1
|
Sánchez A, Caraballo A, Alvarez L, Valencia O, Restrepo MN, Gaviria R, Velasquez-Lopera M, Urrego JR, Sánchez J. Molecular characteristics of atopic dermatitis patients with clinical remission. World Allergy Organ J 2024; 17:100983. [PMID: 39534446 PMCID: PMC11555337 DOI: 10.1016/j.waojou.2024.100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is a frequent disease in infants with diverse clinical evolution. Although multiple studies have assessed inflammatory changes in chronic AD, little is known about the molecular transition from symptomatic stage to clinical remission without pharmacotherapy. Objective The aim of the study was to evaluate clinical and inflammatory factors and its relationship with AD clinical evolution. Methods Three groups of participants older than 10 years of age were recruited; 2 AD groups and 1 non-AD group. The AD-remission group (more than 1 year without AD symptoms and without pharmacotherapy), the AD-persistent group (AD symptoms and pharmacotherapy), and 1 non-AD group. We measured eosinophil peroxidase (EPX), eosinophil cationic protein (ECP), IgE autoantibodies against these antigens, and natural moisturizing factor (NMF). Results Different inflammatory profiles within each group were observed: AD-persistent group is characterized by a high frequency of IgE autoantibodies (55.5%), contrasting with the low occurrence in the non-AD group (2%) and a moderate frequency in the AD-remission group (21.4%). A similar distribution was observed for the other type 2 inflammatory biomarkers (Eosinophils, total IgE, EPX, ECP) and NMF. Conclusion Patients with AD-remission maintain a minimal T2 inflammation. We identified different potential biomarkers for prognosis of AD evolution. Further studies are necessary to evaluate the mechanisms that allow the coexistence of the inflammatory process without clinical symptoms.
Collapse
Affiliation(s)
- Andrés Sánchez
- Group of Clinical and Experimental Allergy (GACE), Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
- Medicine Deparment, University “Corporación Universitaria Rafael Nuñez”, Cartagena, Colombia
| | - Ana Caraballo
- Group of Clinical and Experimental Allergy (GACE), Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
| | - Leidy Alvarez
- Technological Economics Evaluations Group, SURA Company, Medellín, Colombia
| | | | | | | | | | - Juan-Ricardo Urrego
- Medicine Deparment, University “Corporación Universitaria Rafael Nuñez”, Cartagena, Colombia
| | - Jorge Sánchez
- Group of Clinical and Experimental Allergy (GACE), Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
- Allergology Unit IPS, Medellín, Colombia
| |
Collapse
|
2
|
Sánchez J, Álvarez L, Bedoya J, Peñaranda D, Vanegas G, Celis C, Morales E, García E, Peñaranda A. Role of specific immunoglobulin-E in chronic rhinosinusitis: Its clinical relevance according to nasal challenge test. World Allergy Organ J 2024; 17:100953. [PMID: 39435153 PMCID: PMC11491713 DOI: 10.1016/j.waojou.2024.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/19/2024] [Accepted: 07/31/2024] [Indexed: 10/23/2024] Open
Abstract
Background Guidelines for chronic rhinosinusitis (CRS) propose total IgE and eosinophils as important biomarkers to identify type-2 inflammation. Despite the fact that specific IgE (sIgE) have been identified as a clinical predictor in some type-2 diseases for different clinical outcomes, its role in CRS has yet to be explored in detail. Objetive To describe systemic and local sIgE in CRS and explore its possible association with clinical outcomes using nasal challenge tests (NCT). Methods In CRS patients, we measure total IgE, serum sIgE (SsIgE) and nasosinusal sIgE (NsIgE) against 9 allergenic sources; Der p, Der f, Blo t, Can f, Fel d, Per a, grasses, Staphylococcus enterotoxin A, and B. NCT was done using the allergen with the higher sIgE prevalence (Der p). Results A total of 174 patients were included. Prevalence of SsIgE was 52.8% and NsIgE 46.5%; Der p was the principal allergen for SsIgE and NsIgE. The presence of nasal polyps, asthma comorbidity, NSAID hypersensitivity, and hyposmia, were significantly associated with the presence of SsIgE and NsIgE but not with total IgE. NCT-Der p was performed in 73 CRS patients, being positive in 33 (45.2%). SsIgE have the best diagnostic accuracy (79.4%) to predict NCT results (NsIgE 67.5% total IgE 52%). Conclusion Specific IgE is a better biomarker in CRS than total IgE. Patients with clinically relevant SsIgE have a pheno-endotype associated with different clinical outcomes. Considering the clinical relevance of SsIgE demonstrated by NCT, interventions like allergen immunotherapy in CRS must be study.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical and Experimental Allergy, Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
| | - Leidy Álvarez
- Group of Clinical and Experimental Allergy, Hospital “Alma Mater de Antioquia”, University of Antioquia, Medellín, Colombia
- Group "ciencias de la vida y de la salud escuela de graduados", CES university, Medellín, Colombia
| | - Juan Bedoya
- Otorhinolaryngology Service, University of Antioquia, Medellín, Colombia
| | - Daniel Peñaranda
- “Fundación Universitaria Ciencias de la Salud”, Otorhinolaryngology Service, Bogotá, Colombia
| | - Gustavo Vanegas
- Otorhinolaryngology Service, University of Antioquia, Medellín, Colombia
| | - Carlos Celis
- Faculty of Medicine, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Elizabeth García
- Otorhinolaryngology Medical Surgical Unit (UNIMEQ-ORL), Bogotá, Colombia
| | - Augusto Peñaranda
- Otorhinolaryngology Medical Surgical Unit (UNIMEQ-ORL), Bogotá, Colombia
| |
Collapse
|
3
|
Sánchez J, Diez LS, Álvarez L, Munera M, Sánchez A. Changes in Prevalence of IgE Sensitization and Allergenic Exposition over a 10-Year Period in a Tropical Region. Int Arch Allergy Immunol 2024; 186:12-22. [PMID: 39226878 DOI: 10.1159/000540646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
INTRODUCTION Multiple antigen environmental sources have been identified as possible causes of allergies, but few studies have evaluated changes in the sensitization profiles over time. The aim of this study was to evaluate the changes in IgE sensitization and exposure to dust mites, cats, dogs, and cockroaches over a 10-year period. METHODS During a period of 10 years among patients with asthma, rhinitis and/or atopic dermatitis, we evaluated the annual frequency of atopy to Dermatophagoides farinae, Dermatophagoides pteronyssinus, Blomia tropicalis, Canis familiaris, Felis domesticus and cockroaches (Periplaneta americana and Blatella germanica). Exposure to sources was also assessed using questionnaires (Pets) or direct counts (House dust mites and cockroaches). The association between some risk factors and the prevalence of atopy was explored. RESULTS A total of 6,000 records were included. Among the patients, 82% had IgE sensitization to at least one of the six allergenic sources. Sensitization to Dermatophagoides spp. was the most frequent (>78%). Exposure and sensitization in the first decade of life to Dermatophagoides spp. seem to determine the molecular spreading to other allergenic sources. Exposure to Blomia tropical increases significantly over time (year 2015; 38% vs. year 2022; 51%, p 0.03). Exposure to dogs was higher than with cats but association between atopy and exposure was stronger with cats (OR 27.4, 95% CI: 22.3-33.6, p < 0.01). CONCLUSION Exposure and sensitization in the first decade of life to Dermatophagoides spp. determine the molecular spreading of IgE antibodies to other allergenic sources. Household exposure to dogs and cats seems to be important for the subsequent development of atopy. Sensitization to B. tropicalis and cockroach appears to be mostly from cross-reactivity rather than direct exposure.
