1
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Goriounova AS, Gilmore RC, Wrennall JA, Tarran R. Super resolution microscopy analysis reveals increased Orai1 activity in asthma and cystic fibrosis lungs. J Cyst Fibros 2023; 22:161-171. [PMID: 35961837 PMCID: PMC9982747 DOI: 10.1016/j.jcf.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022]
Abstract
QUESTION In diseases such as asthma and cystic fibrosis (CF), the immune response is dysregulated and the lung is chronically inflamed. Orai1 activation is required for the initiation and persistence of inflammation. However, Orai1 expression in the lung is poorly understood. We therefore tested the hypothesis that Orai1 expression was upregulated in asthmatic and CF lungs. MATERIALS AND METHODS We used LungMAP to analyze single-cell RNAseq data of Orai1 and stromal interaction molecule 1 (STIM1) expression in normal human lungs. We then performed RNAscope analysis and immunostaining on lung sections from normal, asthma, and CF donors. We imaged sections by confocal and super resolution microscopy, and analyzed Orai1 and STIM1 expression in different pulmonary cell types. RESULTS Orai1 was broadly-expressed, but expression was greatest in immune cells. At mRNA and protein levels, there were no consistent trends in expression levels between the three phenotypes. Orai1 must interact with STIM1 in order to activate and conduct Ca2+. We therefore used STIM1/Orai1 co-localization as a marker of Orai1 activity. Using this approach, we found significantly increased co-localization between these proteins in epithelia, interstitial and luminal immune cells, but not alveoli, from asthma and CF lungs. Orai1 also aggregates as part of its activation process. Using super resolution microscopy, we also found significantly increased Orai1 aggregation in immune cells from asthmatic and CF lungs. CONCLUSION We found evidence that Orai1 was more active in asthma and CF than normal lungs. These data suggest that Orai1 is a relevant target for reducing pulmonary inflammation.
Collapse
Affiliation(s)
| | | | - Joe A Wrennall
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, NC, 27599, USA
| | - Robert Tarran
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Adulthood asthma as a consequence of childhood adversity: a systematic review of epigenetically affected genes. J Dev Orig Health Dis 2022; 13:674-682. [PMID: 35256035 DOI: 10.1017/s2040174422000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is an accumulating data that shows relation between childhood adversity and vulnerability to chronic diseases as well as epigenetic influences that in turn give rise to these diseases. Asthma is one of the chronic diseases that is influenced from genetic regulation of the inflammatory biomolecules and therefore the hypothesis in this research was childhood adversity might have caused epigenetic differentiation in the asthma-related genes in the population who had childhood trauma. To test this hypothesis, the literature was systematically reviewed to extract epigenetically modified gene data of the adults who had childhood adversity, and affected genes were further evaluated for their association with asthma. PRISMA guidelines were adopted and PubMed and Google Scholar were included in the searched databases, to evaluate epigenetic modifications in asthma-related genes of physically, emotionally or sexually abused children. After retrieving a total of 5245 articles, 36 of them were included in the study. Several genes and pathways that may contribute to pathogenesis of asthma development, increased inflammation, or response to asthma treatment were found epigenetically affected by childhood traumas. Childhood adversity, causing epigenetic changes in DNA, may lead to asthma development or influence the course of the disease and therefore should be taken into account for the prolonged health consequences.
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW This review aims to recognize the multifactorial cause of asthma, from the influence of mother until adulthood, highlight the main characteristics of the disease at different ages and summarize the evidence of potential prevention strategies. RECENT FINDINGS To date, regarding the prenatal period, the presence of specific genes, maternal asthma, drugs, and tobacco exposure are the most relevant predisposing features for an asthmatic offspring. For newborns, preterm, bronchopulmonary dysplasia, and low birth weight has been associated with low lung function. Among young children, atopic dermatitis, lower respiratory tract infections, and increased levels of total Immunoglobulin E (IgE) and allergen-specific IgE are important determinants.Breastfeeding has been demonstrated being protective for the onset of asthma. Allergen immunotherapy has also been shown to have significant preventive effect decreasing asthma development. Inhaled corticosteroids use in early childhood prevents exacerbations but does not alter the natural history of asthma. Other interventions, such as the use of palivizumab, probiotics, vitamin D supplementation, and fish consumption presented controversial results. SUMMARY A good knowledge of risk factors for asthma development, from prenatal period to adulthood, may lead to efficacious preventive strategies. Further data of long-term follow-up in population-based studies according to different phenotypes are needed.
