1
|
Yu Z, Li G, Zheng Z, Wang H, Yang Z. Characterization of New Wheat- Thinopyrum intermedium Derivative Lines with Superior Genes for Stripe Rust and Powdery Mildew Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2333. [PMID: 39204770 PMCID: PMC11359552 DOI: 10.3390/plants13162333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
The wild species Thinopyrum intermedium (genome JJJSJSStSt) serves as a valuable germplasm resource providing novel diseases resistance and agronomically important genes for wheat improvement. Two wheat-Th. intermedium partial amphiploids, TAI7045 (2n = 56) and 78784 (2n = 56), exhibit high resistance to stripe rust and powdery mildew, and their chromosome constitutions have been characterized. With the aim to transfer novel resistance genes from Th. intermedium, the crosses of common wheat line MY11 with TAI7045 and 78784 were produced, and their individual F2-F5 progenies were characterized using sequential non-denaturing fluorescence in situ hybridization (ND-FISH) and molecular markers. We identified a set of wheat-Th. intermedium addition lines, involving the chromosomes 1St-JS, 2St, 2St-JS, 3St, 4J, 4St, 5St, 5J.St, 6JS.J, and 7JS. Above all, the stable wheat-Th. intermedium small segmental translocation lines with chromosomes 4DS.4DL-4StL-4DL-4JL and 4DS.4DL-4StL-4DL were selected. Combining data from specific marker amplification and resistance evaluation, we mapped the gene(s) for resistance to powdery mildew and stripe rust in the 233.56-329.88 Mb region of the long arm of the 4St chromosome from the reference Th. intermedium genome. The new wheat-Th. intermedium introgressions will be used as novel germplasm for breeding purposes.
Collapse
Affiliation(s)
- Zhihui Yu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| | - Guangrong Li
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| | - Zhiqiang Zheng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| | - Hongjin Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277100, China
| | - Zujun Yang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.Y.); (G.L.); (Z.Z.)
| |
Collapse
|
2
|
Abdelrahman M, Gorafi YSA, Sulieman S, Jogaiah S, Gupta A, Tsujimoto H, Nguyen HT, Herrera-Estrella L, Tran LSP. Wild grass-derived alleles represent a genetic architecture for the resilience of modern common wheat to stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1685-1702. [PMID: 38935838 DOI: 10.1111/tpj.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Yasir Serag Alnor Gorafi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, 606-8502, Kyoto, Japan
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, 13314, Sudan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Henry T Nguyen
- Division of Plant Sciences and Technology, University of Missouri, Columbia, 65211, Missouri, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
- Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato, 36821, Mexico
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| |
Collapse
|
3
|
Yang X, Cheng X, Wang G, Song S, Ding X, Xiong H, Wang C, Zhao J, Li T, Deng P, Liu X, Chen C, Ji W. Cytogenetic identification and molecular mapping for the wheat-Thinopyrum ponticum introgression line with resistance to Fusarium head blight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:191. [PMID: 39046492 DOI: 10.1007/s00122-024-04686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Xinong 511, a new wheat-Thinopyrum ponticum variety with excellent fusarium head blight resistance, the QTLs were mapped to the wheat chromosomes 5B and 7A with named QFhb.nwafu-5B and QFhb.nwafu-7A, respectively. Novel Fusarium head blight (FHB) resistance germplasms and genes are valuable for wheat improvement and breeding efforts. Thinopyrum ponticum, a wild relative of common wheat, is a valuable germplasm of disease resistance for wheat improvement and breeding. Xinong 511 (XN511) is a high-quality wheat variety widely cultivated in the Yellow and Huai Rivers Valley of China with stable FHB-resistance. Through analysis of pedigree materials of the wheat cultivar XN511, we found that the genetic material and FHB resistance from Th. ponticum were transmitted to the introgression line, indicating that the FHB resistance in XN511 likely originates from Th. ponticum. To further explore the genetic basis of FHB resistance in XN511, QTL mapping was conducted using the RILs population of XN511 and the susceptible line Aikang 58 (AK58). Survey with makers closely-linked to Fhb1, Fhb2, Fhb4, Fhb5, and Fhb7, indicated that both XN511 and the susceptible lines do not contain these QTL. Using bulked segregant analysis RNA-seq (BSR-Seq) and newly developed allele-specific PCR (AS-PCR) markers, QTLs in XN511 were successfully located on wheat chromosomes 5B and 7A. These findings are significant for further understanding and utilizing FHB resistance genes in wheat improvement.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaofang Cheng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Guangyi Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Siyuan Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xu Ding
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Hui Xiong
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Changyou Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Jixin Zhao
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Tingdong Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Xinlun Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Chunhuan Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
| | - Wanquan Ji
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China.
| |
Collapse
|
4
|
Lv R, Gou X, Li N, Zhang Z, Wang C, Wang R, Wang B, Yang C, Gong L, Zhang H, Liu B. Chromosome translocation affects multiple phenotypes, causes genome-wide dysregulation of gene expression, and remodels metabolome in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1564-1582. [PMID: 37265000 DOI: 10.1111/tpj.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Chromosomal rearrangements (CRs) may occur in newly formed polyploids due to compromised meiotic fidelity. Moreover, CRs can be more readily tolerated in polyploids allowing their longer-term retention and hence potential spreading/fixation within a lineage. The direct functional consequences of CRs in plant polyploids remain unexplored. Here, we identified a heterozygous individual from a synthetic allohexaploid wheat in which the terminal parts of the long-arms of chromosomes 2D (approximately 193 Mb) and 4A (approximately 167 Mb) were reciprocally translocated. Five homogeneous translocation lines including both unbalanced and balanced types were developed by selfing fertilization of the founder mutant (RT [2DL; 4AL]-ter/1, reciprocal translocation). We investigated impacts of these translocations on phenotype, genome-wide gene expression and metabolome. We find that, compared with sibling wild-type, CRs in the form of both unbalanced and balanced translocations induced substantial changes of gene expression primarily via trans-regulation in the nascent allopolyploid wheat. The CRs also manifested clear phenotypic and metabolic consequences. In particular, the genetically balanced, stable reciprocal translocations lines showed immediate enhanced reproductive fitness relative to wild type. Our results underscore the profound impact of CRs on gene expression in nascent allopolyploids with wide-ranging phenotypic and metabolic consequences, suggesting CRs are an important source of genetic variation that can be exploited for crop breeding.
