1
|
Thakur V, Rane J, Pandey GC, Yadav S. Image facilitated assessment of intra-spike variation in grain size in wheat under high temperature and drought stress. Sci Rep 2023; 13:19850. [PMID: 37963937 PMCID: PMC10645968 DOI: 10.1038/s41598-023-44503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
In wheat (Triticum aestivum L.), the grain size varies according to position within the spike. Exposure to drought and high temperature stress during grain development in wheat reduces grain size, and this reduction also varies across the length of the spike. We developed the phenomics approach involving image-based tools to assess the intra-spike variation in grain size. The grains were arranged corresponding to the spikelet position and the camera of smart phone was used to acquire 333 images. The open-source software ImageJ was used to analyze features of each grain and the image-derived parameters were used to calculate intra-spike variation as standard deviation (ISVAD). The effect of genotype and environment were highly significant on the ISVAD of grain area. Sunstar and Raj 4079 contrasted in the ISVAD of grain area under late sown environment, and RNA sequencing of the spike was done at 25 days after anthesis. The genes for carbohydrate transport and stress response were upregulated in Sunstar as compared to Raj 4079, suggesting that these play a role in intra-spike assimilate distribution. The phenomics method developed may be useful for grain phenotyping and identifying germplasm with low intra-spike variation in grain size for their further validation as parental material in breeding.
Collapse
Affiliation(s)
- Vidisha Thakur
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Jagadish Rane
- ICAR-Central Institute for Arid Horticulture, Bikaner, Rajasthan, 334006, India.
| | - Girish Chandra Pandey
- Department of Bioscience & Biotechnology, Banasthali Vidyapith, Banasthali, Rajasthan, 304 022, India
| | - Satish Yadav
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410 505, India
| |
Collapse
|
2
|
Tiozon RJN, Fettke J, Sreenivasulu N, Fernie AR. More than the main structural genes: Regulation of resistant starch formation in rice endosperm and its potential application. JOURNAL OF PLANT PHYSIOLOGY 2023; 285:153980. [PMID: 37086697 DOI: 10.1016/j.jplph.2023.153980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/07/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
In the past decade, research on resistant starch has evoked interest due to the prevention and inhibition of chronic human diseases, such as diabetes, cancer, and obesity. Increasing the amylose content (AC) and resistant starch (RS) has been pivotal in improving the nutritional benefit of rice. However, the exact mechanism of RS formation is complex due to interconnected genetic factors regulating amylose-amylopectin variation. In this review, we discussed the regulatory factors influencing the RS formation centered on the transcription, post-transcriptional, and post-translational processes. Furthermore, we described the developments in RS and AC levels in rice compared with other high RS cereals. Briefly, we enumerated potential applications of high RS mutants in health, medical, and other industries. We contest that the information captured herein can be deployed for marker-assisted breeding and precision breeding techniques through genome editing to improve rice varieties with enhanced RS content.
Collapse
Affiliation(s)
- Rhowell Jr N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines; Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños, 4030, Philippines
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
3
|
Wang Z, Wei K, Xiong M, Wang J, Zhang C, Fan X, Huang L, Zhao D, Liu Q, Li Q. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2606-2618. [PMID: 34416068 PMCID: PMC8633486 DOI: 10.1111/pbi.13686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 05/07/2023]
Abstract
The source-sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water-Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf-dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down-regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Ke Wei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Min Xiong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Jin‐Dong Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Chang‐Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Xiao‐Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Li‐Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Dong‐Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Qiao‐Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Qian‐Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
4
|
Abstract
Wheat was one of the first grain crops domesticated by humans and remains among the major contributors to the global calorie and protein budget. The rapidly expanding world population demands further enhancement of yield and performance of wheat. Phenotypic information has historically been instrumental in wheat breeding for improved traits. In the last two decades, a steadily growing collection of tools and imaging software have given us the ability to quantify shoot, root, and seed traits with progressively increasing accuracy and throughput. This review discusses challenges and advancements in image analysis platforms for wheat phenotyping at the organ level. Perspectives on how these collective phenotypes can inform basic research on understanding wheat physiology and breeding for wheat improvement are also provided.
