1
|
di Filippo L, Rosen CJ. Latest on Anabolic Agents for Osteoporosis Treatment. Endocrinol Metab Clin North Am 2024; 53:513-523. [PMID: 39448133 DOI: 10.1016/j.ecl.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
In the last decades, novel therapeutics with anabolic bone properties have been developed and are currently used in the management of osteoporosis particularly in patients with high-risk of fragility fractures. These drugs include PTH-Related Analogues, teriparatide and abaloparatide, and the anti-sclerostin agent romosozumab, this latter drug currently approved only in female patients. Their efficacies in preventing fragility fractures are widely demonstrated and their potential serious side effects were progressively downgraded, including risk of malignancies in teriparatide- and cardiovascular events in romosozumab-users, respectively. Further data are warranted about their efficacy in glucocorticoids-induces osteoporosis and fracture healings.
Collapse
Affiliation(s)
- Luigi di Filippo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Clifford J Rosen
- Center for Clinical and Translational Research, MaineHealth Institute for Research, Scarborough, ME 04074, USA
| |
Collapse
|
2
|
Kobayashi T, Hara M, Shimanoe C, Morimoto T, Masaaki M, Ito K, Shimazaki T. Efficacy and safety of romosozumab: a meta-analysis of placebo-controlled trials. J Bone Miner Metab 2024; 42:492-502. [PMID: 38977437 DOI: 10.1007/s00774-024-01531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION We aimed to comprehensively compile placebo-controlled trials on the efficacy and safety of romosozumab (210 mg, subcutaneously, once monthly) in postmenopausal women and men with osteoporosis. MATERIALS AND METHODS PubMed, Google Scholar, and ClinicalTrials.gov were searched for relevant placebo-controlled trials (as of January 1, 2024). Percent change in bone mineral density (BMD), falls, fractures, and adverse events (AEs) after drug administration were collected. Risk ratios (RRs) and mean differences (MDs) with 95% confidence intervals (CIs) were calculated. RESULTS Six trials (7990 patients; follow-up period, 6-12 months) were included. Compared with placebo, romosozumab significantly increased lumbar spine BMD (MD = 12.69; 95% CI 11.10-14.29), total hip BMD (MD = 4.42; 95% CI 3.03-5.80), and femoral neck BMD (MD = 3.99; 95% CI 2.42-5.57) at 12 months. Romosozumab significantly decreased falls (RR = 0.80; 95% CI 0.68-0.93) and major osteoporotic fractures (RR = 0.37; 95% CI 0.25-0.54), but increased injection-site reactions (RR = 1.83; 95% CI 1.46-2.30) within 12 months. No significant differences were observed in other AEs (including cardiovascular AEs) within 12 months. CONCLUSION Romosozumab treatment resulted in a significant BMD gain, reduced falls and major osteoporotic fractures. It was generally well-tolerated, including the cardiovascular aspects. However, clinicians should consider the occurrence of minor AEs (e.g., injection-site reactions).
Collapse
Affiliation(s)
- Takaomi Kobayashi
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan.
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan.
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan.
- Department of Clinical Research, Amagi Chuo Hospital, Fukuoka, Japan.
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Chisato Shimanoe
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
- Department of Pharmacy, Saga University Hospital, Saga, Japan
| | - Tadatsugu Morimoto
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Mawatari Masaaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Koji Ito
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| | - Takafumi Shimazaki
- Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
3
|
Soen S, Wang A, Hamaya E, Chien HC, Lin TC. Drug utilization pattern of romosozumab and other osteoporosis treatments in Japan, 2019-2021. J Bone Miner Metab 2024:10.1007/s00774-024-01530-6. [PMID: 38987505 DOI: 10.1007/s00774-024-01530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Describe real-world treatment of osteoporosis and romosozumab treatment patterns in Japan. MATERIALS AND METHODS Data for patients initiating romosozumab or other antiosteoporotic medications between March 01, 2018, and May 31, 2022, were extracted from the Medical Data Vision (MDV) and Japan Medical Data Center (JMDC) databases. Patients were categorized into four cohorts: those who newly initiated romosozumab within the first (MDV: n = 4782; JMDC: n = 2578) or second (MDV: n = 3888; JMDC: n = 2446) year after launch and those who initiated teriparatide (TPTD; MDV: n = 14,576; JMDC: n = 8259) or non-TPTD antiosteoporotic medications within the first year of romosozumab launch (MDV: n = 352,142; JMDC: n = 185,785). RESULTS Mean age, sex, baseline cardiovascular history, comorbidities, and concomitant medications were similar across cohorts. In the MDV database, fracture history was higher in the romosozumab year-1 (59.3%), year-2 (64.1%), and TPTD (65.5%) cohorts versus the non-TPTD cohort (24.4%). Similar rates were identified in the JMDC database: romosozumab year-1 (64.7%), year-2 (66.6%), TPTD (67.5%), and non-TPTD (27.8%). Vertebral fractures were most common in all cohorts. 12-month romosozumab discontinuation varied between the year-1 and year-2 cohorts in MDV (62.4% and 58.8%) and JMDC (57.1% and 52.7%), whereas mean number of injections remained consistent (MDV: 9.7 and 9.8; JMDC: 7.3 and 7.8). Romosozumab persistence was lower in year-1 versus year-2 (MDV: 37.6% and 42.9%; JMDC: 41.2% and 47.3%). CONCLUSION Patients initiating romosozumab and TPTD had a high fracture history. Given the dual effects of promoting bone formation and suppressing resorption, improving romosozumab adherence and persistence over time may be important for antiosteoporotic therapy.