Collapse
Affiliation(s)
- Jorge Sánchez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
| | - Libia-Susana Diez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
| | - Leidy Álvarez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
- Group "Ciencias de la vida y la salud, escuela de graduados" University CES, Medellín, Colombia
| | - Marlon Munera
- Medical Research Group (GINUMED), Universitary Corporation Rafael Nuñez, Cartagena, Colombia
| | - Andrés Sánchez
- Group of Clinical and Experimental Allergy, Hospital "Alma mater de Antioquia", University of Antioquia, Medellín, Colombia
- Medical Research Group (GINUMED), Universitary Corporation Rafael Nuñez, Cartagena, Colombia
| |
Collapse
|
4
|
Pauli G, Wurmser C, Roos A, Kokou C, Huang HJ, D’souza N, Lupinek C, Zakzuk J, Regino R, Acevedo N, Caraballo L, Vrtala S, Valenta R. Frequent IgE recognition of Blomia tropicalis allergen molecules in asthmatic children and young adults in equatorial Africa. Front Immunol 2023; 14:1133935. [PMID: 37359512 PMCID: PMC10286740 DOI: 10.3389/fimmu.2023.1133935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Background Asthma is not well investigated in equatorial Africa and little is known about the disease-associated allergen molecules recognized by IgE from patients in this area. The aim was to study the molecular IgE sensitization profile of asthmatic children and young adults in a semi-rural area (Lambaréné) of an equatorial African country (Gabon), to identify the most important allergen molecules associated with allergic asthma in equatorial Africa. Methods Fifty-nine asthmatic patients, mainly children and few young adults, were studied by skin prick testing to Dermatophagoides pteronyssinus (Der p), D. farinae (Der f), cat, dog, cockroach, grass, Alternaria and peanut. Sera were obtained from a subset of 35 patients, 32 with positive and 3 with negative skin reaction to Der p and tested for IgE reactivity to 176 allergen molecules from different allergen sources by ImmunoCAP ISAC microarray technology and to seven recombinant Blomia tropicalis (Blo t) allergens by IgE dot blot assay. Results Thirty-three of the 59 patients (56%) were sensitized to Der p and 23 of them (39%) were also sensitized to other allergen sources, whereas 9 patients (15%) were only sensitized to allergen sources other than Der p. IgE serology analyses (n=35) showed high IgE-binding frequencies to the Blo t allergens Blo t 5 (43%), Blo t 21 (43%) and Blo t 2 (40%), whereas the Der p allergens rDer p 2, rDer p 21 and rDer p 5 (34%, 29% and 26%) were less frequently recognized. Only few patients showed IgE reactivity to allergens from other allergen sources, except to allergens containing carbohydrate determinants (CCDs) or to wasp venom allergens (i.e., antigen 5). Conclusion Our results thus demonstrate that IgE sensitization to mite allergens is very prevalent in asthmatics in Equatorial Africa with B. tropicalis allergen molecules representing the most important ones associated with allergic asthma.
Collapse
Affiliation(s)
- Gabrielle Pauli
- Faculty of Medicine, University Louis Pasteur, Strasbourg, France
- Hôpital Albert Schweitzer, Lambaréné, Gabon
| | - Carole Wurmser
- Faculty of Medicine, University Louis Pasteur, Strasbourg, France
- Hôpital Albert Schweitzer, Lambaréné, Gabon
| | - Antoine Roos
- Faculty of Medicine, University Louis Pasteur, Strasbourg, France
- Hôpital Albert Schweitzer, Lambaréné, Gabon
| | | | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nishelle D’souza
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Josefina Zakzuk
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Ronald Regino
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Luis Caraballo
- Institute for Immunological Research, Universidad de Cartagena, Cartagena, Colombia
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- National Research Center, Institute of Immunology FMBA of Russia, Moscow, Russia
- Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia
- Karl Landsteiner University of Health Sciences, Krems, Austria
| |
Collapse
|
5
|
Mondol E, Donado K, Regino R, Hernandez K, Mercado D, Mercado AC, Benedetti I, Puerta L, Zakzuk J, Caraballo L. The Allergenic Activity of Blo t 2, a Blomia tropicalis IgE-Binding Molecule. Int J Mol Sci 2023; 24:ijms24065543. [PMID: 36982614 PMCID: PMC10053487 DOI: 10.3390/ijms24065543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Only few allergens derived from house dust mite (HDM) species have been evaluated in terms of their potential to induce allergic inflammation. In this study, we aimed to evaluate different aspects of the allergenicity and allergenic activity of Blo t 2, a Blomia tropicalis allergen. Blo t 2 was produced as a recombinant protein in Escherichia coli. Its allergenic activity was tested in humans by skin prick test and basophil activation assays, and in mice, by passive cutaneous anaphylaxis and a model of allergic airway inflammation. Sensitization rate to Blo t 2 (54.3%) was similar to that found to Blo t 21 (57.2%) and higher than to Der p 2 (37.5%). Most Blo t 2-sensitized patients showed a low intensity response (99.5%). Blo t 2 elicited CD203c upregulation and allergen induced skin inflammation. Additionally, immunized animals produced anti-Blo t 2 IgE antibodies and passive transfer of their serum to non-immunized animals induced skin inflammation after allergen exposure. Immunized animals developed bronchial hyperreactivity and a strong inflammatory lung reaction (eosinophils and neutrophils). These results confirm the allergenic activity of Blo t 2 and supports its clinical relevance.