Collapse
|
5
|
Woźniak E, Tyczewska A, Twardowski T. Bioeconomy development factors in the European Union and Poland. N Biotechnol 2020; 60:2-8. [PMID: 32835869 DOI: 10.1016/j.nbt.2020.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Bioeconomy is not an autonomous sector of the economy, but rather a complex mechanism involving agriculture, industry, biotechnology, service sectors and consumers. To measure the size of the bioeconomy in European Union (EU) countries, it is necessary to create appropriate indicators that allow it to be monitored with reference to its current state, growth rate and sector description. In many countries, including Poland, there is no complete information or data collection system to monitor bioeconomy development directly, e.g. in the Polish Central Statistical Office. In response to these needs, several groups of indicators related to the circular economy, sustainable development and Europe 2020 were created by the European Commission (EC) in the Eurostat database. These indicators can help monitoring of bioeconomy development in EU countries. The present study discusses factors for bioeconomy development through an analysis of their social, economic and environmental aspects, as well as showing the value of the selected indicators in the EU and Poland. In addition, a separate section is dedicated to public perception of bioeconomy and to legislation regarding genetically modified organisms (GMOs). To date, many research studies have been reported on the public acceptance of bioeconomy issues in the EU, including renewable resources, biofuels, GMOs, bio-based products, food security and climate change. The awareness and perception of society on the bioeconomy, bio-based products and processes, and the sustainable use of resources can contribute to environmental sustainability, but intensified efforts are required to increase public acceptance.
Collapse
Affiliation(s)
- Ewa Woźniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
6
|
Lloyd JR, Kossmann J. Starch Trek: The Search for Yield. FRONTIERS IN PLANT SCIENCE 2019; 9:1930. [PMID: 30719029 PMCID: PMC6348371 DOI: 10.3389/fpls.2018.01930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/12/2018] [Indexed: 05/27/2023]
Abstract
Starch is a plant storage polyglucan that accumulates in plastids. It is composed of two polymers, amylose and amylopectin, with different structures and plays several roles in helping to determine plant yield. In leaves, it acts as a buffer for night time carbon starvation. Genetically altered plants that cannot synthesize or degrade starch efficiently often grow poorly. There have been a number of successful approaches to manipulate leaf starch metabolism that has resulted in increased growth and yield. Its degradation is also a source of sugars that can help alleviate abiotic stress. In edible parts of plants, starch often makes up the majority of the dry weight constituting much of the calorific value of food and feed. Increasing starch in these organs can increase this as well as increasing yield. Enzymes involved in starch metabolism are well known, and there has been much research analyzing their functions in starch synthesis and degradation, as well as genetic and posttranslational regulatory mechanisms affecting them. In this mini review, we examine work on this topic and discuss future directions that could be used to manipulate this metabolite for improved yield.
Collapse
Affiliation(s)
| | - Jens Kossmann
- Department of Genetics, Institute for Plant Biotechnology, University of Stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
7
|
Towards Food Security: Current State and Future Prospects of Agrobiotechnology. Trends Biotechnol 2018; 36:1219-1229. [PMID: 30262405 DOI: 10.1016/j.tibtech.2018.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 11/20/2022]
Abstract
The consistent increase in the global population, estimated to reach 9 billion people by 2050, poses a serious challenge for the achievement of global food security. Therefore, the need to feed an increasing world population and to respond adequately to the effects of climate change must be urgently considered. Progress may be achieved by applying knowledge of molecular and genetic mechanisms to create and/or improve agricultural and industrial processes. We highlight the importance of crops (wheat, maize, rice, rapeseed, and soybean) to the development of sustainable agriculture and agrobiotechnology in the EU and discuss possible solutions for ensuring food security, while also considering their social acceptance.