Collapse
Affiliation(s)
- Satoshi Soen
- Soen Orthopedics, Osteoporosis, and Rheumatology Clinic, 2-14-10 Okamoto, Higashinada-Ku, Kobe, Hyogo, 658-0072, Japan.
| | - Alex Wang
- Medical Development, Amgen Inc, Sydney, Australia
| | | | - Hsu-Chih Chien
- Center for Observational Research, Amgen Inc, Thousand Oaks, CA, USA
| | - Tzu-Chieh Lin
- Center for Observational Research, Amgen Inc, Thousand Oaks, CA, USA
| |
Collapse
|
4
|
Liu Q, Yao Q, Li C, Yang H, Liang Y, Yang H, Meng M, Xiao Q, Qin J. Bone protective effects of the polysaccharides from Grifola frondosa on ovariectomy-induced osteoporosis in mice via inhibiting PINK1/Parkin signaling, oxidative stress and inflammation. Int J Biol Macromol 2024; 270:132370. [PMID: 38763253 DOI: 10.1016/j.ijbiomac.2024.132370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Polysaccharides from Grifola frondosa(GFP) have gained worldwide attention owing to their promising biological activities and potential health benefits. PURPOSE This study aimed to investigate the effects of GFP on alleviation of osteoporosis in ovariectomized (OVX) mice and examine the underlying mechanism. METHOD A mouse model of postmenopausal osteoporosis was established by OVX method, Forty eight C57BL/6 female mice were randomly divided into Normal group, OVX alone (Model group, n = 8), OVX + 10 mg/kg GFP (GFP-L group, n = 8), OVX + 20 mg/kg GFP (GFP-M group, n = 8), OVX + 40 mg/kg GFP (GFP-H group, n = 8), OVX + 10 mg/kg Estradiol valerate (Positive group, n = 8). RESULTS The results showed that compared with Model group, the concentrations of interleukin (IL)-1β, interleukin (IL)-6 and Tumor necrosis factor-α (TNF-α) were significantly reduced, the activity of superoxide dismutase (SOD) and glutathione (GSH) were significantly increased, the content of myeloperoxidase (MPO) and malondialdehyde (MDA) were significantly reduced, and the proteins levels of PINK1, Parkin, Beclin-1 and LC3-II were significantly decreased in the GFP groups. CONCLUSION This study demonstrates that GFP alleviates ovariectomy-induced osteoporosis via reduced secretion of inflammatory cytokines, improvement in the oxidative stress status in the body, and inhibition of the PINK1/Parkin signaling pathway.
Collapse
Affiliation(s)
- Qinghua Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China
| | - Qianqian Yao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China
| | - Changqin Li
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China
| | - Hui Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China
| | - Yanbo Liang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China
| | - Heqi Yang
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China
| | - Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Qiang Xiao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China
| | - Jian Qin
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, No.366 Taishan Street, Tai'an 271000, China.