Collapse
|
6
|
Dramburg S, Hilger C, Santos AF, de Las Vecillas L, Aalberse RC, Acevedo N, Aglas L, Altmann F, Arruda KL, Asero R, Ballmer-Weber B, Barber D, Beyer K, Biedermann T, Bilo MB, Blank S, Bosshard PP, Breiteneder H, Brough HA, Bublin M, Campbell D, Caraballo L, Caubet JC, Celi G, Chapman MD, Chruszcz M, Custovic A, Czolk R, Davies J, Douladiris N, Eberlein B, Ebisawa M, Ehlers A, Eigenmann P, Gadermaier G, Giovannini M, Gomez F, Grohman R, Guillet C, Hafner C, Hamilton RG, Hauser M, Hawranek T, Hoffmann HJ, Holzhauser T, Iizuka T, Jacquet A, Jakob T, Janssen-Weets B, Jappe U, Jutel M, Kalic T, Kamath S, Kespohl S, Kleine-Tebbe J, Knol E, Knulst A, Konradsen JR, Korošec P, Kuehn A, Lack G, Le TM, Lopata A, Luengo O, Mäkelä M, Marra AM, Mills C, Morisset M, Muraro A, Nowak-Wegrzyn A, Nugraha R, Ollert M, Palosuo K, Pastorello EA, Patil SU, Platts-Mills T, Pomés A, Poncet P, Potapova E, Poulsen LK, Radauer C, Radulovic S, Raulf M, Rougé P, Sastre J, Sato S, Scala E, Schmid JM, Schmid-Grendelmeier P, Schrama D, Sénéchal H, Traidl-Hoffmann C, Valverde-Monge M, van Hage M, van Ree R, Verhoeckx K, Vieths S, Wickman M, Zakzuk J, Matricardi PM, Hoffmann-Sommergruber K. EAACI Molecular Allergology User's Guide 2.0. Pediatr Allergy Immunol 2023; 34 Suppl 28:e13854. [PMID: 37186333 DOI: 10.1111/pai.13854] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 05/17/2023]
Abstract
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Collapse
Affiliation(s)
- Stephanie Dramburg
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | | | - Rob C Aalberse
- Sanquin Research, Dept Immunopathology, University of Amsterdam, Amsterdam, The Netherlands
- Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Lorenz Aglas
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Karla L Arruda
- Department of Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Sao Paulo, Brasil, Brazil
| | - Riccardo Asero
- Ambulatorio di Allergologia, Clinica San Carlo, Paderno Dugnano, Italy
| | - Barbara Ballmer-Weber
- Klinik für Dermatologie und Allergologie, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diez (IMMAND), Department of Basic Medical Sciences, Facultad de Medicina, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
| | - Kirsten Beyer
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Maria Beatrice Bilo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
- Allergy Unit Department of Internal Medicine, University Hospital Ospedali Riuniti di Ancona, Torrette, Italy
| | - Simon Blank
- Center of Allergy and Environment (ZAUM), Technical University of Munich, School of Medicine and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany
| | - Philipp P Bosshard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Helen A Brough
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Merima Bublin
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Dianne Campbell
- Department of Allergy and Immunology, Children's Hospital at Westmead, Sydney Children's Hospitals Network, Sydney, New South Wales, Australia
- Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Jean Christoph Caubet
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Giorgio Celi
- Centro DH Allergologia e Immunologia Clinica ASST- MANTOVA (MN), Mantova, Italy
| | | | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Janet Davies
- Queensland University of Technology, Centre for Immunology and Infection Control, School of Biomedical Sciences, Herston, Queensland, Australia
- Metro North Hospital and Health Service, Emergency Operations Centre, Herston, Queensland, Australia
| | - Nikolaos Douladiris
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Bernadette Eberlein
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University Munich, Munich, Germany
| | - Motohiro Ebisawa
- Clinical Research Center for Allergy and Rheumatology, National Hospital Organization, Sagamihara National Hospital, Kanagawa, Japan
| | - Anna Ehlers
- Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Philippe Eigenmann
- Pediatric Allergy Unit, Department of Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Gabriele Gadermaier
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Mattia Giovannini
- Allergy Unit, Department of Pediatrics, Meyer Children's University Hospital, Florence, Italy
| | - Francisca Gomez
- Allergy Unit IBIMA-Hospital Regional Universitario de Malaga, Malaga, Spain
- Spanish Network for Allergy research RETIC ARADyAL, Malaga, Spain
| | - Rebecca Grohman
- NYU Langone Health, Department of Internal Medicine, New York, New York, USA
| | - Carole Guillet
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Christine Hafner
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Robert G Hamilton
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Hauser
- Department of Biosciences and Medical Biology, Paris Lodron University Salzburg, Salzburg, Austria
| | - Thomas Hawranek
- Department of Dermatology and Allergology, Paracelsus Private Medical University, Salzburg, Austria
| | - Hans Jürgen Hoffmann
- Institute for Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | | | - Tomona Iizuka
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thilo Jakob
- Department of Dermatology and Allergology, University Medical Center, Justus Liebig University Gießen, Gießen, Germany
| | - Bente Janssen-Weets
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Uta Jappe
- Division of Clinical and Molecular Allergology, Priority Research Area Asthma and Allergy, Research Center Borstel, Borstel, Germany
- Leibniz Lung Center, Airway Research Center North (ARCN), Member of the German Center for Lung Research, Germany
- Interdisciplinary Allergy Outpatient Clinic, Dept. of Pneumology, University of Lübeck, Lübeck, Germany
| | - Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Tanja Kalic
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St. Poelten, Austria
| | - Sandip Kamath
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Sabine Kespohl
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient Clinic and Clinical Research Center, Berlin, Germany
| | - Edward Knol
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - André Knulst
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jon R Konradsen
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gideon Lack
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Thuy-My Le