Collapse
|
8
|
Ma L, Liu M, Yan Y, Qing C, Zhang X, Zhang Y, Long Y, Wang L, Pan L, Zou C, Li Z, Wang Y, Peng H, Pan G, Jiang Z, Shen Y. Genetic Dissection of Maize Embryonic Callus Regenerative Capacity Using Multi-Locus Genome-Wide Association Studies. FRONTIERS IN PLANT SCIENCE 2018; 9:561. [PMID: 29755499 PMCID: PMC5933171 DOI: 10.3389/fpls.2018.00561] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/10/2018] [Indexed: 05/04/2023]
Abstract
The regenerative capacity of the embryonic callus, a complex quantitative trait, is one of the main limiting factors for maize transformation. This trait was decomposed into five traits, namely, green callus rate (GCR), callus differentiating rate (CDR), callus plantlet number (CPN), callus rooting rate (CRR), and callus browning rate (CBR). To dissect the genetic foundation of maize transformation, in this study multi-locus genome-wide association studies (GWAS) for the five traits were performed in a population of 144 inbred lines genotyped with 43,427 SNPs. Using the phenotypic values in three environments and best linear unbiased prediction (BLUP) values, as a result, a total of 127, 56, 160, and 130 significant quantitative trait nucleotides (QTNs) were identified by mrMLM, FASTmrEMMA, ISIS EM-BLASSO, and pLARmEB, respectively. Of these QTNs, 63 QTNs were commonly detected, including 15 across multiple environments and 58 across multiple methods. Allele distribution analysis showed that the proportion of superior alleles for 36 QTNs was <50% in 31 elite inbred lines. Meanwhile, these superior alleles had obviously additive effect on the regenerative capacity. This indicates that the regenerative capacity-related traits can be improved by proper integration of the superior alleles using marker-assisted selection. Moreover, a total of 40 candidate genes were found based on these common QTNs. Some annotated genes were previously reported to relate with auxin transport, cell fate, seed germination, or embryo development, especially, GRMZM2G108933 (WOX2) was found to promote maize transgenic embryonic callus regeneration. These identified candidate genes will contribute to a further understanding of the genetic foundation of maize embryonic callus regeneration.
Collapse
Affiliation(s)
- Langlang Ma
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Min Liu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuanyuan Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunyan Qing
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanling Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yun Long
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lei Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Lang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chaoying Zou
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoling Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Wang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Guangtang Pan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhou Jiang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yaou Shen
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yaou Shen
| |
Collapse
|
9
|
Alpha-Glucan, Water Dikinase 1 Affects Starch Metabolism and Storage Root Growth in Cassava (Manihot esculenta Crantz). Sci Rep 2017; 7:9863. [PMID: 28852191 PMCID: PMC5575247 DOI: 10.1038/s41598-017-10594-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022] Open
Abstract
Regulation of storage root development by source strength remains largely unknown. The cassava storage root delay (srd) T-DNA mutant postpones storage root development but manifests normal foliage growth as wild-type plants. The SRD gene was identified as an orthologue of α-glucan, water dikinase 1 (GWD1), whose expression is regulated under conditions of light/dark cycles in leaves and is associated with storage root development. The GWD1-RNAi cassava plants showed both retarded plant and storage root growth, as a result of starch excess phenotypes with reduced photosynthetic capacity and decreased levels of soluble saccharides in their leaves. These leaves contained starch granules having greatly increased amylose content and type C semi-crystalline structures with increased short chains that suggested storage starch. In storage roots of GWD1-RNAi lines, maltose content was dramatically decreased and starches with much lower phosphorylation levels showed a drastically reduced β-amylolytic rate. These results suggested that GWD1 regulates transient starch morphogenesis and storage root growth by decreasing photo-assimilation partitioning from the source to the sink and by starch mobilization in root crops.
Collapse
|
10
|
Pirone C, Gurrieri L, Gaiba I, Adamiano A, Valle F, Trost P, Sparla F. The analysis of the different functions of starch-phosphorylating enzymes during the development of Arabidopsis thaliana plants discloses an unexpected role for the cytosolic isoform GWD2. PHYSIOLOGIA PLANTARUM 2017; 160:447-457. [PMID: 28303594 DOI: 10.1111/ppl.12564] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/01/2017] [Accepted: 02/15/2017] [Indexed: 05/20/2023]
Abstract
The genome of Arabidopsis thaliana encodes three glucan, water dikinases. Glucan, water dikinase 1 (GWD1; EC 2.7.9.4) and phosphoglucan, water dikinase (PWD; EC 2.7.9.5) are chloroplastic enzymes, while glucan, water dikinase 2 (GWD2) is cytosolic. Both GWDs and PWD catalyze the addition of phosphate groups to amylopectin chains at the surface of starch granules, changing its physicochemical properties. As a result, GWD1 and PWD have a positive effect on transitory starch degradation at night. Because of its cytosolic localization, GWD2 does not have the same effect. Single T-DNA mutants of either GWD1 or PWD or GWD2 have been analyzed during the entire life cycle of A. thaliana. We report that the three dikinases are all important for proper seed development. Seeds from gwd2 mutants are shrunken, with the epidermal cells of the seed coat irregularly shaped. Moreover, gwd2 seeds contain a lower lipid to protein ratio and are impaired in germination. Similar seed phenotypes were observed in pwd and gwd1 mutants, except for the normal morphology of epidermal cells in gwd1 seed coats. The gwd1, pwd and gwd2 mutants were also very similar in growth and flowering time when grown under continuous light and all three behaved differently from wild-type plants. Besides pinpointing a novel role of GWD2 and PWD in seed development, this analysis suggests that the phenotypic features of the dikinase mutants in A. thaliana cannot be explained solely in terms of defects in leaf starch degradation at night.