Collapse
Affiliation(s)
- Ruili Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Xiaowan Gou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Changyi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ruisi Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Chunwu Yang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
5
|
Li J, Li J, Li L, Xiang L, Zhao L, Liu J, Liu S, Yang Q, Wu J, Chen X. Effect of gliadin from Psathrostachys huashanica on dough rheological properties and biscuit quality. Food Chem 2023; 425:136537. [PMID: 37290239 DOI: 10.1016/j.foodchem.2023.136537] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Psathrostachys huashanica (P. huashanica), a wild relative of common wheat, is widely used in wheat variety improvement because of its many beneficial properties. In this study, we carried out preliminary analysis on the grain and flour quality of wheat-P. huashanica addition line 7182-6Ns and its wheat parents 7182, and found that 7182-6Ns had a higher protein content and great dough rheological characteristics and investigated the reasons for the changes. The results indicated that 7182-6Ns contained exogenous gliadin, which changed the gliadin composition and increased the ratio of gliadin in total gluten proteins, rebuilt gluten microstructure and thus optimized dough extensibility. As the addition of 7182-6Ns gliadin gradually increased to wheat flour, the diameter, crispness and spread rate of biscuit increased, the thickness and hardness decreased, and the colour improved. The current research provides a basis for understanding the introduction of exogenic gliadin to improve biscuit wheat varieties.
Collapse
Affiliation(s)
- Jiaojiao Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiachuang Li
- College of Agriculture/Tree Peony, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Lei Li
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linrun Xiang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Zhao
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinke Liu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xinhong Chen
- Shaanxi Key Laboratory of Plant Genetic Engineering Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
6
|
Zeng P, Ge X, Li Z. Transcriptional Interactions of Single B-Subgenome Chromosome with C-Subgenome in B. oleracea-nigra Additional Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2029. [PMID: 37653946 PMCID: PMC10220956 DOI: 10.3390/plants12102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Serial monosomic alien addition lines (MAALs) provide an ideal system to elucidate the transcriptomic interactions between the alien chromosomes and recipient genome under aneuploidy. Herein, five available Brassica oleracea-nigra MAALs (CCB1, CCB4, CCB5, CCB6, CCB8), their derived B. oleracea plants (non-MAALs), and two parents were analyzed for their gene expressions by using high-throughput technology. Compared to parental B. oleracea, all MAALs showed various numbers of DEGs, but CCB8 gave much higher DEGs; the number of downregulated DEGs was slightly higher than the number of upregulated ones, except for in relation to CCB8. All derived B. oleracea plants also gave certain numbers of DEGs, despite these being much lower than in the respective MAALs. Compared to B. nigra, in all five MAALs more DEGs were downregulated than upregulated. Trans-effects were likely more prevailing than cis-effects, and these DEGs were predominantly associated with material transport by dysregulating the cellular component. Meanwhile, the orthologous genes on alien chromosomes could only play a feeble compensatory role for those gene pairs in C-subgenome, and different levels of the expressed genes had a greater tendency towards downregulation. These results revealed transcriptional aneuploidy response patterns between two genomes and suggested that cis- and trans-mechanisms synergistically regulated alien gene transcriptions after distant hybridization.
Collapse
Affiliation(s)
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Z.L.)
| | | |
Collapse
|
7
|
Vasudevan A, Lévesque-Lemay M, Edwards T, Cloutier S. Global transcriptome analysis of allopolyploidization reveals large-scale repression of the D-subgenome in synthetic hexaploid wheat. Commun Biol 2023; 6:426. [PMID: 37069312 PMCID: PMC10110605 DOI: 10.1038/s42003-023-04781-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 03/30/2023] [Indexed: 04/19/2023] Open
Abstract
Synthetic hexaploid wheat (SHW) lines are created as pre-breeding germplasm to diversify the D subgenome of hexaploid wheat and capitalize upon the untapped genetic diversity of the Aegilops tauschii gene pool. However, the phenotypes observed in the Ae. tauschii parents are not always recovered in the SHW lines, possibly due to inter-subgenome interactions. To elucidate this post-polyploidization genome reprogramming phenomenon, we performed RNA-seq of four SHW lines and their corresponding tetraploid and diploid parents, across ten tissues and three biological replicates. Homoeologue expression bias (HEB) analysis using more than 18,000 triads suggests massive suppression of homoeoalleles of the D subgenome in SHWs. Comparative transcriptome analysis of the whole-genome gene set further corroborated this finding. Alternative splicing analysis of the high-confidence genes indicates an additional layer of complexity where all five splice events are identified, and retained intron is predominant. Homoeologue expression upon resynthesis of hexaploid wheat has implications to the usage and handling of this germplasm in breeding as it relates to capturing the effects of epistatic interaction across subgenomes upon polyploidization. Special considerations must be given to this germplasm in pre-breeding activities to consider the extent of the inter-subgenome interactions on gene expression and their impact on traits for crop improvement.
Collapse
Affiliation(s)
- Akshaya Vasudevan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | | | - Tara Edwards
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| | - Sylvie Cloutier
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada.