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andreas Lopata
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland, Australia
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Olga Luengo
- RETIC ARADyAL and RICORS Enfermedades Inflamatorias (REI), Madrid, Spain
- Allergy Section, Internal Medicine Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mika Mäkelä
- Division of Allergy, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
- Pediatric Department, Skin and Allergy Hospital, Helsinki University Central Hospital, Helsinki, Finland
| | | | - Clare Mills
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | | | - Antonella Muraro
- Food Allergy Referral Centre, Department of Woman and Child Health, Padua University Hospital, Padua, Italy
| | - Anna Nowak-Wegrzyn
- Division of Pediatric Allergy and Immunology, NYU Grossman School of Medicine, Hassenfeld Children's Hospital, New York, New York, USA
- Department of Pediatrics, Gastroenterology and Nutrition, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Roni Nugraha
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
- Department of Aquatic Product Technology, Faculty of Fisheries and Marine Science, IPB University, Bogor, Indonesia
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Kati Palosuo
- Department of Allergology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Sarita Ulhas Patil
- Division of Rheumatology, Allergy and Immunology, Departments of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thomas Platts-Mills
- Division of Allergy and Clinical Immunology, University of Virginia, Charlottesville, Virginia, USA
| | | | - Pascal Poncet
- Institut Pasteur, Immunology Department, Paris, France
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Ekaterina Potapova
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Lars K Poulsen
- Allergy Clinic, Department of Dermatology and Allergy, Copenhagen University Hospital-Herlev and Gentofte, Copenhagen, Denmark
| | - Christian Radauer
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Suzana Radulovic
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
- Children's Allergy Service, Evelina London, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Monika Raulf
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr- Universität Bochum, Bochum, Germany
| | - Pierre Rougé
- UMR 152 PharmaDev, IRD, Université Paul Sabatier, Faculté de Pharmacie, Toulouse, France
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Sakura Sato
- Allergy Department, 2nd Paediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Enrico Scala
- Clinical and Laboratory Molecular Allergy Unit - IDI- IRCCS, Fondazione L M Monti Rome, Rome, Italy
| | - Johannes M Schmid
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
| | - Denise Schrama
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Faro, Portugal
| | - Hélène Sénéchal
- Allergy & Environment Research Team Armand Trousseau Children Hospital, APHP, Paris, France
| | - Claudia Traidl-Hoffmann
- Christine Kühne Center for Allergy Research and Education CK-CARE, Davos, Switzerland
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Marcela Valverde-Monge
- Allergy Service, Fundación Jiménez Díaz; CIBER de Enfermedades Respiratorias (CIBERES); Faculty of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Ronald van Ree
- Department of Experimental Immunology and Department of Otorhinolaryngology, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kitty Verhoeckx
- Department of Immunology and Dermatology/ Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Vieths
- Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | - Magnus Wickman
- Department of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia, Colombia
| | - Paolo M Matricardi
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
7
|
Brandt O, Wegenstein B, Müller I, Smith D, Nqweniso S, Adams L, Müller S, du Randt R, Pühse U, Gerber M, Navarini AA, Utzinger J, Daniel Labhardt N, Schindler C, Walter C. Association between allergic sensitization and intestinal parasite infection in schoolchildren in Gqeberha, South Africa. Clin Exp Allergy 2022; 52:670-683. [PMID: 35073608 PMCID: PMC9310757 DOI: 10.1111/cea.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/03/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022]
Abstract
Background Inconsistent data exist regarding the influence of parasitic infection on the prevalence of allergic sensitization and disorders. Objective To investigate the impact of geohelminth and protozoan infections on sensitization patterns and allergic symptoms of children living in low‐income communities in Gqeberha, South Africa. Methods In a cross‐sectional study, 587 schoolchildren aged 8–12 years were recruited in June 2016 and screened for reactivity to common allergens by skin prick tests (SPTs) and for parasitic infections by stool examination. Additionally, questionnaires were completed to record allergic symptoms the children may have experienced. Results Positive SPTs were found in 237/587 children (40.4%), and about one‐third of whom were polysensitized. Sensitizations were most frequently detected against the house dust mites (HDM) Dermatophagoides spp. (31.9%) and Blomia tropicalis (21.0%). Infections with geohelminths (Ascaris lumbricoides, Trichuris trichiura) were found in 26.8% and protozoan infections (Giardia intestinalis, Cryptosporidia spp.) in 13.9% of study participants. Mixed logistic regression analyses revealed negative associations between parasite infection and sensitization to Blomia tropicalis (OR: 0.54, 95% CI 0.33–0.89) and to Dermatophagoides spp. (OR 0.65, 95% CI 0.43–0.96), and between protozoan infection and allergic sensitization to any aeroallergen, although these associations were not significant when adjusted for false discovery. Geohelminth infection and intensity of geohelminth infection were both associated with reduced risk of polysensitization (OR 0.41, 95% CI 0.21–0.86), and this association remained significant with adjustment for false discovery. Reported respiratory symptoms were associated with HDM sensitization (ORs from 1.54 to 2.48), but not with parasite infection. Conclusions and clinical relevance Our data suggest that geohelminth infection and high geohelminth infection intensity are associated with a reduced risk of polysensitization.