Collapse
Affiliation(s)
- Claudia Pirone
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, 40126, Italy
| | - Libero Gurrieri
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, 40126, Italy
| | - Ivan Gaiba
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, 40126, Italy
| | - Alessio Adamiano
- Department of Chemistry "G. Ciamician", University of Bologna, Bologna, 40126, Italy
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Faenza, 48018, Italy
| | - Francesco Valle
- Institute for the Study of Nanostructured Materials (ISNM), National Research Council (CNR), Bologna, 40129, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, 40126, Italy
| | - Francesca Sparla
- Department of Pharmacy and Biotechnology FaBiT, University of Bologna, Bologna, 40126, Italy
| |
Collapse
|
11
|
MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ. Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4433-4453. [PMID: 28981786 DOI: 10.1093/jxb/erx291] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Starch commands a central role in the carbon budget of the majority of plants on earth, and its biological role changes during development and in response to the environment. Throughout the life of a plant, starch plays a dual role in carbon allocation, acting as both a source, releasing carbon reserves in leaves for growth and development, and as a sink, either as a dedicated starch store in its own right (in seeds and tubers), or as a temporary reserve of carbon contributing to sink strength, in organs such as flowers, fruits, and developing non-starchy seeds. The presence of starch in tissues and organs thus has a profound impact on the physiology of the growing plant as its synthesis and degradation governs the availability of free sugars, which in turn control various growth and developmental processes. This review attempts to summarize the large body of information currently available on starch metabolism and its relationship to wider aspects of carbon metabolism and plant nutrition. It highlights gaps in our knowledge and points to research areas that show promise for bioengineering and manipulation of starch metabolism in order to achieve more desirable phenotypes such as increased yield or plant biomass.
Collapse
Affiliation(s)
- Gregory J MacNeill
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Sahar Mehrpouyan
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mark A A Minow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Jenelle A Patterson
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Ian J Tetlow
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Michael J Emes
- Department of Molecular and Cellular Biology, College of Biological Science, Summerlee Science Complex, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
12
|
Mahlow S, Orzechowski S, Fettke J. Starch phosphorylation: insights and perspectives. Cell Mol Life Sci 2016; 73:2753-64. [PMID: 27147464 PMCID: PMC11108486 DOI: 10.1007/s00018-016-2248-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 01/12/2023]
Abstract
During starch metabolism, the phosphorylation of glucosyl residues of starch, to be more precise of amylopectin, is a repeatedly observed process. This phosphorylation is mediated by dikinases, the glucan, water dikinase (GWD) and the phosphoglucan, water dikinase (PWD). The starch-related dikinases utilize ATP as dual phosphate donor transferring the terminal γ-phosphate group to water and the β-phosphate group selectively to either C6 position or C3 position of a glucosyl residue within amylopectin. By the collaborative action of both enzymes, the initiation of a transition of α-glucans from highly ordered, water-insoluble state to a less order state is realized and thus the initial process of starch degradation. Consequently, mutants lacking either GWD or PWD reveal a starch excess phenotype as well as growth retardation. In this review, we focus on the increased knowledge collected over the last years related to enzymatic properties, the precise definition of the substrates, the physiological implications, and discuss ongoing questions.
Collapse
Affiliation(s)
- Sebastian Mahlow
- Biopolymer Analytics, University of Potsdam, Karl-Liebknecht 24-25, 14476, Potsdam-Golm, Germany
- Institute of General Botany, Friedrich Schiller University Jena, Am Planetarium 1, 07743, Jena, Germany
| | - Sławomir Orzechowski
- Biopolymer Analytics, University of Potsdam, Karl-Liebknecht 24-25, 14476, Potsdam-Golm, Germany
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Joerg Fettke
- Biopolymer Analytics, University of Potsdam, Karl-Liebknecht 24-25, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|