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Addition of Psathyrostachys huashanica HMW glutenin subunit expresses positive contribution to protein polymerization and gluten microstructure of receptor wheat. Food Chem 2023; 405:134739. [DOI: 10.1016/j.foodchem.2022.134739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/10/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
|
9
|
Coombes B, Fellers JP, Grewal S, Rusholme‐Pilcher R, Hubbart‐Edwards S, Yang C, Joynson R, King IP, King J, Hall A. Whole-genome sequencing uncovers the structural and transcriptomic landscape of hexaploid wheat/Ambylopyrum muticum introgression lines. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:482-496. [PMID: 35598169 PMCID: PMC9946142 DOI: 10.1111/pbi.13859] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/28/2022] [Accepted: 05/15/2022] [Indexed: 05/29/2023]
Abstract
Wheat is a globally vital crop, but its limited genetic variation creates a challenge for breeders aiming to maintain or accelerate agricultural improvements over time. Introducing novel genes and alleles from wheat's wild relatives into the wheat breeding pool via introgression lines is an important component of overcoming this low variation but is constrained by poor genomic resolution and limited understanding of the genomic impact of introgression breeding programmes. By sequencing 17 hexaploid wheat/Ambylopyrum muticum introgression lines and the parent lines, we have precisely pinpointed the borders of introgressed segments, most of which occur within genes. We report a genome assembly and annotation of Am. muticum that has facilitated the identification of Am. muticum resistance genes commonly introgressed in lines resistant to stripe rust. Our analysis has identified an abundance of structural disruption and homoeologous pairing across the introgression lines, likely caused by the suppressed Ph1 locus. mRNAseq analysis of six of these introgression lines revealed that novel introgressed genes are rarely expressed and those that directly replace a wheat orthologue have a tendency towards downregulation, with no discernible compensation in the expression of homoeologous copies. This study explores the genomic impact of introgression breeding and provides a schematic that can be followed to characterize introgression lines and identify segments and candidate genes underlying the phenotype. This will facilitate more effective utilization of introgression pre-breeding material in wheat breeding programmes.
Collapse
Affiliation(s)
| | - John P. Fellers
- USDA–ARS Hard Winter Wheat Genetics Research UnitManhattanKansas66506USA
| | - Surbhi Grewal
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | | | - Stella Hubbart‐Edwards
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Cai‐yun Yang
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | | | - Ian P. King
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Julie King
- School of BiosciencesThe University of Nottingham, Sutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | | |
Collapse
|
10
|
Ren T, Jiang Q, Sun Z, Zhao L, Peng W, Ren Z, Tan F, Luo P, Li Z. Development and Molecular Cytogenetic Characterization of Novel Primary Wheat-Rye 1RS.1BL Translocation Lines from Multiple Rye Sources with Resistance to Stripe Rust. PLANT DISEASE 2022; 106:2191-2200. [PMID: 35077221 DOI: 10.1094/pdis-11-21-2605-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stripe rust (caused by Puccinia striiformis f. sp. tritici) is one of the most severe diseases for wheat production. An important method to improve the stripe rust resistance of wheat is to introduce resistance genes from related species into the wheat genome. The 1RS.1BL wheat-rye translocation from Petkus rye has contributed substantially to wheat resistance breeding worldwide. However, given the breakdown of the stripe rust resistance gene Yr9 in 1RS, its importance for wheat improvement has decreased. In this study, we developed 166 new primary 1RS.1BL translocation lines by crossing rye varieties Weining, Baili, and Aigan with several wheat cultivars. Cytogenetic and molecular analyses indicated that all of these lines contained a pair of intact 1RS.1BL translocation chromosomes. The stripe rust resistance of these translocation lines and their wheat parents was evaluated in southwestern China during the severe stripe rust epidemics in 2015 and 2021. The results showed diverse effects of the 1RS.1BL translocations from different rye cultivars on resistance to stripe rust. The highest genetic diversity was observed in 1RS.1BL translocations derived from diverse rye varieties but in the same wheat background. The development of diverse 1RS.1BL translocation lines offers ample opportunities to introduce new variations into wheat for improving stripe rust resistance. Finally, 71 new translocation lines, including nine developed from the cross of MY11 × Aigan, four from MY11 × Baili, 40 from MY11 × Weining, 14 from A42912 × Baili, and four from A42912 × Weining. These lines showed consistent resistance to stripe rust in fields under frequent changes of the pathogen races and could be useful genetic stocks for breeding wheat cultivars with resistance to stripe rust.
Collapse
Affiliation(s)
- Tianheng Ren
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Qing Jiang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Zixin Sun
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, Sichuan 611130, China
| | - Liqi Zhao
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, Sichuan 611130, China
| | - Wanhua Peng
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, Sichuan 611130, China
| | - Zhenglong Ren
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, Sichuan 611130, China
| | - Feiquan Tan
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, Sichuan 611130, China
| | - Peigao Luo
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, Sichuan 611130, China
| | - Zhi Li
- Provincial Key Laboratory for Plant Genetics and Breeding, Wenjiang, Chengdu, Sichuan 611130, China
| |
Collapse
|
11
|
Ji X, Liu T, Xu S, Wang Z, Han H, Zhou S, Guo B, Zhang J, Yang X, Li X, Li L, Liu W. Comparative Transcriptome Analysis Reveals the Gene Expression and Regulatory Characteristics of Broad-Spectrum Immunity to Leaf Rust in a Wheat- Agropyron cristatum 2P Addition Line. Int J Mol Sci 2022; 23:7370. [PMID: 35806373 PMCID: PMC9266861 DOI: 10.3390/ijms23137370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/06/2023] Open
Abstract
Wheat leaf rust (caused by Puccinia triticina Erikss.) is among the major diseases of common wheat. The lack of resistance genes to leaf rust has limited the development of wheat cultivars. Wheat-Agropyron cristatum (A. cristatum) 2P addition line II-9-3 has been shown to provide broad-spectrum immunity to leaf rust. To identify the specific A. cristatum resistance genes and related regulatory pathways in II-9-3, we conducted a comparative transcriptome analysis of inoculated and uninoculated leaves of the resistant addition line II-9-3 and the susceptible cultivar Fukuhokomugi (Fukuho). The results showed that there were 66 A. cristatum differentially expressed genes (DEGs) and 1389 wheat DEGs in II-9-3 during P. triticina infection. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and gene set enrichment analysis (GSEA) revealed that the DEGs of II-9-3 were associated with plant-pathogen interaction, MAPK signaling pathway-plant, plant hormone signal transduction, glutathione metabolism, and phenylpropanoid biosynthesis. Furthermore, many defense-related A. cristatum genes, such as two NLR genes, seven receptor kinase-encoding genes, and four transcription factor-encoding genes, were identified. Our results indicated that the key step of resistance to leaf rust involves, firstly, the gene expression of chromosome 2P upstream of the immune pathway and, secondly, the effect of chromosome 2P on the co-expression of wheat genes in II-9-3. The disease resistance regulatory pathways and related genes in the addition line II-9-3 thus could play a critical role in the effective utilization of innovative resources for leaf rust resistance in wheat breeding.