Collapse
Affiliation(s)
- Oliver Brandt
- Department of Dermatology, Allergy Unit, University Hospital, University of Basel, Basel, Switzerland.,Department of Dermatology, University Hospital, University of Basel, Basel, Switzerland.,Pediatric Respiratory Medicine, Children's University Hospital of Bern, University of Bern, Bern, Switzerland
| | - Benjamin Wegenstein
- Department of Dermatology, Allergy Unit, University Hospital, University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Ivan Müller
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Danielle Smith
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Siphesihle Nqweniso
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Larissa Adams
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Simon Müller
- Department of Dermatology, University Hospital, University of Basel, Basel, Switzerland
| | - Rosa du Randt
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| | - Uwe Pühse
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Alexander A Navarini
- Department of Dermatology, University Hospital, University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | | | | | - Cheryl Walter
- Department of Human Movement Science, Nelson Mandela University, Ggeberha, South Africa
| |
Collapse
|
8
|
Caraballo L. Editorial: Allergens and Allergic Sensitization in Asia and the Tropics. FRONTIERS IN ALLERGY 2021; 2:808044. [PMID: 35386982 PMCID: PMC8974715 DOI: 10.3389/falgy.2021.808044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 12/02/2022] Open
|
9
|
Cooper PJ, Ster IC, Chico ME, Vaca M, Barreto ML, Strachan DP. Patterns of allergic sensitization and factors associated with emergence of sensitization in the rural tropics early in the life course: findings of an Ecuadorian birth cohort. FRONTIERS IN ALLERGY 2021; 2:687073. [PMID: 34888545 PMCID: PMC7612078 DOI: 10.3389/falgy.2021.687073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction There are limited data on emergence of allergic sensitization (or atopy) during childhood in tropical regions. Methods We followed a birth cohort of 2404 newborns to 8 years in tropical Ecuador and collected: risk factor data by maternal questionnaires periodically from birth; atopy was measured by skin prick test reactivity (SPT) to aeroallergens in parents, and aeroallergens and food allergens in children at 2, 3, 5, and 8 years; and stool samples for soil-transmitted helminths (STH) from children periodically to 8 years and from parents and household members at the time of recruitment of cohort children. Data on risk factors were measured either at birth or repeatedly (time-varying) from birth to 8 years. Longitudinal repeated-measures analyses were done using generalized estimating equations to estimate an the age-dependent risk of positive SPT (SPT+) to any allergen or mite during early childhood to school age. Results SPT+ to any allergen was present in 29.0% of fathers and 24.8% of mothers, and in cohort children increased with age, initially to mite but later to cockroach, reaching 14.8% to any allergen (10.7% mite and 5.3% cockroach) at 8 years. Maternal SPT+, particularly presence of polysensitization (OR 2.04, 95% CI 1.49-2.77) significantly increased the risk of SPT+ during childhood, while household overcrowding at birth decreased the risk (OR 0.84, 95% CI 0.72-0.98). For mite sensitization, maternal polysensitization increased (OR 2.14, 95% CI 1.40-3.27) but rural residence (OR 0.69, 95% CI 0.50-0.94) and birth order (3rd -4th vs. 1st - 2nd: OR 0.71, 95% CI 0.52-0.98) decreased the risk. Time-varying exposures to agricultural activities (OR 0.77, 95% CI 0.60-0.98) and STH parasites (OR 0.70, 95% CI 0.64-0.91) during childhood decreased while anthelmintics increased the childhood risk (OR 1.47, 95% CI 1.05-2.05) of mite sensitization. Conclusion Our data showed the emergence of allergic sensitization, primarily to mite and cockroach allergens, during childhood in tropical Ecuador. A role for both antenatal and postnatal factors acting as potential determinants of SPT+ emergence was observed.
Collapse
Affiliation(s)
- Philip J Cooper
- Institute of Infection and Immunity, St George's University of London, London, UK.,Escuela de Medicina, Universidad Internacional del Ecuador, Quito, Ecuador.,Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Irina Chis Ster
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Martha E Chico
- Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Maritza Vaca
- Fundacion Ecuatoriana Para Investigacion en Salud, Quito, Ecuador
| | - Mauricio L Barreto
- Center for Data and Knowledge Integration for Health (CIDACS)-FIOCRUZ, Salvador, Brazil
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| |
Collapse
|
10
|
Zakzuk J, Lozano A, Caraballo L. Allergological Importance of Invertebrate Glutathione Transferases in Tropical Environments. FRONTIERS IN ALLERGY 2021; 2:695262. [PMID: 35387058 PMCID: PMC8974725 DOI: 10.3389/falgy.2021.695262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/19/2021] [Indexed: 11/19/2022] Open
Abstract
Glutathione-S transferases (GSTs) are part of a ubiquitous family of dimeric proteins that participate in detoxification reactions. It has been demonstrated that various GSTs induce allergic reactions in humans: those originating from house dust mites (HDM), cockroaches, and helminths being the best characterized. Evaluation of their allergenic activity suggests that they have a clinical impact. GST allergens belong to different classes: mu (Blo t 8, Der p 8, Der f 8, and Tyr p 8), sigma (Bla g 5 and Asc s 13), or delta (Per a 5). Also, IgE-binding molecules belonging to the pi-class have been discovered in helminths, but they are not officially recognized as allergens. In this review, we describe some aspects of the biology of GST, analyze their allergenic activity, and explore the structural aspects and clinical impact of their cross-reactivity.
