1
|
Oksen D, Aslan M, Ozmen E, Yavuz YE. Ranolazine improved left ventricular diastolic functions and ventricular repolarization indexes in patients with coronary slow flow. Front Cardiovasc Med 2023; 10:1207580. [PMID: 37671136 PMCID: PMC10475721 DOI: 10.3389/fcvm.2023.1207580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Introduction Coronary slow flow (CSF) is a condition commonly encountered during angiography. Recent studies have shown the adverse effects of CSF on left ventricular diastolic functions. CSF reportedly increases the novel ventricular repolarization parameters. Ranolazine is a preparation with a prominent anti-anginal activity that has positive effects on anti-arrhythmic and diastolic parameters. In this context, this study was carried out to investigate the effects of ranolazine on left ventricular diastolic functions and repolarization in patients with CSF. Material and methods Forty-six patients with CSF and 29 control subjects were included in the patient and control groups, respectively. Both groups received ranolazine for one month and were evaluated using 12-lead electrocardiography, conventional echocardiography, and tissue Doppler imaging at the baseline and after one month of ranolazine treatment. Results Corrected P, QT dispersion, and Tp-e interval values were significantly higher in the patient group than in the control group. There was a significant decrease in isovolumic relaxation time (IVRT) and deceleration time (DT) values after the ranolazine treatment compared to the baseline values in the patient group but not the control group. A significant increase was observed in the mean E and A velocities and the mean E/A ratio after the ranolazine treatment compared to the baseline values in the patient group. Additionally, there was a significant difference between the Tp-e interval and corrected P dispersion values measured after the ranolazine treatment compared to the baseline values in the patient group but not in the control group. Conclusion This study's findings demonstrated that ranolazine positively affected impaired diastolic functions and repolarization parameters, particularly in patients with CSF.
Collapse
Affiliation(s)
- Dogac Oksen
- Department of Cardiology, Faculty of Medicine, Altınbaş University, Istanbul, Türkiye
| | - Muzaffer Aslan
- Department of Cardiology, Faculty of Medicine, Siirt University, Siirt, Türkiye
| | - Emre Ozmen
- Department of Cardiology, Faculty of Medicine, Siirt University, Siirt, Türkiye
| | - Yunus Emre Yavuz
- Department of Cardiology, Faculty of Medicine, Siirt University, Siirt, Türkiye
| |
Collapse
|
2
|
Yu Y, Wang M, Chen R, Sun X, Sun G, Sun X. Gypenoside XVII protects against myocardial ischemia and reperfusion injury by inhibiting ER stress-induced mitochondrial injury. J Ginseng Res 2021; 45:642-653. [PMID: 34764719 PMCID: PMC8569261 DOI: 10.1016/j.jgr.2019.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/11/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
Background Effective strategies are dramatically needed to prevent and improve the recovery from myocardial ischemia and reperfusion (I/R) injury. Direct interactions between the mitochondria and endoplasmic reticulum (ER) during heart diseases have been recently investigated. This study was designed to explore the cardioprotective effects of gypenoside XVII (GP-17) against I/R injury. The roles of ER stress, mitochondrial injury, and their crosstalk within I/R injury and in GP-17–induced cardioprotection are also explored. Methods Cardiac contractility function was recorded in Langendorff-perfused rat hearts. The effects of GP-17 on mitochondrial function including mitochondrial permeability transition pore opening, reactive oxygen species production, and respiratory function were determined using fluorescence detection kits on mitochondria isolated from the rat hearts. H9c2 cardiomyocytes were used to explore the effects of GP-17 on hypoxia/reoxygenation. Results We found that GP-17 inhibits myocardial apoptosis, reduces cardiac dysfunction, and improves contractile recovery in rat hearts. Our results also demonstrate that apoptosis induced by I/R is predominantly mediated by ER stress and associated with mitochondrial injury. Moreover, the cardioprotective effects of GP-17 are controlled by the PI3K/AKT and P38 signaling pathways. Conclusion GP-17 inhibits I/R-induced mitochondrial injury by delaying the onset of ER stress through the PI3K/AKT and P38 signaling pathways.