Collapse
Affiliation(s)
- Xiajie Ji
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Shirui Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Zongyao Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Haiming Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Shenghui Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Baojin Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Xinming Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Xiuquan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (X.J.); (S.X.); (Z.W.); (H.H.); (S.Z.); (B.G.); (J.Z.); (X.Y.); (X.L.)
| |
Collapse
|
12
|
Lyu Z, Hao Y, Chen L, Xu S, Wang H, Li M, Ge W, Hou B, Cheng X, Li X, Che N, Zhen T, Sun S, Bao Y, Yang Z, Jia J, Kong L, Wang H. Wheat- Thinopyrum Substitution Lines Imprint Compensation Both From Recipients and Donors. FRONTIERS IN PLANT SCIENCE 2022; 13:837410. [PMID: 35498638 PMCID: PMC9051513 DOI: 10.3389/fpls.2022.837410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Even frequently used in wheat breeding, we still have an insufficient understanding of the biology of the products via distant hybridization. In this study, a transcriptomic analysis was performed for six Triticum aestivum-Thinopyrum elongatum substitution lines in comparison with the host plants. All the six disomic substitution lines showed much stronger "transcriptomic-shock" occurred on alien genomes with 57.43-69.22% genes changed expression level but less on the recipient genome (2.19-8.97%). Genome-wide suppression of alien genes along chromosomes was observed with a high proportion of downregulated genes (39.69-48.21%). Oppositely, the wheat recipient showed genome-wide compensation with more upregulated genes, occurring on all chromosomes but not limited to the homeologous groups. Moreover, strong co-upregulation of the orthologs between wheat and Thinopyrum sub-genomes was enriched in photosynthesis with predicted chloroplastic localization, which indicates that the compensation happened not only on wheat host genomes but also on alien genomes.
Collapse
Affiliation(s)
- Zhongfan Lyu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Liyang Chen
- Smartgenomics Technology Institute, Tianjin, China
| | - Shoushen Xu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Hongjin Wang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengyao Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Bingqian Hou
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xinxin Cheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xuefeng Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Naixiu Che
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Tianyue Zhen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Silong Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Yinguang Bao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, China
| |
Collapse
|
13
|
Konkin D, Hsueh YC, Kirzinger M, Kubaláková M, Haldar A, Balcerzak M, Han F, Fedak G, Doležel J, Sharpe A, Ouellet T. Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL. BMC Genomics 2022; 23:228. [PMID: 35321662 PMCID: PMC8944066 DOI: 10.1186/s12864-022-08433-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background The tall wheatgrass species Thinopyrum elongatum carries a strong fusarium head blight (FHB) resistance locus located on the long arm of chromosome 7 (7EL) as well as resistance to leaf and stem rusts, all diseases with a significant impact on wheat production. Towards understanding the contribution of Th. elongatum 7EL to improvement of disease resistance in wheat, the genomic sequence of the 7EL fragment present in the wheat Chinese Spring (CS) telosomic addition line CS-7EL was determined and the contribution and impact of 7EL on the rachis transcriptome during FHB infection was compared between CS and CS-7EL. Results We assembled the Th. elongatum 7EL chromosome arm using a reference-guided approach. Combining this assembly with the available reference sequence for CS hexaploid wheat provided a reliable reference for interrogating the transcriptomic differences in response to infection conferred by the 7EL fragment. Comparison of the transcriptomes of rachis tissues from CS and CS-7EL showed expression of Th. elongatum transcripts as well as modulation of wheat transcript expression profiles in the CS-7EL line. Expression profiles at 4 days after infection with Fusarium graminearum, the causal agent of FHB, showed an increased in expression of genes associated with an effective defense response, in particular glucan endo-1,3-beta-glucosidases and chitinases, in the FHB-resistant line CS-7EL while there was a larger increase in differential expression for genes associated with the level of fungal infection in the FHB-susceptible line CS. One hundred and seven 7EL transcripts were expressed in the smallest 7EL region defined to carry FHB resistance. Conclusion 7EL contributed to CS-7EL transcriptome by direct expression and through alteration of wheat transcript profiles. FHB resistance in CS-7EL was associated with transcriptome changes suggesting a more effective defense response. A list of candidate genes for the FHB resistance locus on 7EL has been established. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08433-8.
Collapse
Affiliation(s)
- David Konkin
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada.
| | - Ya-Chih Hsueh
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Morgan Kirzinger
- Aquatic and Crop Resource Development, National Research Council of Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Marie Kubaláková
- Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, CZ-77900, Olomouc, Czech Republic
| | - Aparna Haldar
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Margaret Balcerzak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences No1, Beijing, China
| | - George Fedak
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 31, CZ-77900, Olomouc, Czech Republic
| | - Andrew Sharpe
- Global Institute for Food Security, 110 Gymnasium Place, Saskatoon, SK, S7N 0W9, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| |
Collapse
|
14
|
Hao Y, Hao M, Cui Y, Kong L, Wang H. Genome-wide survey of the dehydrin genes in bread wheat (Triticum aestivum L.) and its relatives: identification, evolution and expression profiling under various abiotic stresses. BMC Genomics 2022; 23:73. [PMID: 35065618 PMCID: PMC8784006 DOI: 10.1186/s12864-022-08317-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum) is an important staple cereal grain worldwide. The ever-increasing environmental stress makes it very important to mine stress-resistant genes for wheat breeding programs. Therefore, dehydrin (DHN) genes can be considered primary candidates for such programs, since they respond to multiple stressors. RESULTS In this study, we performed a genome-wide analysis of the DHN gene family in the genomes of wheat and its three relatives. We found 55 DHN genes in T. aestivum, 31 in T. dicoccoides, 15 in T. urartu, and 16 in Aegilops tauschii. The phylogenetic, synteny, and sequence analyses showed we can divide the DHN genes into five groups. Genes in the same group shared similar conserved motifs and potential function. The tandem TaDHN genes responded strongly to drought, cold, and high salinity stresses, while the non-tandem genes respond poorly to all stress conditions. According to the interaction network analysis, the cooperation of multiple DHN proteins was vital for plants in combating abiotic stress. CONCLUSIONS Conserved, duplicated DHN genes may be important for wheat being adaptable to a different stress conditions, thus contributing to its worldwide distribution as a staple food. This study not only highlights the role of DHN genes help the Triticeae species against abiotic stresses, but also provides vital information for the future functional studies in these crops.