Collapse
|
11
|
Čelakovská J, Bukač J, Cermákova E, Vaňková R, Skalská H, Krejsek J, Andrýs C. Analysis of Results of Specific IgE in 100 Atopic Dermatitis Patients with the Use of Multiplex Examination ALEX2-Allergy Explorer. Int J Mol Sci 2021; 22:ijms22105286. [PMID: 34067936 PMCID: PMC8156228 DOI: 10.3390/ijms22105286] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Background and aim: Progress in laboratory diagnostics of IgE-mediated allergy is the use of component-resolved diagnosis. Our study analyses the results of specific IgE to 295 allergen reagents (117 allergenic extracts and 178 molecular components) in patients suffering from atopic dermatitis (AD) with the use of ALEX2 Allergy Explorer. Method: The complete dermatological and allergological examination, including the examination of the sensitization to molecular components with ALEX2 Allergy Explorer testing, was performed. The statistical analysis of results was performed with these methods: TURF (total unduplicated reach and frequency), best reach and frequency by group size, two-sided tests, Fisher’s exact test, and chi-square test (at an expected minimum frequency of at least 5). Results: Altogether, 100 atopic dermatitis patients were examined: 48 men, 52 women, the average age 40.9 years, min. age 14 years, max. age 67 years. The high and very high level of specific IgE was reached in 75.0% of patients to 18 molecular components: from PR-10 proteins (Aln g 1, Bet v 1, Cor a1.0103, Cor a1.0401, Fag s 1), lipocalin (Can f 1), NPC2 family (Der f 2, Der p 2), uteroglobin (Fel d 1), from Alternaria alternata (Alt a 1), Beta expansin (Lol p 1, Phl p 1), molecular components from Timothy, cultivated rye (Secc pollen) and peritrophin-like protein domain Der p 23. The high and very high level of specific IgE to other lipocalins (Fel d 7, Can f 4), to arginine kinase (Bla g 9, German cockroach), and to allergen extracts Art v (mugwort), and Cyn d (Bermuda grass) reached 52.0% of patients. The severity of AD is in significant relation to the sensitization to molecular components of storage mites (Gly d 2, Lep d 2—NPC2 family), lipocalins (Can f 1, Can f 2, Can f 4, and Can f 6), arginine kinase (Asp f 6, Bla g 9, Der p 20, Pen m 2), uteroglobin (Fel d 1, Ory c 3), Mn superoxide dismutase (Mala s 11), PR-10 proteins (Fag s 1, Mal d 1, Cor a 1.0401, Cor a 1.0103), molecular components of the peritrophin-like domain (Der p 21, Der p 23), and to Secc pollen. In the subgroup of patients suffering from bronchial asthma, the significant role play molecular components from house dust mites and storage mites (Lep d 2, Der p 2, Der f 2—NPC2 family), cysteine protease (Der p 1), peritrophin-like protein domain (Der p 21, Der p 23), enolase from Alternaria alternata (Alt a 6), and Beta expansin Phl p 1. Conclusion: The results of our study demonstrate the detailed profile of sensitization to allergens reagents (allergen extract and molecular components) in patients with atopic dermatitis. We show the significance of disturbed epidermal barrier, resulting in increased penetration of allergens. We confirmed the significant relationship between the severity of AD, the occurrence of bronchial asthma and allergic rhinitis, and high levels of specific IgE to allergen reagents. Our results may be important for regime measures and immunotherapy; Der p 23 shall be considered as an essential component for the diagnosis and specific immunotherapy of house dust mite allergy.
Collapse
Affiliation(s)
- Jarmila Čelakovská
- Department of Dermatology and Venereology, Faculty Hospital and Medical Faculty of Charles University, 50002 Hradec Králové, Czech Republic
- Correspondence:
| | - Josef Bukač
- Department of Medical Biophysic, Medical Faculty of Charles University, 50002 Hradec Králové, Czech Republic; (J.B.); (E.C.)
| | - Eva Cermákova
- Department of Medical Biophysic, Medical Faculty of Charles University, 50002 Hradec Králové, Czech Republic; (J.B.); (E.C.)
| | - Radka Vaňková
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, 50002 Hradec Králové, Czech Republic; (R.V.); (J.K.); (C.A.)
| | - Hana Skalská
- Department of Informatics and Quantitative Methods, Faculty of Informatics and Management, University of Hradec Kralove, 50003 Hradec Králové, Czech Republic;
| | - Jan Krejsek
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, 50002 Hradec Králové, Czech Republic; (R.V.); (J.K.); (C.A.)
| | - Ctirad Andrýs
- Department of Clinical Immunology and Allergy, Faculty Hospital and Medical Faculty of Charles University, 50002 Hradec Králové, Czech Republic; (R.V.); (J.K.); (C.A.)
| |
Collapse
|
12
|
Buendía E, Marlon M, Parra O, Sánchez M, Sánchez A, Sánchez J, Viasus D. Human Proteinase 3, an important autoantigen of c-ANCA associated vasculitis, shares cross-reactive epitopes with serine protease allergens from mites: an in silico analysis. F1000Res 2021; 10:47. [PMID: 35602671 PMCID: PMC9099154 DOI: 10.12688/f1000research.28225.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 11/06/2023] Open
Abstract
Background: In autoimmune vasculitis, autoantibodies to Human Proteinase 3 (PR3), a human serine protease, seems to have a role on the inception of c-ANCA associated vasculitis. The origin of this autoreactive response remains unclear. However, for several autoreactive responses, molecular mimicry between environmental antigens and human proteins is key to trigger autoantibodies and finally autoimmunity manifestations. Considering that PR3 is a serine protease and house dust mite (HDM) group 3 allergens share this biochemical activity, the aim of this study was to identify cross-reactive epitopes between serine proteases from human and mites using an in silico approach. Methods: Multi alignment among amino acid sequences of PR3 and HDM group 3 allergens was performed to explore identity and structural homology. ElliPro and BepiPred in silico tools were used to predict B and T cell epitopes. Consurf tool was used to conduct identification of conserved regions in serine proteases family. Results: PR3 and HDM group 3 allergens shared moderate identity and structural homology (root mean square deviation < 1). One B cell cross reactive epitope among serine proteases was identified (29I, 30V, 31G, 32G, 34E, 36K, 37A, 38L, 39A and 54C) and two T cell epitopes. Conclusions: PR3 have structural homology and share cross reactive epitopes with HDM group 3 allergens.
Collapse
Affiliation(s)
- Emiro Buendía
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Faculty of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Múnera Marlon
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Orlando Parra
- Department of Internal Medicine, Universidad El Bosque, Bogotá, Cundinamarca, 110111, Colombia
| | - María Sánchez
- Departement of Pediatrics, Universidad de Cartagena, Cartagena, Bolívar, 130001, Colombia
| | - Andrés Sánchez
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Jorge Sánchez
- Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, Universidad de Antioquia, Medellín, Antioquia, 050001, Colombia
| | - Diego Viasus
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
| |
Collapse
|
13
|
Buendía E, Marlon M, Parra O, Sánchez M, Sánchez A, Sánchez J, Viasus D. Human Proteinase 3, an important autoantigen of c-ANCA associated vasculitis, shares cross-reactive epitopes with serine protease allergens from mites: an in silico analysis. F1000Res 2021; 10:47. [PMID: 35602671 PMCID: PMC9099154 DOI: 10.12688/f1000research.28225.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background: In autoimmune vasculitis, autoantibodies to Human Proteinase 3 (PR3), a human serine protease, seems to have a role on the inception of c-ANCA associated vasculitis. The origin of this autoreactive response remains unclear. However, for several autoreactive responses, molecular mimicry between environmental antigens and human proteins is key to trigger autoantibodies and finally autoimmunity manifestations. Considering that PR3 is a serine protease and house dust mite (HDM) group 3 allergens share this biochemical activity, the aim of this study was to identify cross-reactive epitopes between serine proteases from human and mites using an in silico approach. Methods: Multi alignment among amino acid sequences of PR3 and HDM group 3 allergens was performed to explore identity and structural homology. ElliPro and BepiPred in silico tools were used to predict B and T cell epitopes. Consurf tool was used to conduct identification of conserved regions in serine proteases family. Results: PR3 and HDM group 3 allergens shared moderate identity and structural homology (root mean square deviation < 1). One B cell cross reactive epitope among serine proteases was identified (29I, 30V, 31G, 32G, 34E, 36K, 37A, 38L, 39A and 54C) and two T cell epitopes. Conclusions: PR3 have structural homology and share cross reactive epitopes with HDM group 3 allergens.
