluorescein diacetate and a fluorescence plate reader; the cytokinome was analysed using an array profiler, ELISA and RT-PCR. Receptors binding to JP2 were isolated using a novel immunoprecipitation assay and validated functionally using specific blocking antibodies. Results JP2 and non-JP2 survival was comparable between all the neutrophil groups. Resistance to neutrophil necrosis following exposure to JP2 was significantly lower in the MIPP group, than in all the other groups (p<0.0001). Conversely, MIPP neutrophils showed lower levels of ROS production in response to JP2 infection compared with that of healthy neutrophils (p<0.001). Furthermore, significantly lower levels of cytokines, such as IL8, IL10 and TNFα, were observed during JP2 incubation with MIPP neutrophils than upon incubation with periodontally healthy neutrophils. Various proteins expressed on neutrophils bind to JP2. Of these, CD18 was found to mediate neutrophil necrosis. The CD18 receptor on MIPP neutrophils acts differently from that on periodontally healthy patients neutrophils, and appears to reflect differential neutrophil reactions to JP2. Conclusion This study portrays a fundamental difference in neutrophil response to JP2 infection between periodontally healthy and MIPP patients. This was evident in the resistance to necrosis, and lower ROS and cytokine production, despite the persistent presence of viable JP2. Whilst in periodontally healthy neutrophils, JP2 binds to CD18 on cell surfaces, this is not the case in MIPP neutrophils, suggesting a potential role for CD18 in the periodontal susceptibility of MIPP patients.
Collapse
Affiliation(s)
- Koren Hashai
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Ian L. Chapple
- Institute of Clinical Sciences, College of Medical and Dental Sciences, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
- Birmingham Community Healthcare National Health Service (NHS) Foundation Trust, Birmingham, United Kingdom
| | - Lior Shapira
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| | - Walaa Assadi
- Department of Orthodontics, Rambam Medical Center, Haifa, Israel
| | - Stav Dadon
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Orthodontics, Hadassah Medical Center, Jerusalem, Israel
| | - David Polak
- Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Periodontics, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
13
|
Hbibi A, Bouziane A, Lyoussi B, Zouhdi M, Benazza D. Aggregatibacter actinomycetemcomitans: From Basic to Advanced Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:45-67. [DOI: 10.1007/978-3-030-96881-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
Causes of the progression of periodontitis such as an imbalance between the immune response by the host by the release of inflammatory mediators in the response of the oral pathogenic dysbiotic biofilm have been identified. New insights on specific cell signaling pathways that appear during periodontitis have attracted the attention of researchers in the study of new personalised approaches for the treatment of periodontitis. The gold standard of non-surgical therapy of periodontitis involves the removal of supra and subgingival biofilm through professional scaling and root planing (SRP) and oral hygiene instructions. In order to improve periodontal clinical outcomes and overcome the limitations of traditional SRP, additional adjuvants have been developed in recent decades, including local or systemic antibiotics, antiseptics, probiotics, anti-inflammatory and anti-resorptive drugs and host modulation therapies. This review is aimed to update the current and recent evolution of therapies of management of periodontitis based on the adjunctive and target therapies. Moreover, we discuss the advances in host modulation of periodontitis and the impact of targeting epigenetic mechanisms approaches for a personalised therapeutic success in the management of periodontitis. In conclusion, the future goal in periodontology will be to combine and personalise the periodontal treatments to the colonising microbial profile and to the specific response of the individual patient.
Collapse
|
15
|
Prevalence of JP2 and Non-JP2 Genotypes of Aggregatibacter actinomycetemcomitans and Oral Hygiene Practice of Kenyan Adolescents in Maasai Mara. Pathogens 2021; 10:pathogens10040488. [PMID: 33920549 PMCID: PMC8073413 DOI: 10.3390/pathogens10040488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/21/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is implicated in the etiology of periodontitis that affects adolescents. The monitoring and mapping of the geographic dissemination pattern of JP2 and non-JP2 genotypes of A. actinomycetemcomitans are of interest. In Africa, the highly leukotoxic JP2 genotype is known to be prevalent, particularly in north-west Africa. The aims of this study were to determine the prevalence of JP2 and non-JP2 genotypes and investigate the oral hygiene practices among adolescents living in Maasai Mara, Kenya. A total of 284 adolescents (mean age: 15.0 yrs; SD 1.1) were interviewed regarding their age, gender, medical history, and oral hygiene practice, and the number of teeth present was recorded. One subgingival pooled plaque sample from all the first molars of each participant was analyzed by conventional PCR. The mean number of permanent teeth present was 27.9 (SD: 2.0; range: 22–32; 95% CI: 27.7–28.1). Sixteen (5.6%) and two (0.7%) adolescents were positive for non-JP2 and JP2 genotypes, respectively. For the vast majority of the adolescents, the use of a toothbrush (99.3%) and toothpaste (80.1%), as well as some kind of toothpick (>60.2%), were part of their oral hygiene practice, with dental floss (0.4%) and/or mouth rinses (0.4%) rarely being used. We have, for the first time, identified Kenyan adolescents colonized with the JP2 genotype. The prevalence of the JP2 genotype of A. actinomycetemcomitans is low, a possible indicator that spreading through human migration from North and West Africa to East Africa is a rare occasion.