Collapse
Affiliation(s)
- Yongchao Hao
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Ming Hao
- College of Forestry, Shandong Agricultural University, Taian, 271018, China
| | - Yingjie Cui
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
15
|
Boudichevskaia A, Fiebig A, Kumke K, Himmelbach A, Houben A. Rye B chromosomes differently influence the expression of A chromosome-encoded genes depending on the host species. Chromosome Res 2022; 30:335-349. [PMID: 35781770 PMCID: PMC9771852 DOI: 10.1007/s10577-022-09704-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/25/2023]
Abstract
The B chromosome (B) is a dispensable component of the genome in many species. To evaluate the impact of Bs on the transcriptome of the standard A chromosomes (A), comparative RNA-seq analyses of rye and wheat anthers with and without additional rye Bs were conducted. In both species, 5-6% of the A-derived transcripts across the entire genomes were differentially expressed in the presence of 2Bs. The GO term enrichment analysis revealed that Bs influence A chromosome encoded processes like "gene silencing"; "DNA methylation or demethylation"; "chromatin silencing"; "negative regulation of gene expression, epigenetic"; "post-embryonic development"; and "chromosome organization." 244 B chromosome responsive A-located genes in + 2B rye and + B wheat shared the same biological function. Positively correlated with the number of Bs, 939 and 1391 B-specific transcripts were identified in + 2B and + 4B wheat samples, respectively. 85% of B-transcripts in + 2B were also found in + 4B transcriptomes. 297 B-specific transcripts were identified in + 2B rye, and 27% were common to the B-derived transcripts identified in + B wheat. Bs encode mobile elements and housekeeping genes, but most B-transcripts were without detectable similarity to known genes. Some of these genes are involved in cell division-related functions like Nuf2 and might indicate their importance in maintaining Bs. The transcriptome analysis provides new insights into the complex interrelationship between standard A chromosomes and supernumerary B chromosomes.
Collapse
Affiliation(s)
- Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
- KWS SAAT SE & Co. KGaA, 37574, Einbeck, Germany.
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Katrin Kumke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
16
|
Wang Y, Cheng X, Yang X, Wang C, Zhang H, Deng P, Liu X, Chen C, Ji W, Wang Y. Molecular cytogenetics for a wheat-Aegilops geniculata 3M g alien addition line with resistance to stripe rust and powdery mildew. BMC PLANT BIOLOGY 2021; 21:575. [PMID: 34872505 PMCID: PMC8647465 DOI: 10.1186/s12870-021-03360-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Aegilops geniculata Roth is closely related to common wheat (Triticum aestivum L.) and is a valuable genetic resource for improvement of wheat. RESULTS In this study, the W19513 line was derived from the BC1F10 progeny of a cross between wheat 'Chinese Spring' and Ae. geniculata SY159. Cytological examination showed that W19513 contained 44 chromosomes. Twenty-two bivalents were formed at the first meiotic metaphase I in the pollen mother cellsand the chromosomes were evenly distributed to opposite poles at meiotic anaphase I. Genomic in situ hybridization demonstrated that W19513 carried a pair of alien chromosomes from the M genome. Fluorescence in situ hybridization confirmed detection of variation in chromosomes 4A and 6B. Functional molecular marker analysis using expressed sequence tag-sequence-tagged site and PCR-based landmark unique gene primers revealed that the alien gene belonged to the third homologous group. The marker analysis confirmed that the alien chromosome pair was 3Mg. In addition, to further explore the molecular marker specificity of chromosome 3Mg, based on the specific locus amplified fragment sequencing technique, molecular markers specific for W19513 were developed with efficiencies of up to 47.66%. The W19513 line was inoculated with the physiological race E09 of powdery mildew (Blumeria graminis f. sp. tritici) at the seedling stage and showed moderate resistance. Field inoculation with a mixture of the races CYR31, CYR32, CYR33, and CYR34 of the stripe rust fungus (Puccinia striiformis f. sp. triticii) revealed that the line W19513 showed strong resistance. CONCLUSIONS This study provides a foundation for use of the line W19513 in future genetic research and wheat improvement.
Collapse
Affiliation(s)
- Yongfu Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaofang Cheng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Xiaoying Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Changyou Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, China
| | - Hong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, China
| | - Pingchuan Deng
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, China
| | - Xinlun Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, China
| | - Chunhuan Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, China
| | - Wanquan Ji
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, China.
| | - Yajuan Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, 712100, China.
