1
|
Olivieri B, Skypala IJ. New arrivals in anaphylaxis to foods. Curr Opin Allergy Clin Immunol 2023; 23:357-363. [PMID: 37490617 DOI: 10.1097/aci.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
PURPOSE OF REVIEW More people are excluding wheat from their diet, or turning to a more sustainable diet in which includes meat substitutes or is mainly or wholly plant-based. This increases the availability of new foods and with it the increasing likelihood of novel allergens. RECENT FINDINGS There is a growing body of evidence which suggests that allergies to seeds and legumes are increasing potentially due to their use in concentrated form in vegan or health foods. Insects can be a sustainable source of protein, but mealworm could provoke symptoms in individuals sensitized or allergic to shellfish or house dust mite. Novel plant food allergens such as gibberellin-regulated proteins and thaumatin-like proteins are increasingly being reported as significant causes of severe reactions to fruits. SUMMARY these findings make it even more imperative to take a full dietary history to ensure apparent idiopathic anaphylaxis is not in reality due to a novel food, especially in cases where other forms of the food are tolerated. Given the lack of diagnostic tests for these novel foods, a prick-to-prick skin prick test should be performed with the suspected food. There is currently more work needed to define and sequence many of the allergens involved.
Collapse
Affiliation(s)
- Bianca Olivieri
- Department of Medicine, Asthma, Allergy and Clinical Immunology Section, University of Verona, Verona, Italy
| | - Isabel J Skypala
- Royal Brompton & Harefield Hospitals, part of Guys and St Thomas NHS Foundation Trust
- Department of Inflammation and repair, Imperial College, London, UK
| |
Collapse
|
2
|
Kamei A, Izawa K, Ando T, Kaitani A, Yamamoto R, Maehara A, Ide T, Yamada H, Kojima M, Wang H, Tokushige K, Nakano N, Shimizu T, Ogawa H, Okumura K, Kitaura J. Development of mouse model for oral allergy syndrome to identify IgE cross-reactive pollen and food allergens: ragweed pollen cross-reacts with fennel and black pepper. Front Immunol 2022; 13:945222. [PMID: 35958602 PMCID: PMC9358994 DOI: 10.3389/fimmu.2022.945222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/27/2022] Open
Abstract
Oral allergy syndrome (OAS) is an IgE-mediated immediate food allergy that is localized to the oral mucosa. Pollen food allergy syndrome (PFAS), a pollinosis-associated OAS, is caused by cross-reactivity between food and pollen allergens. However, we need to more precisely understand the underlying pathogenesis of OAS/PFAS. In the present study, we developed a method to comprehensively identify cross-reactive allergens by using murine model of OAS and protein microarray technology. We focused on lip angioedema, which is one of the most common symptoms of OAS, and confirmed that mast cells reside in the tissues inside the lower lip of the mice. Interestingly, when the food allergen ovalbumin (OVA) was injected inside the lower lip of mice with high levels of OVA-specific IgE followed by an intravenous injection of the Evans blue dye, we found immediate dye extravasation in the skin of the neck in a mast cell-dependent manner. In addition, the degree of mast cell degranulation in the oral cavity, reflecting the severity of oral allergic responses, can be estimated by measuring the amount of extravasated dye in the skin. Therefore, we used this model of OAS to examine IgE cross-reactive allergens in vivo. Protein microarray analysis showed that serum IgE from mice intraperitoneally sensitized with ragweed pollen, one of the major pollens causing pollinosis, bound highly to protein extracts from several edible plants including black peppercorn and fennel. We confirmed that the levels of black pepper-specific IgE and fennel-specific IgE were significantly higher in the serum from ragweed pollen-sensitized mice than in the serum from non-sensitized control mice. Importantly, analysis of murine model of OAS showed that the injection of black pepper or fennel extract induced apparent oral allergic responses in ragweed pollen-sensitized mice. These results indicate IgE cross-reactivity of ragweed pollen with black pepper and fennel. In conclusion, we developed mouse model of OAS to identify IgE cross-reactive pollen and food allergens, which will help understand the pathogenesis of OAS/PFAS.
Collapse
Affiliation(s)
- Anna Kamei
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kumi Izawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Kumi Izawa, ; Jiro Kitaura,
| | - Tomoaki Ando
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ayako Kaitani
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Risa Yamamoto
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akie Maehara
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuma Ide
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Otorhinolaryngology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hiromichi Yamada
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mayuki Kojima
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hexing Wang
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Tokushige
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Science of Allergy and Inflammation, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshiaki Shimizu
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Pediatrics and Adolescent Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jiro Kitaura
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
- *Correspondence: Kumi Izawa, ; Jiro Kitaura,
| |
Collapse
|