Collapse
|
16
|
Fujita A, Oogai Y, Kawada-Matsuo M, Nakata M, Noguchi K, Komatsuzawa H. Expression of virulence factors under different environmental conditions in Aggregatibacter actinomycetemcomitans. Microbiol Immunol 2021; 65:101-114. [PMID: 33591576 DOI: 10.1111/1348-0421.12864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 11/28/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a facultative anaerobic Gram-negative bacterium associated with periodontal diseases, especially aggressive periodontitis. The virulence factors of this pathogen, including adhesins, exotoxins, and endotoxin, have been extensively studied. However, little is known about their gene expression mode in the host. Herein, we investigated whether culture conditions reflecting in vivo environments, including serum and saliva, alter expression levels of virulence genes in the strain HK1651, a JP2 clone. Under aerobic conditions, addition of calf serum (CS) into a general medium induced high expression of two outer membrane proteins (omp100 and omp64). The high expression of omp100 and omp64 was also induced by an iron-limited medium. RNA-seq analysis showed that the gene expressions of several factors involved in iron acquisition were increased in the CS-containing medium. When HK1651 was grown on agar plates, genes encoding many virulence factors, including the Omps, cytolethal distending toxin, and leukotoxin, were differentially expressed. Then, we investigated their expression in five other A. actinomycetemcomitans strains grown in general and CS-containing media. The expression pattern of virulence factors varied among strains. Compared with the other five strains, HK1561 showed high expression of omp29 regardless of the CS addition, while the gene expression of leukotoxin in HK1651 was higher only in the medium without CS. HK1651 showed reduced biofilm in both CS- and saliva-containing media. Coaggregation with Fusobacterium nucleatum was remarkably enhanced using HK1651 grown in the CS-containing medium. Our results indicate that the expression of virulence factors is altered by adaptation to different conditions during infection.
Collapse
Affiliation(s)
- Ayumi Fujita
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kazuyuki Noguchi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
17
|
Chang EH, Brown AC. Epigallocatechin gallate alters leukotoxin secretion and Aggregatibacter actinomycetemcomitans virulence. J Pharm Pharmacol 2021; 73:505-514. [PMID: 33793838 DOI: 10.1093/jpp/rgaa051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVES We and others have previously shown that epigallocatechin gallate (EGCg) inhibits the activity of an important virulence factor, leukotoxin (LtxA), produced by the oral bacterium Aggregatibacter actinomycetemcomitans, suggesting the potential use of this molecule as an anti-virulence strategy to treat periodontal infections. Here, we sought to better understand the effects of EGCg on toxin secretion and A. actinomycetemcomitans pathogenicity in a co-culture model. METHODS We used a quantitative immunoblot assay to determine the concentrations of LtxA in the bacterial supernatant and on the bacterial cell surface. Using a co-culture model, consisting of A. actinomycetemcomitans and THP-1 cells, we studied the impact of EGCg-mediated changes in LtxA secretion on the toxicity of A. actinomycetemcomitans. KEY FINDINGS EGCg increased production of LtxA and changed the localization of secreted LtxA from the supernatant to the surface of the bacterial cells. In the co-culture model, a single low dose of EGCg did not protect host THP-1 cells from A. actinomycetemcomitans-mediated cytotoxicity, but a multiple dosing strategy had improved effects. CONCLUSIONS Together, these results demonstrate that EGCg has important, but complicated, effects on toxin secretion and activity; new dosing strategies and comprehensive model systems may be required to properly develop these anti-virulence activities.
Collapse
Affiliation(s)
- En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA, USA
| |
Collapse
|