Collapse
|
5
|
Chen L, Shi L, Ma Y, Zheng C. Hub Genes Identification in a Murine Model of Allergic Rhinitis Based on Bioinformatics Analysis. Front Genet 2020; 11:970. [PMID: 33193578 PMCID: PMC7477359 DOI: 10.3389/fgene.2020.00970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/31/2020] [Indexed: 12/16/2022] Open
Abstract
This study aimed to identify allergic rhinitis (AR)-related hub genes and functionally enriched pathways in a murine model. Dataset GSE52804 (including three normal controls and three AR mice) was downloaded from Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) were identified. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) analyses of DEGs were performed to identify the hub genes in AR. The DEGs were classified into different modules by using the weighted gene co-expression network analysis (WGCNA). Moreover, to verify the potential hub genes, nasal mucosa tissues were obtained from murine AR models (n = 5) and controls (n = 5), and qRT-PCR and Western blot were performed. In this study, a total of 634 DEGs were identified. They were significantly enriched in 14 GO terms, such as integral component of membrane, plasma membrane, and G-protein-coupled receptor signaling pathway. Meanwhile, there were eight terms of KEGG pathways significantly enriched, such as Olfactory transduction, Cytokine-cytokine receptor interaction, and TNF signaling pathway. The top 10 hub genes (Rtp1, Rps27a, Penk, Cxcl2, Gng8, Gng3, Cxcl1, Cxcr2, Ccl9, and Anxa1) were identified by the PPI network. DEGs were classified into seven modules by WGCNA. According to qRT-PCR validation of the five genes of interest (Rtp1, Rps27a, Penk, Cxcl2, and Anxa1), the expression level of Rtp1 mRNA was significantly decreased in the AR group compared with the control group, while there are enhanced Rps27a, Penk, Cxcl2, and Anxa1 mRNA expressions in the AR mice group compared with the control group. Western blot was also performed to further explore the expression of Anxa1 in the protein level, and the results showed a similar expression trend.
Collapse
Affiliation(s)
- Le Chen
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Le Shi
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Yue Ma
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China.,Shanghai Key Clinical Disciplines of Otorhinolaryngology, Shanghai, China
| | - Chunquan Zheng
- Department of Otolaryngology-Head and Neck Surgery, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Karaca M, Atceken N, Karaca Ş, Civelek E, Şekerel BE, Polimanti R. Phenotypic and Molecular Characterization of Risk Loci Associated With Asthma and Lung Function. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:806-820. [PMID: 32638561 PMCID: PMC7347000 DOI: 10.4168/aair.2020.12.5.806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/05/2023]
Abstract
Purpose Respiratory diseases have a highly multifactorial etiology where different mechanisms
contribute to the individual's susceptibility. We conducted a deep characterization of loci
associated with asthma and lung function by previous genome-wide association studies
(GWAS). Methods Sixteen variants were selected from previous GWAS of childhood/adult asthma and pulmonary
function tests. We conducted a phenome-wide association study of these loci in 4,083 traits
assessed in the UK Biobank (n = 361,194 participants). Data from the Genotype-Tissue
Expression (GTEx) project were used to conduct a transcriptomic analysis with respect to
tissues relevant for asthma pathogenesis. A pediatric cohort assessed with the International
Study of Asthma and Allergies in Children (ISAAC) Phase II tools was used to further explore
the association of these variants with 116 traits related to asthma comorbidities. Results Our phenome-wide association studies (PheWAS) identified 206 phenotypic associations with
respect to the 16 variants identified. In addition to the replication of the phenotypes tested
in the discovery GWAS, we observed novel associations related to blood levels of immune cells
(eosinophils, neutrophils, monocytes, and lymphocytes) for the asthma-related variants.
Conversely, the lung-function variants were associated with phenotypes related to body fat
mass. In the ISAAC-assessed cohort, we observed that risk alleles associated with increased
fat mass can exacerbate allergic reactions in individuals affected by allergic respiratory
diseases. The GTEx-based analysis showed that the variants tested affect the transcriptomic
regulation of multiple surrounding genes across several tissues. Conclusions This study generated novel data regarding the genetics of respiratory diseases and their
comorbidities, providing a deep characterization of loci associated with asthma and lung
function.
Collapse
Affiliation(s)
- Mehmet Karaca
- Department of Biology, Faculty of Science and Arts, Aksaray University, Aksaray, Turkey.
| | - Nazente Atceken
- Graduate School of Natural and Applied Sciences, Aksaray University, Aksaray, Turkey
| | - Şefayet Karaca
- Department of Nutrition and Dietetics, Faculty of Health Science, Aksaray University, Aksaray, Turkey
| | - Ersoy Civelek
- Pediatric Allergy and Immunology Clinic, Ankara Child Health and Diseases Hematology Oncology Research Hospital, Ankara, Turkey
| | - Bülent E Şekerel
- Pediatric Allergy and Asthma Unit, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine and VA CT Healthcare Center, West Haven, CT, United States
| |
Collapse
|
7
|
Eigenmann P. The effect of short term microbial exposure and diversity on allergy, and how FcεRI expression on inflammatory cells modulates asthma. Pediatr Allergy Immunol 2019; 30:587-588. [PMID: 31423641 DOI: 10.1111/pai.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Philippe Eigenmann
- Department of Women-Children-Teenagers, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Eigenmann P. Editorial comments on this issue of the Journal. Pediatr Allergy Immunol 2018; 29:787-788. [PMID: 30548707 DOI: 10.1111/pai.13003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Philippe Eigenmann
- Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|