Collapse
Affiliation(s)
- Emiro Buendía
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Faculty of Medicine, Universidad de Cartagena, Cartagena, Colombia
| | - Múnera Marlon
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Orlando Parra
- Department of Internal Medicine, Universidad El Bosque, Bogotá, Cundinamarca, 110111, Colombia
| | - María Sánchez
- Departement of Pediatrics, Universidad de Cartagena, Cartagena, Bolívar, 130001, Colombia
| | - Andrés Sánchez
- Medical Research group (GINUMED), Universitary Corporation Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Jorge Sánchez
- Group of Clinical and Experimental Allergy (GACE), IPS Universitaria, Universidad de Antioquia, Medellín, Antioquia, 050001, Colombia
| | - Diego Viasus
- Department of Internal Medicine, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
- Division of Health Sciences, Universidad del Norte, Barranquilla, Atlantico, 080004, Colombia
| |
Collapse
|
14
|
Ahumada V, Manotas M, Zakzuk J, Aglas L, Coronado S, Briza P, Lackner P, Regino R, Araujo G, Ferreira F, Caraballo L. Identification and Physicochemical Characterization of a New Allergen from Ascaris lumbricoides. Int J Mol Sci 2020; 21:ijms21249761. [PMID: 33371317 PMCID: PMC7767342 DOI: 10.3390/ijms21249761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
To analyze the impact of Ascaris lumbricoides infection on the pathogenesis and diagnosis of allergic diseases, new allergens should be identified. We report the identification of a new Ascaris lumbricoides allergen, Asc l 5. The aim of this study was to evaluate the physicochemical and immunological features of the Asc l 5 allergen. We constructed an A. lumbricoides cDNA library and Asc l 5 was identified by immunoscreening. After purification, rAsc l 5 was physicochemically characterized. Evaluation of its allergenic activity included determination of Immunoglobulin E (IgE) binding frequency (in two populations: 254 children and 298 all-age subjects), CD203c based-basophil activation tests (BAT) and a passive cutaneous anaphylaxis (PCA) mouse model. We found by amino acid sequence analysis that Asc l 5 belongs to the SXP/RAL-2 protein family of nematodes. rAsc l 5 is a monomeric protein with an alpha-helical folding. IgE sensitization to rAsc l 5 was around 52% in general population; positive BAT rate was 60%. rAsc l 5 induced specific IgE production in mice and a positive PCA reaction. These results show that Asc l 5 has structural and immunological characteristics to be considered as a new allergen from A. lumbricoides.
Collapse
Affiliation(s)
- Velky Ahumada
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (V.A.); (M.M.); (J.Z.); (S.C.); (R.R.)
| | - María Manotas
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (V.A.); (M.M.); (J.Z.); (S.C.); (R.R.)
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (V.A.); (M.M.); (J.Z.); (S.C.); (R.R.)
| | - Lorenz Aglas
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.A.); (P.B.); (P.L.); (G.A.); (F.F.)
| | - Sandra Coronado
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (V.A.); (M.M.); (J.Z.); (S.C.); (R.R.)
| | - Peter Briza
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.A.); (P.B.); (P.L.); (G.A.); (F.F.)
| | - Peter Lackner
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.A.); (P.B.); (P.L.); (G.A.); (F.F.)
| | - Ronald Regino
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (V.A.); (M.M.); (J.Z.); (S.C.); (R.R.)
| | - Galber Araujo
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.A.); (P.B.); (P.L.); (G.A.); (F.F.)
| | - Fatima Ferreira
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria; (L.A.); (P.B.); (P.L.); (G.A.); (F.F.)
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena 130014, Colombia; (V.A.); (M.M.); (J.Z.); (S.C.); (R.R.)
- Correspondence: ; Tel.: +57-3103527373
| |
Collapse
|
15
|
Bousquet J, Grattan CE, Akdis CA, Eigenmann PA, Hoffmann-Sommergruber K, Agache I, Jutel M. Highlights and recent developments in allergic diseases in EAACI journals (2019). Clin Transl Allergy 2020; 10:56. [PMID: 33292572 PMCID: PMC7712618 DOI: 10.1186/s13601-020-00366-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
The European Academy of Allergy and Clinical Immunology (EAACI) owns three journals: Allergy, Pediatric Allergy and Immunology and Clinical and Translational Allergy. One of the major goals of EAACI is to support health promotion in which prevention of allergy and asthma plays a critical role and to disseminate the knowledge of allergy to all stakeholders including the EAACI junior members. There was substantial progress in 2019 in the identification of basic mechanisms of allergic and respiratory disease and the translation of these mechanisms into clinics. Better understanding of molecular and cellular mechanisms, efforts for the development of biomarkers for disease prediction, novel prevention and intervention studies, elucidation of mechanisms of multimorbidities, entrance of new drugs in the clinics as well as recently completed phase three clinical studies and publication of a large number of allergen immunotherapy studies and meta-analyses have been the highlights of the last year.
Collapse
Affiliation(s)
- J Bousquet
- MACVIA-France, Montpellier, France. .,CHRU Arnaud de Villeneuve, 371 Avenue du Doyen Gaston Giraud, 34295, Montpellier Cedex 5, France.
| | - C E Grattan
- St John's Institute of Dermatology, Guy's Hospital, London, UK
| | - C A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - P A Eigenmann
- Pediatric Allergy Unit, University Hospitals of Geneva, Geneva, Switzerland
| | - K Hoffmann-Sommergruber
- Depart of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - I Agache
- Transylvania University Brasov, Brasov, Romania
| | - M Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wrocław, Poland.,ALL-MED Medical Research Institute, Wrocław, Poland
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Precision medicine could help to improve diagnosis and treatment of asthma; however, in the tropics there are special conditions to be considered for applying this strategy. In this review, we analyze recent advances of precision allergology in tropical regions, highlighting its limitations and needs in high-admixed populations living under environments with high exposure to house dust mites and helminth infections. RECENT FINDINGS Advances have been made regarding the genetic characterization of the great diversity of populations living in the tropics. Genes involved in shared biological pathways between immune responses to nematodes and the allergic responses suggested new mechanisms of predisposition. Genome wide association studies of asthma are progressively focusing on some highly replicated genes such as those in chromosome 17q31-13, which have been also replicated in African ancestry populations. Some diagnostic difficulties, because of the endemicity of helminth infections, are now more evident in the context of phenotype definition. SUMMARY The clinical impact of the advances in precision medicine for asthma in the tropics is still limited and mainly related to component resolved diagnosis. More basic and clinical research is needed to identify genetic, epigenetic, or other biologic markers that allow and accurate definition of phenotypes and endotypes of this heterogeneous disease. This will substantially improve the selection of personalized treatments.
Collapse
|
17
|
Caraballo L, Valenta R, Puerta L, Pomés A, Zakzuk J, Fernandez-Caldas E, Acevedo N, Sanchez-Borges M, Ansotegui I, Zhang L, van Hage M, Abel-Fernández E, Karla Arruda L, Vrtala S, Curin M, Gronlund H, Karsonova A, Kilimajer J, Riabova K, Trifonova D, Karaulov A. The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. World Allergy Organ J 2020; 13:100118. [PMID: 32373267 PMCID: PMC7195550 DOI: 10.1016/j.waojou.2020.100118] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
A large number of allergens have been discovered but we know little about their potential to induce inflammation (allergenic activity) and symptoms. Nowadays, the clinical importance of allergens is determined by the frequency and intensity of their IgE antibody binding (allergenicity). This is a rather limited parameter considering the development of experimental allergology in the last 20 years and the criteria that support personalized medicine. Now it is known that some allergens, in addition to their IgE antibody binding properties, can induce inflammation through non IgE mediated pathways, which can increase their allergenic activity. There are several ways to evaluate the allergenic activity, among them the provocation tests, the demonstration of non-IgE mediated pathways of inflammation, case control studies of IgE-binding frequencies, and animal models of respiratory allergy. In this review we have explored the current status of basic and clinical research on allergenic activity of indoor allergens and confirm that, for most of them, this important property has not been investigated. However, during recent years important advances have been made in the field, and we conclude that for at least the following, allergenic activity has been demonstrated: Der p 1, Der p 2, Der p 5 and Blo t 5 from HDMs; Per a 10 from P. americana; Asp f 1, Asp f 2, Asp f 3, Asp f 4 and Asp f 6 from A. fumigatus; Mala s 8 and Mala s 13 from M. sympodialis; Alt a 1 from A. alternata; Pen c 13 from P. chrysogenum; Fel d 1 from cats; Can f 1, Can f 2, Can f 3, Can f 4 and Can f 5 from dogs; Mus m 1 from mice and Bos d 2 from cows. Defining the allergenic activity of other indoor IgE antibody binding molecules is necessary for a precision-medicine-oriented management of allergic diseases.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Corresponding author. Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| | - Rudolf Valenta
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- NRC Institute of Immunology FMBA of Russia, Moscow, Russian Federation
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Leonardo Puerta
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Anna Pomés
- Indoor Biotechnologies, Inc. Charlottesville, VA, USA
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Mario Sanchez-Borges
- Allergy and Clinical Immunology Department, Centro Médico Docente La Trinidad, Caracas, Venezuela
| | - Ignacio Ansotegui
- Department of Allergy & Immunology Hospital Quironsalud Bizkaia, Bilbao, Spain
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Marianne van Hage
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Eva Abel-Fernández
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - L. Karla Arruda
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirela Curin
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Hans Gronlund
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Antonina Karsonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jonathan Kilimajer
- Inmunotek, Madrid, Spain and University of South Florida College of Medicine, Tampa, USA
| | - Ksenja Riabova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Daria Trifonova
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergy, Laboratory of Immunopathology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
18
|
Eigenmann P. Allergy development is influenced by microbial breast milk composition and early exposure to animals. Pediatr Allergy Immunol 2020; 31:231-232. [PMID: 32301188 DOI: 10.1111/pai.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Philippe Eigenmann
- Department of Women-Children-Teenagers, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
19
|
Eigenmann P. The environment and its effect on allergic sensitization and atopic dermatitis, and colostrum and the immune system of the preterm infant. Pediatr Allergy Immunol 2019; 30:147-148. [PMID: 30773723 DOI: 10.1111/pai.13029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/23/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Philippe Eigenmann
- Department of Pediatrics, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Acevedo N, Zakzuk J, Caraballo L. House Dust Mite Allergy Under Changing Environments. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2019; 11:450-469. [PMID: 31172715 PMCID: PMC6557771 DOI: 10.4168/aair.2019.11.4.450] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 12/11/2022]
Abstract
Environmental variations induced by industrialization and climate change partially explain the increase in prevalence and severity of allergic disease. One possible mechanism is the increase in allergen production leading to more exposure and sensitization in susceptible individuals. House dust mites (HDMs) are important sources of allergens inducing asthma and rhinitis, and experimentally they have been demonstrated to be very sensitive to microenvironment modifications; therefore, global or regional changes in temperature, humidity, air pollution or other environmental conditions could modify natural HDM growth, survival and allergen production. There is evidence that sensitization to HDMs has increased in some regions of the world, especially in the subtropical and tropical areas; however, the relationship of this increase with environmental changes is not so clear as has reported for pollen allergens. In this review, we address this point and explore the effects of current and predicted environmental changes on HDM growth, survival and allergen production, which could lead to immunoglobulin E (IgE) sensitization and allergic disease prevalence. We also assess the role of adjuvants of IgE responses, such as air pollution and helminth infections, and discuss the genetic and epigenetic aspects that could influence the adaptive process of humans to drastic and relatively recent environmental changes we are experiencing.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena de Indias, Colombia.
| |
Collapse
|