| |
Collapse
|
17
|
Genome-wide identification, characteristics and expression of the prolamin genes in Thinopyrum elongatum. BMC Genomics 2021; 22:864. [PMID: 34852761 PMCID: PMC8638145 DOI: 10.1186/s12864-021-08088-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/15/2021] [Indexed: 11/23/2022] Open
Abstract
Background Prolamins, unique to Gramineae (grasses), play a key role in the human diet. Thinopyrum elongatum (syn. Agropyron elongatum or Lophopyrum elongatum), a grass of the Triticeae family with a diploid E genome (2n = 2x = 14), is genetically well-characterized, but little is known about its prolamin genes and the relationships with homologous loci in the Triticeae species. Results In this study, a total of 19 α-gliadin, 9 γ-gliadin, 19 ω-gliadin, 2 high-molecular-weight glutenin subunit (HMW-GS), and 5 low-molecular-weight glutenin subunit (LMW-GS) genes were identified in the Th. elongatum genome. Micro-synteny and phylogenetic analysis revealed dynamic changes of prolamin gene regions and genetic affinities among Th. elongatum, Triticum aestivum, T. urartu and Aegilops tauschii. The Th. elongatum genome, like the B subgenome of T. aestivum, only contained celiac disease epitope DQ8-glia-α1/DQ8.5-glia-α1, which provided a theoretical basis for the low gluten toxicity wheat breeding. The transcriptome data of Th. elongatum exhibited differential expression in quantity and pattern in the same subfamily or different subfamilies. Dough rheological properties of T. aestivum-Th. elongatum disomic substitution (DS) line 1E(1D) showed higher peak height values than that of their parents, and DS6E(6D) exhibited fewer α-gliadins, which indicates the potential usage for wheat quality breeding. Conclusions Overall, this study provided a comprehensive overview of the prolamin gene family in Th. elongatum, and suggested a promising use of this species in the generation of improved wheat breeds intended for the human diet. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08088-x.
Collapse
|
18
|
Shao Y, Pan Q, Zhang D, Kang L, Li Z. Global gene expression perturbations in rapeseed due to the introduction of alien radish chromosomes. J Genet 2021. [DOI: 10.1007/s12041-021-01276-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Shen J, Guo MJ, Wang YG, Yuan XY, Wen YY, Song XE, Dong SQ, Guo PY. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. PLANT SIGNALING & BEHAVIOR 2020; 15:1774212. [PMID: 32552556 PMCID: PMC8570710 DOI: 10.1080/15592324.2020.1774212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/27/2020] [Accepted: 04/07/2020] [Indexed: 05/24/2023]
Abstract
We aimed to determine whether humic acid (HA) can alleviate the injury of millet caused by drought and its potential mechanism. Millet seeds (Jingu 21 and Zhangza 10) were soaked in different concentrations of HA (0, 50, 10, 200, and 300 mg L-1) for 12 h. The physiological and photosynthetic characteristics of millet seedlings, including growth parameters, osmotic regulators, antioxidase activity, photosynthesis, chlorophyll fluorescence, and P700 parameters, were determined before and after drought stress. HA significantly promoted the growth of millet seedlings under drought stress. Pretreatment with 100 mg L-1 or 200 mg L-1 HA significantly increased free proline, soluble protein, and activity of the antioxidant enzyme system (superoxide dismutase, peroxidase, and catalase) in both Zhangza 10 and Jingu 21. The accumulation of reactive oxygen species ([Formula: see text] and H2O2) was reduced in HA treatments compared with that of the control (P < .05). Moreover, HA (100 mg L-1) significantly increased net photosynthetic rate, stomatal conductance, effective quantum yield of photosystem II, relative photosynthetic electron transfer rate of photosystem II, and photochemical quenching. HA also reduced intercellular CO2 concentration and non-photochemical quenching. Furthermore, 200 mg L-1 HA significantly increased the maximum P700, effective quantum yield of photosystem I, and relative photosynthetic electron transfer rate of photosystem I in Zhangza 10 and decreased non-photochemical energy dissipation in Jingu 21 and Zhangza 10 under drought stress. HA promoted the growth of millet seedlings under drought stress by promoting the osmotic adjustment ability and antioxidant capacity of seedlings and increased photosynthesis.
Collapse
Affiliation(s)
- Jie Shen
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Mei-jun Guo
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yu-guo Wang
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xiang-yang Yuan
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Yin-yuan Wen
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Xi-e Song
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Shu-qi Dong
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Ping-yi Guo
- Department of Agronomy, College of Agriculture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| |
Collapse
|
20
|
Li H, Dong Z, Ma C, Xia Q, Tian X, Sehgal S, Koo DH, Friebe B, Ma P, Liu W. A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1149-1159. [PMID: 31932954 DOI: 10.1007/s00122-020-03538-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/03/2020] [Indexed: 05/07/2023]
Abstract
A spontaneous Robertsonian T4SlS·4BL translocation chromosome carrying Pm66 for powdery mildew resistance was discovered and confirmed by RNA-seq, molecular marker, and in situ hybridization analyses. Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is a severe disease of bread wheat worldwide. Discovery and utilization of resistance genes to powdery mildew from wild relatives of wheat have played important roles in wheat improvement. Aegilops longissima, one of the S-genome diploid wild relatives of wheat, is a valuable source of disease and pest resistance for wheat. Chromosome 4Sl from Ae. longissima confers moderate resistance to powdery mildew. In this study, we conducted RNA-seq on a putative Chinese Spring (CS)-Ae. longissima 4Sl(4B) disomic substitution line (TA3465) to develop 4Sl-specific markers to assist the transfer of a Bgt resistance gene from 4Sl by induced homoeologous recombination. A pairwise comparison of genes between CS and TA3465 demonstrated that a number of genes on chromosome 4BS in CS were not expressed in TA3465. Analysis of 4B- and 4Sl-specific molecular markers showed that 4BS and 4SlL were both missing in TA3465, whereas 4BL and 4SlS were present. Further characterization by genomic and fluorescent in situ hybridization confirmed that TA3465 carried a spontaneous Robertsonian T4SlS·4BL translocation. Powdery mildew tests showed that TA3465 was resistant to 10 of 16 Bgt isolates collected from different regions of China, whereas CS was susceptible to all those Bgt isolates. The powdery mildew resistance gene(s) in TA3465 was further mapped to the short arm of 4Sl and designated as Pm66.
Collapse
Affiliation(s)
- Huanhuan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Zhenjie Dong
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Chao Ma
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Qing Xia
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Xiubin Tian
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - Sunish Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57006, USA
| | - Dal-Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, 264005, People's Republic of China.