Collapse
Affiliation(s)
- Yingli Yu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiao Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Key Laboratory of new drug discovery based on Classic Chinese medicine prescription, Chinese Academy of Medical Sciences, Beijing, China.,Key Laboratory of the efficacy evaluation of Chinese Medicine against glycolipid metabolism disorder disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Akcay M, Coksevim M, Yenercag M. Effect of ranolazine on Tp-e interval, Tp-e/QTc, and P-wave dispersion in patients with stable coronary artery disease. J Arrhythm 2021; 37:1015-1022. [PMID: 34386127 PMCID: PMC8339098 DOI: 10.1002/joa3.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/28/2021] [Accepted: 04/14/2021] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Ranolazine is an antianginal drug and also exhibits antiarrhythmic effect by affecting action potential time, refractory period, and repolarization reserve. We evaluated the effect of ranolazine therapy on myocardial repolarization parameters (Tp-e, QT, QTc intervals, Tp-e/QT, and Tp-e/QTc ratios), index of cardiac electrophysiological balance (iCEB) (QT/QRS, QTc/QRS) and P-wave dispersion (PWD) in patients with stable coronary artery disease (CAD). METHODS This study included 175 patients, aged between 35 and 90 years who were followed with stable CAD for at least 3 months. Ninety patients had been receiving ranolazine for at least 1 month, and 85 patients had never received ranolazine. All patients' basic demographic data, risk factors, medications, and echocardiographic parameters recorded. Myocardial repolarization parameters, P-wave times, and PWD were analyzed from 12 lead electrodes. RESULTS There was no variation between the groups in terms of basic demographic parameters and CAD risk factors. Tp-e interval (87.3 ± 14.4 vs. 90.8 ± 12.4 msn, P < .001), Tp-e/QT (0.22 ± 0.04 vs. 0.23 ± 0.03; P = .03), Tp-e/QTc (0.21 ± 0.04 vs. 0.22 ± 0.04 P = .001), and PWD (39.2 ± 13.7 vs. 43.5 ± 12.9 P = .028) were significantly lower in the ranolazine group. But iCEB was similar in both groups. In multivariate analysis after adjusted confounding factors such as age and BMI, Tp-e/QTc ratio, QTc, Pmax, and PWD were found significantly in ranolazine group again. CONCLUSION Tp-e/QTc ratio, QTc, Pmax, and PWD were significantly lower in stable CAD patients under ranolazine therapy. In stable CAD patients, the prognostic significance of ranolazine for arrhythmic events requires further evaluation of these parameters through long-term follow-up and large-scale prospective studies.
Collapse
Affiliation(s)
- Murat Akcay
- Department of CardiologyFaculty of MedicineOndokuz Mayis UniversitySamsunTurkey
| | - Metin Coksevim
- Department of CardiologyFaculty of MedicineOndokuz Mayis UniversitySamsunTurkey
| | - Mustafa Yenercag
- Department of CardiologyFaculty of MedicineOrdu UniversityOrduTurkey
| |
Collapse
|
4
|
Huang CLH, Wu L, Jeevaratnam K, Lei M. Update on antiarrhythmic drug pharmacology. J Cardiovasc Electrophysiol 2020; 31:579-592. [PMID: 31930579 DOI: 10.1111/jce.14347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Cardiac arrhythmias constitute a major public health problem. Pharmacological intervention remains mainstay to their clinical management. This, in turn, depends upon systematic drug classification schemes relating their molecular, cellular, and systems effects to clinical indications and therapeutic actions. This approach was first pioneered in the 1960s Vaughan-Williams classification. Subsequent progress in cardiac electrophysiological understanding led to a lag between the fundamental science and its clinical translation, partly addressed by The working group of the European Society of Cardiology (1991), which, however, did not emerge with formal classifications. We here utilize the recent Revised Oxford Classification Scheme to review antiarrhythmic drug pharmacology. We survey drugs and therapeutic targets offered by the more recently characterized ion channels, transporters, receptors, intracellular Ca2+ handling, and cell signaling molecules. These are organized into their strategic roles in cardiac electrophysiological function. Following analysis of the arrhythmic process itself, we consider (a) pharmacological agents directly targeting membrane function, particularly the Na+ and K+ ion channels underlying depolarizing and repolarizing events in the cardiac action potential. (b) We also consider agents that modify autonomic activity that, in turn, affects both the membrane and (c) the Ca2+ homeostatic and excitation-contraction coupling processes linking membrane excitation to contractile activation. Finally, we consider (d) drugs acting on more upstream energetic and structural remodeling processes currently the subject of clinical trials. Such systematic correlations of drug actions and arrhythmic mechanisms at different molecular to systems levels of cardiac function will facilitate current and future antiarrhythmic therapy.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Department of Biochemistry and Physiological Laboratory, University of Cambridge, Cambridge, UK.,Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Cardiology, Peking University First Hospital, Beijing, China