| |
Collapse
|
5
|
Zhang P, Li B, Chen H, Ge Z, Shang Q, Liang D, Yu X, Ren H, Jiang X, Cui J. RNA sequencing-based approaches to identifying disulfidptosis-related diagnostic clusters and immune landscapes in osteoporosis. Aging (Albany NY) 2024; 16:8198-8216. [PMID: 38738994 PMCID: PMC11131997 DOI: 10.18632/aging.205813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/08/2024] [Indexed: 05/14/2024]
Abstract
Disulfidptosis, a newly recognized cell death triggered by disulfide stress, has garnered attention for its potential role in osteoporosis (OP) pathogenesis. Although sulfide-related proteins are reported to regulate the balance of bone metabolism in OP, the precise involvement of disulfidptosis regulators remains elusive. Herein, leveraging the GSE56815 dataset, we conducted an analysis to delineate disulfidptosis-associated diagnostic clusters and immune landscapes in OP. Subsequently, vertebral bone tissues obtained from OP patients and controls were subjected to RNA sequencing (RNA-seq) for the validation of key disulfidptosis gene expression. Our analysis unveiled seven significant disulfidptosis regulators, including FLNA, ACTB, PRDX1, SLC7A11, NUBPL, OXSM, and RAC1, distinguishing OP samples from controls. Furthermore, employing a random forest model, we identified four diagnostic disulfidptosis regulators including FLNA, SLC7A11, NUBPL, and RAC1 potentially predictive of OP risk. A nomogram model integrating these four regulators was constructed and validated using the GSE35956 dataset, demonstrating promising utility in clinical decision-making, as affirmed by decision curve analysis. Subsequent consensus clustering analysis stratified OP samples into two different disulfidptosis subgroups (clusters A and B) using significant disulfidptosis regulators, with cluster B exhibiting higher disulfidptosis scores and implicating monocyte immunity, closely linked to osteoclastogenesis. Notably, RNA-seq analysis corroborated the expression patterns of two disulfidptosis modulators, PRDX1 and OXSM, consistent with bioinformatics predictions. Collectively, our study sheds light on disulfidptosis patterns, offering potential markers and immunotherapeutic avenues for future OP management.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Bing Li
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhilin Ge
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hui Ren
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Xiaobing Jiang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
6
|
Stokar J, Szalat A. Cardiovascular Safety of Romosozumab vs. PTH Analogs for Osteoporosis Treatment: a Propensity Score Matched Cohort Study. J Clin Endocrinol Metab 2024:dgae173. [PMID: 38482603 DOI: 10.1210/clinem/dgae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 05/09/2024]
Abstract
CONTEXT Romosozumab, a monoclonal sclerostin antibody, is a recently approved highly potent anti-osteoporotic agent with osteoanabolic properties. Clinical use of Romosozumab is hindered by the fear of adverse cardiovascular (CV) events raised following the pivotal ARCH-trial. OBJECTIVE To assess real-world CV safety of romosozumab vs. alternative osteoanabolic therapies used for treatment of severe osteoporosis. DESIGN Data was obtained from TriNetX, a global federated health research network including real-time electronic medical records from 113 healthcare organizations with a total of 136,460,930 patients across 16 countries at time of analysis. Inclusion criteria were age ≥ 40 years, a diagnosis of osteoporosis and prescription of romosozumab or a PTH analog (teriparatide/abaloparatide) during 8.2019-8.2022. 1:1 propensity score matched cohorts were created using demographic variables, comorbidities, and medications. Kaplan-Meier analysis was used to estimate the probability of the outcomes. OUTCOMES Incident 3-point major adverse CV event or death (3P-MACE) during 1-year of follow-up after the initial prescription. RESULTS 5,626 and 15,986 patients met the criteria for romosozumab and PTH analog cohorts, respectively, with 5,610 patients per group following propensity score matching. 3P-MACE was significantly less frequent in the romosozumab vs. PTH analog cohort (158 vs 211 patients with an outcome, p=0.003) with reductions in the individual components of the composite outcome: myocardial ischemic events (31 vs 58, p=0.003); cerebrovascular events 56 vs 79, p=0.037; deaths (83 vs 104, p=0.099). CONCLUSIONS In a diverse real-world setting, prescription of romosozumab for osteoporosis is associated with less adverse CV events when compared to PTH analog therapy.