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
21
|
Genome-wide impacts of alien chromatin introgression on wheat gene transcriptions. Sci Rep 2020; 10:4801. [PMID: 32179864 PMCID: PMC7076028 DOI: 10.1038/s41598-020-61888-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/04/2020] [Indexed: 01/29/2023] Open
Abstract
Agronomic characteristics and tolerance to biotic and abiotic stresses in hexaploid wheat can be drastically improved through wheat-alien introgression. However, the transcriptional level interactions of introduced alien genes in the wheat genetic background is rarely investigated. In this study, we report the genome-wide impacts of introgressed chromosomes derived from Ae. longissima on gene transcriptions of the wheat landrace Chinese Spring. RNA-seq analyses demonstrated 5.37% and 4.30% of the genes were significantly differentially expressed (DEGs) in CS-Ae. longissima disomic 3Sl#2(3B) substitution line TA3575 and disomic 6Sl#3 addition line TA7548, respectively when compared to CS. In addition, 561 DEGs, including 413 up-regulated and 148 down-regulated or not transcribed genes, were simultaneously impacted by introgressed chromosomes 3Sl#2 and 6Sl#3, which accounts for 41.25% of the DEGs in TA3575 and 38.79% in TA7548. Seventeen DEGs, annotated as R genes, were shared by both introgression lines carrying chromosomes 3Sl#2 and 6Sl#3, which confer resistance to powdery mildew. This study will benefit the understanding of the wheat gene responses as result of alien gene(s) or chromosome intogression and the plant defense response initiated by powdery mildew resistance genes in chromosomes 3Sl#2 and 6Sl#3.
Collapse
|
22
|
Wang Y, Cao Q, Zhang J, Wang S, Chen C, Wang C, Zhang H, Wang Y, Ji W. Cytogenetic Analysis and Molecular Marker Development for a New Wheat- Thinopyrum ponticum 1J s (1D) Disomic Substitution Line With Resistance to Stripe Rust and Powdery Mildew. FRONTIERS IN PLANT SCIENCE 2020; 11:1282. [PMID: 32973841 PMCID: PMC7472378 DOI: 10.3389/fpls.2020.01282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/06/2020] [Indexed: 05/03/2023]
Abstract
Thinopyrum ponticum (2n = 10x = 70), a member of the tertiary gene pool of wheat (Triticum aestivum L.), harbors many biotic and abiotic stress resistance genes. CH10A5, a novel disomic substitution line from a cross of T. aestivum cv. 7182 and Th. ponticum, was characterized by cytogenetic identification, in situ hybridization, molecular marker analysis, and morphological investigation of agronomic traits and disease resistance. Cytological observations showed that CH10A5 contained 42 chromosomes and formed 21 bivalents at meiotic metaphase I. Genome in situ hybridization (GISH) analysis indicated that two of its chromosomes came from the Js genome of Th. ponticum, and wheat 15K array mapping and fluorescence in situ hybridization (FISH) revealed that chromosome 1D was absent from CH10A5. Polymorphic analysis of molecular markers indicated that the pair of alien chromosomes belonged to homoeologous group one, designated as 1Js. Thus, CH10A5 was a wheat-Th. ponticum 1Js (1D) disomic substitution line. Field disease resistance trials demonstrated that the introduced Th. ponticum chromosome 1Js was probably responsible for resistance to both stripe rust and powdery mildew at the adult stage. Based on specific-locus amplified fragment sequencing (SLAF-seq), 507 STS molecular markers were developed to distinguish chromosome 1Js genetic material from that of wheat. Of these, 49 STS markers could be used to specifically identify the genetic material of Th. ponticum. CH10A5 will increase the resistance gene diversity of wheat breeding materials, and the markers developed here will permit further tracing of heterosomal chromosome fragments in the future.
Collapse
Affiliation(s)
- Yanzhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Qiang Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Junjie Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Siwen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Chunhuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, China
- *Correspondence: Wanquan Ji,
| |
Collapse
|
23
|
Danilova TV, Poland J, Friebe B. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3129-3141. [PMID: 31535163 DOI: 10.1007/s00122-019-03411-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Wheat-barley group-7 recombinant chromosomes were selected using molecular cytogenetics and SNP markers; increased grain β-glucan content was observed in wheat plants with two and four copies of HvCslF6. The soluble dietary fiber (1-3)(1-4) mixed linked β-D-glucan from cereal grains is a valuable component of a healthy diet, which reduces risks of coronary disease and diabetes. Although wheat is an important cereal crop providing a substantial portion of daily calories and protein intake in the human diet, it has a low level of β-glucan. Owing to the plasticity of the polyploid wheat genome, agronomically important traits absent in the wheat primary gene pool can be introgressed from distant relatives. Barley (Hordeum vulgare L.) has a high grain β-glucan content. Earlier, we introgressed this trait into wheat in the form of whole arm compensating Robertsonian translocations (RobT) involving group-7 chromosomes of barley and all three sub-genomes of hexaploid wheat (Triticum aestivum L). In the presented research, we shortened the barley 7HL arms in these RobTs to small pericentromeric segments, using induced wheat-barley homoeologous recombination. The recombinants were selected using SNP markers and molecular cytogenetics. Plants, comprising barley cellulose synthase-like F6 gene (HvCslF6), responsible for β-glucan synthesis, had a higher grain β-glucan content than the wheat control. Three wheat-barley group-7 recombinant chromosomes involving the A, B and D sub-genomes laid the basis for a multiple-copy gene introgression to hexaploid wheat. It is hypothesized that further increases in the β-glucan content in wheat grain can be obtained by increasing the number of HvCslF6 copies through combining several recombinant chromosomes in one line. The wheat lines with four copies of HvCslF6 exceeded the β-glucan content of the lines with two copies.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| |
Collapse
|
24
|
Danilova TV, Poland J, Friebe B. Production of a complete set of wheat-barley group-7 chromosome recombinants with increased grain β-glucan content. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:3129-3141. [PMID: 31535163 DOI: 10.1007/s00122-019-03411-3413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/29/2019] [Indexed: 05/20/2023]
Abstract
