1
|
Zhou Y, Sun ML, Lin L, Ledesma-Amaro R, Wang K, Ji XJ, Huang H. Dynamic regulation combined with systematic metabolic engineering for high-level palmitoleic acid accumulation in oleaginous yeast. Metab Eng 2025; 89:33-46. [PMID: 39970999 DOI: 10.1016/j.ymben.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Palmitoleic acid (POA, C16:1Δ9) is widely recognized for its preventive and therapeutic effects in various chronic and cardiovascular diseases, but the current production practices based on plant extraction are both economically and ecologically unsustainable. Although Yarrowia lipolytica is capable of producing POA, it only accumulates to a small percentage of total fatty acids. The present study aimed to enhance the accumulation of POA by employing a two-layer engineering strategy, encompassing the modulation of the fatty acid profile and the promotion of the accumulation of POA-rich lipids. The fatty acid profile was subject to modulation through the engineering of the fatty acid metabolism by expressing heterologous specific fatty acid desaturases CeFat5 and implementing dynamic regulation based on a copper-responsive promoter. Then, the mechanism underlying this improvement of POA production capacity was elucidated. Finally, the POA-rich lipid accumulation ability was enhanced through engineering of the lipid metabolism by overexpressing the heterologous POA-specific triacylglycerol forming acyltransferase, introducing the artificial designed non-carboxylative malonyl-CoA production pathway, and preventing lipid degradation. The resulting optimized yeast strain achieved an impressive POA accumulation accounting for 50.62% of total fatty acids, marking a 37.7-fold improvement over the initial strain. Moreover, a record POA titer of 25.6 g/L was achieved in the bioreactor. Overall, this study introduces a framework for establishing efficient yeast platforms for the accumulation of valuable fatty acids.
Collapse
Affiliation(s)
- Yufan Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
2
|
Bengtsson JD, Wallis JG, Bai S, Browse J. The coexpression of two desaturases provides an optimized reduction of saturates in camelina oil. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:497-505. [PMID: 36382992 PMCID: PMC9946138 DOI: 10.1111/pbi.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Reducing the saturate content of vegetable oils is key to increasing their utility and adoption as a feedstock for the production of biofuels. Expression of either the FAT5 16 : 0-CoA desaturase from Caenorhabditis elegans, or an engineered cyanobacterial 16 : 0/18 : 0-glycerolipid desaturase, DES9*, in seeds of Arabidopsis (Arabidopsis thaliana) substantially lowered oil saturates. However, because pathway fluxes and regulation of oil synthesis are known to differ across species, translating this transgene technology from the model plant to crop species requires additional investigation. In the work reported here, we found that high expression of FAT5 in seeds of camelina (Camelina sativa) provided only a moderate decrease in saturates, from 12.9% of total oil fatty acids in untransformed controls to 8.6%. Expression of DES9* reduced saturates to 4.6%, but compromised seed physiology and oil content. However, the coexpression of the two desaturases together cooperatively reduced saturates to only 4.0%, less than one-third of the level in the parental line, without compromising oil yield or seedling germination and establishment. Our successful lowering of oil saturates in camelina identifies strategies that can now be integrated with genetic engineering approaches that reduce polyunsaturates to provide optimized oil composition for biofuels in camelina and other oil seed crops.
Collapse
Affiliation(s)
- Jesse D. Bengtsson
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - James G. Wallis
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - Shuangyi Bai
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| | - John Browse
- Institute of Biological ChemistryWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
3
|
Wallis JG, Bengtsson JD, Browse J. Molecular Approaches Reduce Saturates and Eliminate trans Fats in Food Oils. FRONTIERS IN PLANT SCIENCE 2022; 13:908608. [PMID: 35720592 PMCID: PMC9205222 DOI: 10.3389/fpls.2022.908608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Vegetable oils composed of triacylglycerols (TAG) are a major source of calories in human diets. However, the fatty acid compositions of these oils are not ideal for human nutrition and the needs of the food industry. Saturated fatty acids contribute to health problems, while polyunsaturated fatty acids (PUFA) can become rancid upon storage or processing. In this review, we first summarize the pathways of fatty acid metabolism and TAG synthesis and detail the problems with the oil compositions of major crops. Then we describe how transgenic expression of desaturases and downregulation of the plastid FatB thioesterase have provided the means to lower oil saturates. The traditional solution to PUFA rancidity uses industrial chemistry to reduce PUFA content by partial hydrogenation, but this results in the production of trans fats that are even more unhealthy than saturated fats. We detail the discoveries in the biochemistry and molecular genetics of oil synthesis that provided the knowledge and tools to lower oil PUFA content by blocking their synthesis during seed development. Finally, we describe the successes in breeding and biotechnology that are giving us new, high-oleic, low PUFA varieties of soybean, canola and other oilseed crops.