Collapse
Affiliation(s)
- Joshua Stokar
- Osteoporosis Center, Department of Internal Medicine, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Auryan Szalat
- Osteoporosis Center, Department of Internal Medicine, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
7
|
Marino S, Akel N, Li S, Cregor M, Jones M, Perez B, Troncoso G, Meeks J, Stewart S, Sato AY, Nookaew I, Bellido T. Reversal of the diabetic bone signature with anabolic therapies in mice. Bone Res 2023; 11:19. [PMID: 37076478 PMCID: PMC10115794 DOI: 10.1038/s41413-023-00261-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
The mechanisms underlying the bone disease induced by diabetes are complex and not fully understood; and antiresorptive agents, the current standard of care, do not restore the weakened bone architecture. Herein, we reveal the diabetic bone signature in mice at the tissue, cell, and transcriptome levels and demonstrate that three FDA-approved bone-anabolic agents correct it. Diabetes decreased bone mineral density (BMD) and bone formation, damaged microarchitecture, increased porosity of cortical bone, and compromised bone strength. Teriparatide (PTH), abaloparatide (ABL), and romosozumab/anti-sclerostin antibody (Scl-Ab) all restored BMD and corrected the deteriorated bone architecture. Mechanistically, PTH and more potently ABL induced similar responses at the tissue and gene signature levels, increasing both formation and resorption with positive balance towards bone gain. In contrast, Scl-Ab increased formation but decreased resorption. All agents restored bone architecture, corrected cortical porosity, and improved mechanical properties of diabetic bone; and ABL and Scl-Ab increased toughness, a fracture resistance index. Remarkably, all agents increased bone strength over the healthy controls even in the presence of severe hyperglycemia. These findings demonstrate the therapeutic value of bone anabolic agents to treat diabetes-induced bone disease and suggest the need for revisiting the approaches for the treatment of bone fragility in diabetes.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Nisreen Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Shenyang Li
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Meloney Cregor
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Meghan Jones
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Betiana Perez
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Gaston Troncoso
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Jomeeka Meeks
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Scott Stewart
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Amy Y Sato
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Central Arkansas Veterans Healthcare System, John L. McClellan Little Rock, Little Rock, AR, USA.
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
8
|
Zhang P, Chen H, Xie B, Zhao W, Shang Q, He J, Shen G, Yu X, Zhang Z, Zhu G, Chen G, Yu F, Liang D, Tang J, Cui J, Liu Z, Ren H, Jiang X. Bioinformatics identification and experimental validation of m6A-related diagnostic biomarkers in the subtype classification of blood monocytes from postmenopausal osteoporosis patients. Front Endocrinol (Lausanne) 2023; 14:990078. [PMID: 36967763 PMCID: PMC10031099 DOI: 10.3389/fendo.2023.990078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 01/30/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Postmenopausal osteoporosis (PMOP) is a common bone disorder. Existing study has confirmed the role of exosome in regulating RNA N6-methyladenosine (m6A) methylation as therapies in osteoporosis. However, it still stays unclear on the roles of m6A modulators derived from serum exosome in PMOP. A comprehensive evaluation on the roles of m6A modulators in the diagnostic biomarkers and subtype identification of PMOP on the basis of GSE56815 and GSE2208 datasets was carried out to investigate the molecular mechanisms of m6A modulators in PMOP. METHODS We carried out a series of bioinformatics analyses including difference analysis to identify significant m6A modulators, m6A model construction of random forest, support vector machine and nomogram, m6A subtype consensus clustering, GO and KEGG enrichment analysis of differentially expressed genes (DEGs) between different m6A patterns, principal component analysis, and single sample gene set enrichment analysis (ssGSEA) for evaluation of immune cell infiltration, experimental validation of significant m6A modulators by real-time quantitative polymerase chain reaction (RT-qPCR), etc. RESULTS In the current study, we authenticated 7 significant m6A modulators via difference analysis between normal and PMOP patients from GSE56815 and GSE2208 datasets. In order to predict the risk of PMOP, we adopted random forest model to identify 7 diagnostic m6A modulators, including FTO, FMR1, YTHDC2, HNRNPC, RBM15, RBM15B and WTAP. Then we selected the 7 diagnostic m6A modulators to construct a nomogram model, which could provide benefit with patients according to our subsequent decision curve analysis. We classified PMOP patients into 2 m6A subtypes (clusterA and clusterB) on the basis of the significant m6A modulators via a consensus clustering approach. In addition, principal component analysis was utilized to evaluate the m6A score of each sample for quantification of the m6A subgroups. The m6A scores of patients in clusterB were higher than those of patients in clusterA. Moreover, we observed that the patients in clusterA had close correlation with immature B cell and gamma delta T cell immunity while clusterB was linked to monocyte, neutrophil, CD56dim natural killer cell, and regulatory T cell immunity, which has close connection with osteoclast differentiation. Notably, m6A modulators detected by RT-qPCR showed generally consistent expression levels with the bioinformatics results. CONCLUSION In general, m6A modulators exert integral function in the pathological process of PMOP. Our study of m6A patterns may provide diagnostic biomarkers and immunotherapeutic strategies for future PMOP treatment.