Wheat-barley group-7 recombinant chromosomes were selected using molecular cytogenetics and SNP markers; increased grain β-glucan content was observed in wheat plants with two and four copies of HvCslF6. The soluble dietary fiber (1-3)(1-4) mixed linked β-D-glucan from cereal grains is a valuable component of a healthy diet, which reduces risks of coronary disease and diabetes. Although wheat is an important cereal crop providing a substantial portion of daily calories and protein intake in the human diet, it has a low level of β-glucan. Owing to the plasticity of the polyploid wheat genome, agronomically important traits absent in the wheat primary gene pool can be introgressed from distant relatives. Barley (Hordeum vulgare L.) has a high grain β-glucan content. Earlier, we introgressed this trait into wheat in the form of whole arm compensating Robertsonian translocations (RobT) involving group-7 chromosomes of barley and all three sub-genomes of hexaploid wheat (Triticum aestivum L). In the presented research, we shortened the barley 7HL arms in these RobTs to small pericentromeric segments, using induced wheat-barley homoeologous recombination. The recombinants were selected using SNP markers and molecular cytogenetics. Plants, comprising barley cellulose synthase-like F6 gene (HvCslF6), responsible for β-glucan synthesis, had a higher grain β-glucan content than the wheat control. Three wheat-barley group-7 recombinant chromosomes involving the A, B and D sub-genomes laid the basis for a multiple-copy gene introgression to hexaploid wheat. It is hypothesized that further increases in the β-glucan content in wheat grain can be obtained by increasing the number of HvCslF6 copies through combining several recombinant chromosomes in one line. The wheat lines with four copies of HvCslF6 exceeded the β-glucan content of the lines with two copies.
Collapse
Affiliation(s)
- Tatiana V Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506-5502, USA.
| |
Collapse
|
25
|
Bin Z, Qi P, Dongao H, Pan Z, Bowei C, Xianhong G, Zaiyun L. Transcriptional Aneuploidy Responses of Brassica rapa- oleracea Monosomic Alien Addition Lines (MAALs) Derived From Natural Allopolyploid B. napus. Front Genet 2019; 10:67. [PMID: 30815011 PMCID: PMC6381038 DOI: 10.3389/fgene.2019.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 01/28/2019] [Indexed: 01/21/2023] Open
Abstract
Establishing the whole set of aneuploids, for one naturally evolved allopolyploid species, provides a unique opportunity to elucidate the transcriptomic response of the constituent subgenomes to serial aneuploidy. Previously, the whole set of monosomic alien addition lines (MAALs, C1-C9) with each of the nine C subgenome chromosomes, added to the extracted A subgenome, was developed in the context of the allotetraploid Brassica napus donor “Oro,” after the restitution of the ancestral B. rapa (RBR Oro) was realized. Herein, transcriptomic analysis using high-throughput technology was conducted to detect gene expression alterations in these MAALs and RBR. Compared to diploid RBR, the genes of all of the MAALs showed various degrees of dysregulated expressions that resulted from cis effects and more prevailing trans effects. In addition, the trans-effect on gene expression in MAALs increased with higher levels of homology between the recipient A subgenome and additional C subgenome chromosomes, instead of gene numbers of extra chromosomes. A total of 10 trans-effect dysregulated genes, among all pairwise comparisons, were mainly involved in the function of transporter activity. Furthermore, highly expressed genes were more prone to downregulation and vice-versa, suggesting a common trend for transcriptional pattern responses to aneuploidy. These results provided a comprehensive insight of the impact of gene expression of individual chromosomes, in one subgenome, on another intact subgenome for one allopolyploid with a long evolutionary history.
Collapse
Affiliation(s)
- Zhu Bin
- School of Life Sciences, Guizhou Normal University, Guiyang, China.,National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Pan Qi
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huo Dongao
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang, China
| | - Zeng Pan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Cai Bowei
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ge Xianhong
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zaiyun
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Naranjo T. Variable Patterning of Chromatin Remodeling, Telomere Positioning, Synapsis, and Chiasma Formation of Individual Rye Chromosomes in Meiosis of Wheat-Rye Additions. FRONTIERS IN PLANT SCIENCE 2018; 9:880. [PMID: 30013585 PMCID: PMC6036140 DOI: 10.3389/fpls.2018.00880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Meiosis, the type of cell division that halves the chromosome number, shows a considerable degree of diversity among species. Unraveling molecular mechanisms of the meiotic machinery has been mainly based on meiotic mutants, where the effects of a change were assessed on chromosomes of the particular species. An alternative approach is to study the meiotic behavior of the chromosomes introgressed into different genetic backgrounds. As an allohexaploid, common wheat tolerates introgression of chromosomes from related species, such as rye. The behavior of individual pairs of rye homologues added to wheat has been monitored in meiotic prophase I and metaphase I. Chromosome 4R increased its length in early prophase I much more than other chromosomes studied, implying chromosome specific patterns of chromatin organization. Chromosome conformation affected clustering of telomeres but not their dispersion. Telomeres of the short arm of submetacentric chromosomes 4R, 5R, and 6R failed more often to be included in the telomere cluster either than the telomeres of the long arms or telomeres of metacentrics such as 2R, 3R, and 7R. The disturbed migration of the telomeres of 5RS and 6RS was associated with failure of synapsis and chiasma formation. However, despite the failed convergence of its telomere, the 4RS arm developed normal synapsis, perhaps because the strong increase of its length in early prophase I facilitated homologous encounters in intercalary regions. Surprisingly, chiasma frequencies in both arms of 4R were reduced. Similarly, the short arm of metacentric chromosome 2R often failed to form chiasmata despite normal synapsis. Chromosomes 1R, 3R, and 7R showed a regular meiotic behavior. These observations are discussed in the context of the behavior that these chromosomes show in rye itself.
Collapse
|