Collapse
Affiliation(s)
| | | | - John Browse
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
4
|
Zhou XR, Li J, Wan X, Hua W, Singh S. Harnessing Biotechnology for the Development of New Seed Lipid Traits in Brassica. PLANT & CELL PHYSIOLOGY 2019; 60:1197-1204. [PMID: 31076774 DOI: 10.1093/pcp/pcz070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/11/2019] [Indexed: 05/12/2023]
Abstract
The seed oil quality of Brassica oilseed species has been improved in the last few decades, using conventional breeding approaches. Modern biotechnology has enabled the significant development of new seed lipid traits in many oil crops. Alternation of seed lipid component with gene knockout by RNAi gene silencing, artificial microRNA or gene editing within the crop is relative straightforward. Introducing a new pathway from an exogenous source via biotechnology enables the creation of a new trait, where the biosynthetic pathway for such a new trait is not available in the host crop. This review updates the recent development of new seed lipid traits in six major Brassica species and highlights the capability of biotechnology to improve the composition of important fatty acids for both industrial and nutritional purposes.
Collapse
Affiliation(s)
| | - Jun Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Wan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | | |
Collapse
|
5
|
Wayne LL, Gachotte DJ, Walsh TA. Transgenic and Genome Editing Approaches for Modifying Plant Oils. Methods Mol Biol 2019; 1864:367-394. [PMID: 30415347 DOI: 10.1007/978-1-4939-8778-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vegetable oils are important for human and animal nutrition and as renewable resources for chemical feedstocks. We provide an overview of transgenic and genome editing approaches for modifying plant oils, describing useful model and crop systems and different strategies for transgenic modifications. We also describe new genome editing approaches that are beginning to be applied to oilseed plants and crops. These approaches are illustrated with examples for modifying the nutritional quality of vegetable oils by altering fatty acid desaturation, producing non-native fatty acids in oilseeds, and enhancing the overall accumulation of oil in seeds and leaves.
Collapse
Affiliation(s)
- Laura L Wayne
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Daniel J Gachotte
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Terence A Walsh
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
6
|
Bai S, Wallis JG, Denolf P, Browse J. Directed evolution increases desaturation of a cyanobacterial fatty acid desaturase in eukaryotic expression systems. Biotechnol Bioeng 2016; 113:1522-30. [PMID: 26724425 DOI: 10.1002/bit.25922] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/17/2015] [Accepted: 12/29/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Shuangyi Bai
- Institute of Biological Chemistry; Washington State University; Pullman Washington
| | - James G. Wallis
- Institute of Biological Chemistry; Washington State University; Pullman Washington
| | - Peter Denolf
- Bayer CropScience N.V.; Technologiepark 38; Ghent Belgium
| | - John Browse
- Institute of Biological Chemistry; Washington State University; Pullman Washington
| |
Collapse
|
7
|
Nguyen HT, Park H, Koster KL, Cahoon RE, Nguyen HTM, Shanklin J, Clemente TE, Cahoon EB. Redirection of metabolic flux for high levels of omega-7 monounsaturated fatty acid accumulation in camelina seeds. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:38-50. [PMID: 25065607 DOI: 10.1111/pbi.12233] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 05/20/2023]
Abstract
Seed oils enriched in omega-7 monounsaturated fatty acids, including palmitoleic acid (16:1∆9) and cis-vaccenic acid (18:1∆11), have nutraceutical and industrial value for polyethylene production and biofuels. Existing oilseed crops accumulate only small amounts (<2%) of these novel fatty acids in their seed oils. We demonstrate a strategy for enhanced production of omega-7 monounsaturated fatty acids in camelina (Camelina sativa) and soybean (Glycine max) that is dependent on redirection of metabolic flux from the typical ∆9 desaturation of stearoyl (18:0)-acyl carrier protein (ACP) to ∆9 desaturation of palmitoyl (16:0)-acyl carrier protein (ACP) and coenzyme A (CoA). This was achieved by seed-specific co-expression of a mutant ∆9-acyl-ACP and an acyl-CoA desaturase with high specificity for 16:0-ACP and CoA substrates, respectively. This strategy was most effective in camelina where seed oils with ~17% omega-7 monounsaturated fatty acids were obtained. Further increases in omega-7 fatty acid accumulation to 60-65% of the total fatty acids in camelina seeds were achieved by inclusion of seed-specific suppression of 3-keto-acyl-ACP synthase II and the FatB 16:0-ACP thioesterase genes to increase substrate pool sizes of 16:0-ACP for the ∆9-acyl-ACP desaturase and by blocking C18 fatty acid elongation. Seeds from these lines also had total saturated fatty acids reduced to ~5% of the seed oil versus ~12% in seeds of nontransformed plants. Consistent with accumulation of triacylglycerol species with shorter fatty acid chain lengths and increased monounsaturation, seed oils from engineered lines had marked shifts in thermotropic properties that may be of value for biofuel applications.
Collapse
Affiliation(s)
- Huu Tam Nguyen
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | | | | | | | | | | | | |
Collapse
|