Collapse
Affiliation(s)
- Peng Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honglin Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Xie
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhua Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Shang
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiahui He
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gengyang Shen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhida Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangye Zhu
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guifeng Chen
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fuyong Yu
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - De Liang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianchao Cui
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhixiang Liu
- Affiliated Huadu Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| | - Hui Ren
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| | - Xiaobing Jiang
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Zhixiang Liu, ; Hui Ren, ; Xiaobing Jiang,
| |
Collapse
|
9
|
Advancement in the Treatment of Osteoporosis and the Effects on Bone Healing. J Clin Med 2022; 11:jcm11247477. [PMID: 36556093 PMCID: PMC9781093 DOI: 10.3390/jcm11247477] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a major global health concern, with aging being one of the most important risk factors. Osteoarthritis (OA) is also an age-related disorder. Patients with OP and/or OA may be treated surgically for fractures or when their quality of life is impaired. Poor bone quality due to OP can seriously complicate the stability of a bone fixation construct and/or surgical fracture treatment. This review summarizes the current knowledge on the pathophysiology of normal and osteoporotic bone healing, the effect of a bone fracture on bone turnover markers, the diagnosis of a low bone mineral density (BMD) before surgical intervention, and the effect of available anti-osteoporosis treatment. Interventions that improve bone health may enhance the probability of favorable surgical outcomes. Fracture healing and the treatment of atypical femoral fractures are also discussed.
Collapse
|
10
|
Yamaura K, Nelson AL, Nishimura H, Rutledge JC, Ravuri SK, Bahney C, Philippon MJ, Huard J. The effects of fisetin on bone and cartilage: A systematic review. Pharmacol Res 2022; 185:106504. [DOI: 10.1016/j.phrs.2022.106504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 12/09/2022]
|
11
|
Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Syed Hashim SA, Ekeuku SO. A Mini Review on Osteoporosis: From Biology to Pharmacological Management of Bone Loss. J Clin Med 2022; 11:6434. [PMID: 36362662 PMCID: PMC9657533 DOI: 10.3390/jcm11216434] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Osteoporosis refers to excessive bone loss as reflected by the deterioration of bone mass and microarchitecture, which compromises bone strength. It is a complex multifactorial endocrine disease. Its pathogenesis relies on the presence of several endogenous and exogenous risk factors, which skew the physiological bone remodelling to a more catabolic process that results in net bone loss. This review aims to provide an overview of osteoporosis from its biology, epidemiology and clinical aspects (detection and pharmacological management). The review will serve as an updated reference for readers to understand the basics of osteoporosis and take action to prevent and manage this disease.
Collapse
|
12
|
Ahmad SS, Ahmed F, Ali R, Ghoneim MM, Alshehri S, Najmi AK, Ahmad S, Ahmad MZ, Ahmad J, Khan MA. Immunology of osteoporosis: relevance of inflammatory targets for the development of novel interventions. Immunotherapy 2022; 14:815-831. [PMID: 35765988 DOI: 10.2217/imt-2021-0282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is recognized as low bone mass and deteriorated bone microarchitecture. It is the leading cause of fractures and consequent morbidity globally. The established pathophysiological evidence favors the endocrine factors for osteoporosis and the role of the immune system on the skeletal system has been recently identified. Due to the common developmental niche bone and immune system interactions have led to the emergence of osteoimmunology. Immune dysregulation can initiate inflammatory conditions that adversely affect bone integrity. The role of immune cells, such as T-lymphocytes subsets (Th17), cannot be neglected in the pathogenesis of osteoporosis. Local inflammation within the bone from any cause attracts immune cells that participate in the activation of osteoclasts. This work summarizes the present knowledge of osteoimmunology in reference to osteoporosis and identifies novel targets for immunotherapy of osteoporosis.
Collapse
Affiliation(s)
- Syed Sufian Ahmad
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Ruhi Ali
- Delhi Institute of Pharmaceutical Education & Research (DIPSAR), DPSRU, New Delhi, 110017, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, AdDiriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Sayeed Ahmad
- Department of Pharmacognosy & Phytochemistry, Bioactive Natural Product Laboratory, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| |
Collapse
|