| | | | - Ming Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Bossu A, Houtman MJC, Meijborg VMF, Varkevisser R, Beekman HDM, Dunnink A, de Bakker JMT, Mollova N, Rajamani S, Belardinelli L, van der Heyden MAG, Vos MA. Selective late sodium current inhibitor GS-458967 suppresses Torsades de Pointes by mostly affecting perpetuation but not initiation of the arrhythmia. Br J Pharmacol 2018; 175:2470-2482. [PMID: 29582428 PMCID: PMC5980463 DOI: 10.1111/bph.14217] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/27/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose Enhanced late sodium current (late INa) in heart failure and long QT syndrome type 3 is proarrhythmic. This study investigated the antiarrhythmic effect and mode of action of the selective and potent late INa inhibitor GS‐458967 (GS967) against Torsades de Pointes arrhythmias (TdP) in the chronic atrioventricular block (CAVB) dog. Experimental Approach Electrophysiological and antiarrhythmic effects of GS967 were evaluated in isolated canine ventricular cardiomyocytes and CAVB dogs with dofetilide‐induced early afterdepolarizations (EADs) and TdP, respectively. Mapping of intramural cardiac electrical activity in vivo was conducted to study effects of GS967 on spatial dispersion of repolarization. Key Results GS967 (IC50~200nM) significantly shortened repolarization in canine ventricular cardiomyocytes and sinus rhythm (SR) dogs, in a concentration and dose‐dependent manner. In vitro, despite addition of 1μM GS967, dofetilide‐induced EADs remained present in 42% and 35% of cardiomyocytes from SR and CAVB dogs, respectively. Nonetheless, GS967 (787±265nM) completely abolished dofetilide‐induced TdP in CAVB dogs (10/14 after dofetilide to 0/14 dogs after GS967), while single ectopic beats (sEB) persisted in 9 animals. In vivo mapping experiments showed that GS967 significantly reduced spatial dispersion of repolarization: cubic dispersion was significantly decreased from 237±54ms after dofetilide to 123±34ms after GS967. Conclusion and Implications GS967 terminated all dofetilide‐induced TdP without completely suppressing EADs and sEB in vitro and in vivo, respectively. The antiarrhythmic mode of action of GS967, through the reduction of spatial dispersion of repolarization, seems to predominantly impede the perpetuation of arrhythmic events into TdP rather than their initiating trigger.
Collapse
Affiliation(s)
- Alexandre Bossu
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marien J C Houtman
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Veronique M F Meijborg
- Department of Experimental Cardiology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Rosanne Varkevisser
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henriette D M Beekman
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Albert Dunnink
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jacques M T de Bakker
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Experimental Cardiology, Amsterdam Medical Center, Amsterdam, The Netherlands
| | | | | | | | - Marcel A G van der Heyden
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Heijman J, Ghezelbash S, Dobrev D. Investigational antiarrhythmic agents: promising drugs in early clinical development. Expert Opin Investig Drugs 2017; 26:897-907. [PMID: 28691539 PMCID: PMC6324729 DOI: 10.1080/13543784.2017.1353601] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Although there have been important technological advances for the treatment of cardiac arrhythmias (e.g., catheter ablation technology), antiarrhythmic drugs (AADs) remain the cornerstone therapy for the majority of patients with arrhythmias. Most of the currently available AADs were coincidental findings and did not result from a systematic development process based on known arrhythmogenic mechanisms and specific targets. During the last 20 years, our understanding of cardiac electrophysiology and fundamental arrhythmia mechanisms has increased significantly, resulting in the identification of new potential targets for mechanism-based antiarrhythmic therapy. Areas covered: Here, we review the state-of-the-art in arrhythmogenic mechanisms and AAD therapy. Thereafter, we focus on a number of antiarrhythmic targets that have received significant attention recently: atrial-specific K+-channels, the late Na+-current, the cardiac ryanodine-receptor channel type-2, and the small-conductance Ca2+-activated K+-channel. We highlight for each of these targets available antiarrhythmic agents and the evidence for their antiarrhythmic effect in animal models and early clinical development. Expert opinion: Targeting AADs to specific subgroups of well-phenotyped patients is likely necessary to detect improved outcomes that may be obscured in the population at large. In addition, specific combinations of selective AADs may have synergistic effects and may enable a mechanism-based tailored antiarrhythmic therapy.
Collapse
Affiliation(s)
- Jordi Heijman
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Shokoufeh Ghezelbash
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| |
Collapse
|