1
|
Zhao L, Fan P, Wang Y, Xu N, Zhang M, Chen M, Zhang M, Dou J, Liu D, Niu H, Zhu H, Hu J, Sun S, Yang L, Yang S. ELONGATED HYPOTCOTYL5 and SPINE BASE SIZE1 together mediate light-regulated spine expansion in cucumber. PLANT PHYSIOLOGY 2024; 195:552-565. [PMID: 38243383 DOI: 10.1093/plphys/kiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/25/2023] [Accepted: 11/07/2023] [Indexed: 01/21/2024]
Abstract
Plant trichome development is influenced by diverse developmental and environmental signals, but the molecular mechanisms involved are not well understood in most plant species. Fruit spines (trichomes) are an important trait in cucumber (Cucumis sativus L.), as they affect both fruit smoothness and commercial quality. Spine Base Size1 (CsSBS1) has been identified as essential for regulating fruit spine size in cucumber. Here, we discovered that CsSBS1 controls a season-dependent phenotype of spine base size in wild-type plants. Decreased light intensity led to reduced expression of CsSBS1 and smaller spine base size in wild-type plants, but not in the mutants with CsSBS1 deletion. Additionally, knockout of CsSBS1 resulted in smaller fruit spine base size and eliminated the light-induced expansion of spines. Overexpression of CsSBS1 increased spine base size and rescued the decrease in spine base size under low light conditions. Further analysis revealed that ELONGATED HYPOTCOTYL5 (HY5), a major transcription factor involved in light signaling pathways, directly binds to the promoter of CsSBS1 and activates its expression. Knockout of CsHY5 led to smaller fruit spine base size and abolished the light-induced expansion of spines. Taken together, our study findings have clarified a CsHY5-CsSBS1 regulatory module that mediates light-regulated spine expansion in cucumber. This finding offers a strategy for cucumber breeders to develop fruit with stable appearance quality under changing light conditions.
Collapse
Affiliation(s)
- Lijun Zhao
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Pengfei Fan
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Nana Xu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Mingyue Chen
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Mengyao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Junling Dou
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Huanhuan Niu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan, China
- Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Jia HH, Xu YT, Yin ZJ, Qing M, Xie KD, Guo WW, Wu XM. Genome-wide identification of the C2H2-Zinc finger gene family and functional validation of CsZFP7 in citrus nucellar embryogenesis. PLANT REPRODUCTION 2023; 36:287-300. [PMID: 37247027 DOI: 10.1007/s00497-023-00470-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
KEY MESSAGE Genome-wide identification of C2H2-ZF gene family in the poly- and mono-embryonic citrus species and validation of the positive role of CsZFP7 in sporophytic apomixis. The C2H2 zinc finger (C2H2-ZF) gene family is involved in plant vegetative and reproductive development. Although a large number of C2H2 zinc-finger proteins (C2H2-ZFPs) have been well characterized in some horticultural plants, little is known about the C2H2-ZFPs and their function in citrus. In this work, we performed a genome-wide sequence analysis and identified 97 and 101 putative C2H2-ZF gene family members in the genomes of sweet orange (C. sinensis, poly-embryonic) and pummelo (C. grandis, mono-embryonic), respectively. Phylogenetic analysis categorized citrus C2H2-ZF gene family into four clades, and their possible functions were inferred. According to the numerous regulatory elements on promoter, citrus C2H2-ZFPs can be divided into five different regulatory function types that indicate functional differentiation. RNA-seq data revealed 20 differentially expressed C2H2-ZF genes between poly-embryonic and mono-embryonic ovules at two stages of citrus nucellar embryogenesis, among them CsZFP52 specifically expressed in mono-embryonic pummelo ovules, while CsZFP7, 37, 44, 45, 67 and 68 specifically expressed in poly-embryonic sweet orange ovules. RT-qPCR further validated that CsZFP7 specifically expressed at higher levels in poly-embryonic ovules, and down-regulation of CsZFP7 in the poly-embryonic mini citrus (Fortunella hindsii) increased rate of mono-embryonic seeds compared with the wild type, indicating the regulatory potential of CsZFP7 in nucellar embryogenesis of citrus. This work provided a comprehensive analysis of C2H2-ZF gene family in citrus, including genome organization and gene structure, phylogenetic relationships, gene duplications, possible cis-elements on promoter regions and expression profiles, especially in the poly- and mono-embryogenic ovules, and suggested that CsZFP7 is involved in nucellar embryogenesis.
Collapse
Affiliation(s)
- Hui-Hui Jia
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuan-Tao Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhu-Jun Yin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Qing
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kai-Dong Xie
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Wu Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Meng Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Gao L, Cao J, Gong S, Hao N, Du Y, Wang C, Wu T. The COPII subunit CsSEC23 mediates fruit glossiness in cucumber. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:524-540. [PMID: 37460197 DOI: 10.1111/tpj.16389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
To improve our understanding of the mechanism underlying cucumber glossiness regulation, a novel cucumber mutant with a glossy peel (Csgp) was identified. MutMap, genotyping, and gene editing results demonstrated that CsSEC23, which is the core component of COPII vesicles, mediates the glossiness of cucumber fruit peel. CsSEC23 is functionally conserved and located in the Golgi and endoplasmic reticulum. CsSEC23 could interact with CsSEC31, but this interaction was absent in the Csgp mutant, which decreased the efficiency of COPII vesicle transportation. Genes related to wax and cutin transport were upregulated in the Csgp mutant, and the cuticle structure of the Csgp-mutant peel became thinner. Moreover, the wax and cutin contents were also changed due to CsSEC23 mutation. Taken together, the results obtained from this study revealed that CsSEC23 mediates cucumber glossiness, and this mediating might be affected by COPII vesicle transportation.
Collapse
Affiliation(s)
- Luyao Gao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
| | - Jiajian Cao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Siyu Gong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Hao
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Laboratory of Plant Nutrition and Fertilizers, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Yalin Du
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Chunhua Wang
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| | - Tao Wu
- College of Horticulture, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (vegetables, tea, etc.), Ministry of Agriculture and Rural Affairs of China, Changsha, 410128, China
- Yuelushan Lab, Changsha, 410128, China
- Whampoa Innovation Research Institute, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
4
|
Dong Y, Li S, Wu H, Gao Y, Feng Z, Zhao X, Shan L, Zhang Z, Ren H, Liu X. Advances in understanding epigenetic regulation of plant trichome development: a comprehensive review. HORTICULTURE RESEARCH 2023; 10:uhad145. [PMID: 37691965 PMCID: PMC10483894 DOI: 10.1093/hr/uhad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/14/2023] [Indexed: 09/12/2023]
Abstract
Plant growth and development are controlled by a complex gene regulatory network, which is currently a focal point of research. It has been established that epigenetic factors play a crucial role in plant growth. Trichomes, specialized appendages that arise from epidermal cells, are of great significance in plant growth and development. As a model system for studying plant development, trichomes possess both commercial and research value. Epigenetic regulation has only recently been implicated in the development of trichomes in a limited number of studies, and microRNA-mediated post-transcriptional regulation appears to dominate in this context. In light of this, we have conducted a review that explores the interplay between epigenetic regulations and the formation of plant trichomes, building upon existing knowledge of hormones and transcription factors in trichome development. Through this review, we aim to deepen our understanding of the regulatory mechanisms underlying trichome formation and shed light on future avenues of research in the field of epigenetics as it pertains to epidermal hair growth.
Collapse
Affiliation(s)
- Yuming Dong
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Sen Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoying Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiming Gao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongxuan Feng
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Zhao
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li Shan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| | - Xingwang Liu
- College of Horticulture, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya Hainan 572000, China
| |
Collapse
|
5
|
Yang S, Wang X, Yan W, Zhang Y, Song P, Guo Y, Xie K, Hu J, Hou J, Wu Y, Zhu H, Sun S, Yang L. Melon yellow-green plant (Cmygp) encodes a Golden2-like transcription factor regulating chlorophyll synthesis and chloroplast development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:66. [PMID: 36949267 DOI: 10.1007/s00122-023-04343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
A SNP mutation in CmYGP gene encoding Golden2-like transcription factor is responsible for melon yellow-green plant trait. Chlorophylls are essential and beneficial substances for both plant and human health. Identifying the regulatory network of chlorophyll is necessary to improve the nutritional quality of fruits. At least six etiolation genes have been identified in different melon varieties, but none of them have been cloned, and the molecular mechanisms underlying chlorophyll synthesis and chloroplast development in melon remain unclear. Here, the NSL73046, a yellow-green plant (Cmygp) mutant, enabled the map-based cloning of the first etiolation gene in melon. CmYGP encodes a Golden2-like transcription factor. Spatiotemporal expression analyses confirmed the high CmYGP expression in all green tissues, particularly in young leaves and fruit peels. Virus-induced gene silencing and the development of near-isogenic line by marker-assisted selection further confirmed that downregulation of CmYGP can reduce chloroplast number and chlorophyll content, thereby resulting in yellow-green leaves and fruits in melon, and overexpression of CmYGP in tomatoes also led to dark-green leaves and fruits. RNA-seq analysis revealed that CmYGP greatly affected the expression of key genes associated with chloroplast development. Taken together, these findings demonstrated that CmYGP regulate chlorophyll synthesis and chloroplast development thus affect fruit development in melon. This study also offers a new strategy to enhance fruit quality in melon.
Collapse
Affiliation(s)
- Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Xiaojuan Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Wenkai Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Pengyao Song
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yaomiao Guo
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kuixi Xie
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| | - Shouru Sun
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
6
|
Grumet R, Lin YC, Rett-Cadman S, Malik A. Morphological and Genetic Diversity of Cucumber ( Cucumis sativus L.) Fruit Development. PLANTS (BASEL, SWITZERLAND) 2022; 12:23. [PMID: 36616152 PMCID: PMC9824707 DOI: 10.3390/plants12010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/03/2023]
Abstract
Cucumber (Cucumis sativus L.) fruits, which are eaten at an immature stage of development, can vary extensively in morphological features such as size, shape, waxiness, spines, warts, and flesh thickness. Different types of cucumbers that vary in these morphological traits are preferred throughout the world. Numerous studies in recent years have added greatly to our understanding of cucumber fruit development and have identified a variety of genetic factors leading to extensive diversity. Candidate genes influencing floral organ establishment, cell division and cell cycle regulation, hormone biosynthesis and response, sugar transport, trichome development, and cutin, wax, and pigment biosynthesis have all been identified as factors influencing cucumber fruit morphology. The identified genes demonstrate complex interplay between structural genes, transcription factors, and hormone signaling. Identification of genetic factors controlling these traits will facilitate breeding for desired characteristics to increase productivity, improve shipping, handling, and storage traits, and enhance consumer-desired qualities. The following review examines our current understanding of developmental and genetic factors driving diversity of cucumber fruit morphology.
Collapse
Affiliation(s)
- Rebecca Grumet
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ying-Chen Lin
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Stephanie Rett-Cadman
- Graduate Program in Plant Breeding, Genetics and Biotechnology, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| | - Ajaz Malik
- Department of Horticulture-Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar 190 025, India
| |
Collapse
|
7
|
Recent Progress in the Regeneration and Genetic Transformation System of Cucumber. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cucumber (Cucumis sativus L.), belonging to the gourd family (Cucurbitaceae), is one of the major vegetable crops in China. Conventional genetic breeding methods are ineffective for improving the tolerance of cucumber to various environmental stresses, diseases, and pests in the short term, but bio-engineering technologies can be applied to cucumber breeding to produce new cultivars with high yield and quality. Regeneration and genetic transformation systems are key technologies in modern cucumber breeding. Compared with regeneration systems, genetic transformation systems are not yet fully effective, and the low efficiency of genetic transformation is a bottleneck in cucumber cultivation. Here, we systematically review the key factors influencing the regeneration and genetic transformation of cucumber plants, including the selection of genotype, source of explants and forms of exogenous hormones added to the medium, the methods of transgene introduction and co-cultivation, and selection methods. In addition, we also focus on recent advances in the study of molecular mechanisms underlying important agronomic traits using genetic transformation technology, such as fruit length, fruit warts, and floral development. This review provides reference information for future research on improvements in cucumber varieties.
Collapse
|
8
|
Zhai X, Wu H, Wang Y, Zhang Z, Shan L, Zhao X, Wang R, Liu C, Weng Y, Wang Y, Liu X, Ren H. The fruit glossiness locus, dull fruit ( D), encodes a C 2H 2-type zinc finger transcription factor, CsDULL, in cucumber ( Cucumis sativus L.). HORTICULTURE RESEARCH 2022; 9:uhac146. [PMID: 36072836 PMCID: PMC9437717 DOI: 10.1093/hr/uhac146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Fruit glossiness is an important external fruit quality trait for fresh-consumed cucumber fruit, affecting its marketability. Dull fruit appearance is mainly controlled by a single gene, D (for dull fruit) that is dominant to glossy fruit (dd), but the molecular mechanism controlling fruit glossiness is unknown. In the present study, we conducted map-based cloning of the D locus in cucumber and identified a candidate gene (Csa5G577350) that encodes a C2H2-type zinc finger transcription factor, CsDULL. A 4895-bp deletion including the complete loss of CsDULL resulted in glossy fruit. CsDULL is highly expressed in the peel of cucumber fruit, and its expression level is positively correlated with the accumulation of cutin and wax in the peel. Through transcriptome analysis, yeast one-hybrid and dual-luciferase assays, we identified two genes potentially targeted by CsDULL for regulation of cutin and wax biosynthesis/transportation that included CsGPAT4 and CsLTPG1. The possibility that CsDULL controls both fruit glossiness and wart development in cucumber is discussed. The present work advances our understanding of regulatory mechanisms of fruit epidermal traits, and provides a useful tool for molecular breeding to improve external fruit quality in cucumber.
Collapse
Affiliation(s)
- Xuling Zhai
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Haoying Wu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yaru Wang
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongren Zhang
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Li Shan
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xi Zhao
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ruijia Wang
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Chang Liu
- Engineering Research Center of the Ministry of Education for Horticultural Crops Breeding and Propagation, College of Horticulture, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706, USA
| | - Ying Wang
- Heze Agricultural and Rural Bureau, 1021 Shuanghe Road, Mudan District, Heze, Shandong, 274000, China
| | | | | |
Collapse
|
9
|
Liu X, Yang X, Xie Q, Miao H, Bo K, Dong S, Xin T, Gu X, Sun J, Zhang S. NS encodes an auxin transporter that regulates the 'numerous spines' trait in cucumber (Cucumis sativus) fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:325-336. [PMID: 35181968 DOI: 10.1111/tpj.15710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important agronomic trait in cucumber and the "numerous spines (ns)" cucumber varieties are popular in Europe and West Asia. Although the classical genetic locus of ns was reported more than two decades ago, the NS gene has not been cloned yet. In this study, nine genetic loci for the different densities of fruit spines were identified by a genome-wide association study. Among the nine loci, fsdG2.1 was closely associated with the classical genetic locus ns, which harbors a candidate gene Csa2G264590. Overexpression of Csa2G264590 resulted in lower fruit spine density, and the knockout mutant generated by CRISPR/Cas9 displayed an increased spine density, demonstrating that the Csa2G264590 gene is NS. NS is specifically expressed in the fruit peel and spine. Genetic analysis showed that NS regulates fruit spine development independently of the tuberculate gene, Tu, which regulates spine development on tubercules; the cucumber glabrous mutants csgl1 and csgl3 are epistatic to ns. Furthermore, we found that auxin levels in the fruit peel and spine were significantly lower in the knockout mutant ns-cr. Moreover, RNA-sequencing showed that the plant hormone signal transduction pathway was enriched. Notably, most of the auxin responsive Aux/IAA family genes were downregulated in ns-cr. Haplotype analysis showed that the non-functional haplotype of NS exists exclusively in the Eurasian cucumber backgrounds. Taken together, the cloning of NS gene provides new insights into the regulatory network of fruit spine development.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueyong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tongxu Xin
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
10
|
Yang S, Wang Y, Zhu H, Zhang M, Wang D, Xie K, Fan P, Dou J, Liu D, