1
|
Kita K, Gawinowska M, Chełmińska M, Niedoszytko M. The Role of Exhaled Breath Condensate in Chronic Inflammatory and Neoplastic Diseases of the Respiratory Tract. Int J Mol Sci 2024; 25:7395. [PMID: 39000502 PMCID: PMC11242091 DOI: 10.3390/ijms25137395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are among the most common chronic respiratory diseases. Chronic inflammation of the airways leads to an increased production of inflammatory markers by the effector cells of the respiratory tract and lung tissue. These biomarkers allow the assessment of physiological and pathological processes and responses to therapeutic interventions. Lung cancer, which is characterized by high mortality, is one of the most frequently diagnosed cancers worldwide. Current screening methods and tissue biopsies have limitations that highlight the need for rapid diagnosis, patient differentiation, and effective management and monitoring. One promising non-invasive diagnostic method for respiratory diseases is the assessment of exhaled breath condensate (EBC). EBC contains a mixture of volatile and non-volatile biomarkers such as cytokines, leukotrienes, oxidative stress markers, and molecular biomarkers, providing significant information about inflammatory and neoplastic states in the lungs. This article summarizes the research on the application and development of EBC assessment in diagnosing and monitoring respiratory diseases, focusing on asthma, COPD, and lung cancer. The process of collecting condensate, potential issues, and selected groups of markers for detailed disease assessment in the future are discussed. Further research may contribute to the development of more precise and personalized diagnostic and treatment methods.
Collapse
Affiliation(s)
- Karolina Kita
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marika Gawinowska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marta Chełmińska
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Marek Niedoszytko
- Department of Allergology, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
2
|
Rufo JC, Annesi-Maesano I, Carreiro-Martins P, Moreira A, Sousa AC, Pastorinho MR, Neuparth N, Taborda-Barata L. Issue 2 - "Update on adverse respiratory effects of indoor air pollution" Part 1): Indoor air pollution and respiratory diseases: A general update and a Portuguese perspective. Pulmonology 2024; 30:378-389. [PMID: 37230882 DOI: 10.1016/j.pulmoe.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVE To quantify the impact of different air pollutants on respiratory health based on robust estimates based on international data and to summarise the evidence of associations between indoor exposure to those pollutants and respiratory morbidity in the Portuguese population. RESULTS Several systematic reviews and meta-analyses (MA) at the world level demonstrate the impact of indoor air quality on respiratory health, with indoor particulate matter and gasses exerting a significant effect on the airways. Volatile organic compounds (VOC) have been related to asthma and lung cancer. However, only meta-analyses on biomass use allowed documentation of long-term respiratory effects. While early publications concerning Portuguese-based populations mainly focused on indoor exposure to environmental tobacco smoke, later studies relocated the attention to relevant exposure environments, such as day care buildings, schools, residences and nursing homes. Looking at the pooled effects from the reviewed studies, high levels of carbon dioxide and particulate matter in Portuguese buildings were significantly associated with asthma and wheezing, with VOC and fungi showing a similar effect in some instances. CONCLUSIONS Despite the significant reduction of indoor air pollution effects after the 2008 indoor smoking prohibition in public buildings, studies show that several indoor air parameters are still significantly associated with respiratory health in Portugal. The country shares the worldwide necessity of standardisation of methods and contextual data to increase the reach of epidemiological studies on household air pollution, allowing a weighted evaluation of interventions and policies focused on reducing the associated respiratory morbidity.
Collapse
Affiliation(s)
- J C Rufo
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal
| | - I Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - P Carreiro-Martins
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Immunoallergology Service, Dona Estefânia Hospital, Centro Hospitalar e Universitário de Lisboa Central (CHULC), Lisbon, Portugal.
| | - A Moreira
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Rua das Taipas, n° 135, 4050-600 Porto, Portugal; Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal; Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - A C Sousa
- Comprehensive Health Research Centre (CHRC) and Department of Biology, University of Évora, Évora, Portugal; NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - M R Pastorinho
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; Comprehensive Health Research Centre (CHRC) and Department of Medical and Health Sciences, University of Évora, Évora, Portugal
| | - N Neuparth
- Comprehensive Health Research Center (CHRC), NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Lisboa, Portugal; Immunoallergology Service, Dona Estefânia Hospital, Centro Hospitalar e Universitário de Lisboa Central (CHULC), Lisbon, Portugal
| | - L Taborda-Barata
- NuESA-Health and Environment Study Unit, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal; UBIAir-Clinical & Experimental Lung Centre, University of Beira Interior, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal; CICS-Health Sciences Research Centre, University of Beira Interior, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal; Immunoallergology Service, Centro Hospitalar Universitário Cova da Beira, CACB - Clinical Academic Centre of Beiras, Covilhã, Portugal
| |
Collapse
|
3
|
Yang X, Xu D, Wen B, Ji J, Zhang Z, Li L, Zhang S, Zhi H, Kong J, Wang C, Wang J, Ruan H, Zhang M, Wei L, Dong B, Wang Q. The mediating role of exhaled breath condensate metabolites in the effect of particulate matter on pulmonary function in schoolchildren: A crossover intervention study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165517. [PMID: 37459994 DOI: 10.1016/j.scitotenv.2023.165517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
The role played by metabolites in exhaled breath condensate (EBC) in the effect of PM on schoolchildren's pulmonary function has received little attention. Accordingly, we examined whether metabolites in EBC mediated the effect of PM10, PM2.5, and PM1 on the pulmonary function of schoolchildren at a residential primary school who had received an air-cleaner cross-over intervention. Samples of EBC were collected from a total of 60 schoolchildren and subjected to metabolomics analysis. We found that the effect of PM on six pulmonary function indicators was mediated by the following nine lipid peroxidation-related and energy metabolism-related metabolites present in EBC: 4-hydroxynonenal, arachidoyl ethanolamide, dl-pyroglutamic acid, 5-deoxy-d-glucose, myristic acid, lauric acid, linoleic acid, l-proline, and palmitic acid. However, while all nine of these metabolites mediated the effects of PM on boys' pulmonary function, only 4-hydroxynonenal, arachidoyl ethanolamide, and dl-pyroglutamic acid mediated the effects of PM on girls' pulmonary function. Overall, our results show that (1) short-term exposure to PM affected the schoolchildren's pulmonary function by causing an imbalance between lipid peroxidation and glutathione-based antioxidant activity and by perturbing energy metabolism in respiratory system and (2) there was a sex-dependent antioxidant response to PM exposure, with boys being less resistant than girls.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dongqun Xu
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Department of Air Quality and Health Monitoring, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| | - Bo Wen
- Institute of Child and Adolescent Health, School of Public Health, Peking University, Beijing 100191, China
| | - Jian Ji
- Hazard Screening and Omic Platform, Analysis and Testing Center, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zeyu Zhang
- Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Li Li
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Shaoping Zhang
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hong Zhi
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jian Kong
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chong Wang
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Jun Wang
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hongjie Ruan
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Ming Zhang
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lan Wei
- Department of Environmental Toxicology, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Bin Dong
- Department of Air Quality and Health Monitoring, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qin Wang
- Key Laboratory of Environment and Human Health, Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
4
|
Fireman Klein E, Yaacoby-Bianu K, Orlin I, Zetser A, Purits N, Livnat G. Exhaled Breath Condensate and Respiratory Sequelae in Children Post-COVID-19. Respiration 2023; 102:479-486. [PMID: 37393889 DOI: 10.1159/000530971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 05/02/2023] [Indexed: 07/04/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an acute respiratory illness. A substantial proportion of adults experience persistent symptoms. There is a paucity of data on respiratory sequelae in children. Exhaled breath condensate (EBC) is a non-invasive tool used to assess airway inflammation. OBJECTIVES This study aimed to evaluate EBC parameters, respiratory, mental and physical ability among children post COVID-19 infection. METHODS Observational study of confirmed SARS-CoV-2 infection cases among children, aged 5-18 years, evaluated once, 1-6 months post positive SARS-CoV-2 PCR testing. All subjects performed spirometry, 6-min walk test (6MWT), EBC (pH, interleukin-6), and completed medical history questionnaires, Depression, Anxiety, and Stress Scale (DASS-21), and physical activity scores. Severity of COVID-19 disease was classified according to WHO criteria. RESULTS Fifty-eight children were included and classified asymptomatic (n = 14), mild (n = 37), and moderate (n = 7) disease. The asymptomatic group included younger patients compared to the mild and moderate groups (8.9 ± 2.5y vs. 12.3 ± 3.6y and 14.6 ± 2.5y, respectively, p = 0.001), as well as lower DASS-21 total scores (3.4 ± 4 vs. 8.7 ± 9.4 and 8.7 ± 0.6 respectively, p = 0.056), with higher scores in proximity to positive PCR (p = 0.011). No differences were found between the 3 groups regarding EBC, 6MWT, spirometry, body mass index percentile, and activity scores. CONCLUSIONS COVID-19 is an asymptomatic-mild disease in most young healthy children, with gradually diminishing emotional symptoms. Children without prolonged respiratory symptoms revealed no significant pulmonary sequelae as evaluated by EBC markers, spirometry, 6MWT, and activity scores. Larger studies are required to assess long-term pediatric consequences of post SARS-CoV-2 infection, to assess the need for pulmonology surveillance.
Collapse
Affiliation(s)
- Einat Fireman Klein
- Pulmonology division, Carmel Medical Center, Haifa, Israel
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Karin Yaacoby-Bianu
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Pediatric Pulmonology unit, Carmel Medical Center, Haifa, Israel
| | - Ido Orlin
- Department of Pediatrics, Carmel Medical Center, Haifa, Israel
| | - Anna Zetser
- Chemistry Laboratory, Carmel Medical Center, Haifa, Israel
| | - Nona Purits
- Pediatric Pulmonology unit, Carmel Medical Center, Haifa, Israel
| | - Galit Livnat
- Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Pediatric Pulmonology unit, Carmel Medical Center, Haifa, Israel
| |
Collapse
|
5
|
Diet Quality and Exhaled Breath Condensate Markers in a Sample of School-Aged Children. CHILDREN (BASEL, SWITZERLAND) 2023; 10:children10020263. [PMID: 36832392 PMCID: PMC9954902 DOI: 10.3390/children10020263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023]
Abstract
Exhaled breath condensate (EBC) analysis is a recently developed, non-invasive method used to identify and quantify biomarkers, mainly those coming from the lower respiratory tract. It seems that diet can influence the airway's inflammation and change the exhaled breath composition. This study aimed to assess the association between diet quality intake and markers in EBC among school-aged children. A cross-sectional analysis included 150 children (48.3% females, aged 7-12 years, mean age: 8.7 ± 0.8 years) from 20 schools across Porto, Portugal. We assessed diet quality through the Healthy Eating Index (HEI)-2015, which was estimated based on a single 24 h food recall questionnaire. EBC samples were collected, and we assessed their ionic content (Na+, K+) and conductivity. The association between diet quality and Na+, K+, Na+/K+ ratio and conductivity was estimated using logistic regression models adjusted for potential confounders. After adjustment, a higher quality diet score increases the odds of higher conductivity values of the EBC (aOR = 1.04, 95%CI 1.00; 1.08). Our findings suggest that a higher diet quality in school-aged children is associated with higher conductivity levels of the EBC.
Collapse
|