Sleiman Y, Reisqs JB, Boutjdir M. Differentiation of Sinoatrial-like Cardiomyocytes as a Biological Pacemaker Model.
Int J Mol Sci 2024;
25:9155. [PMID:
39273104 PMCID:
PMC11394733 DOI:
10.3390/ijms25179155]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/15/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are widely used for disease modeling and pharmacological screening. However, their application has mainly focused on inherited cardiopathies affecting ventricular cardiomyocytes, leading to extensive knowledge on generating ventricular-like hiPSC-CMs. Electronic pacemakers, despite their utility, have significant disadvantages, including lack of hormonal responsiveness, infection risk, limited battery life, and inability to adapt to changes in heart size. Therefore, developing an in vitro multiscale model of the human sinoatrial node (SAN) pacemaker using hiPSC-CM and SAN-like cardiomyocyte differentiation protocols is essential. This would enhance the understanding of SAN-related pathologies and support targeted therapies. Generating SAN-like cardiomyocytes offers the potential for biological pacemakers and specialized conduction tissues, promising significant benefits for patients with conduction system defects. This review focuses on arrythmias related to pacemaker dysfunction, examining protocols' advantages and drawbacks for generating SAN-like cardiomyocytes from hESCs/hiPSCs, and discussing therapeutic approaches involving their engraftment in animal models.
Collapse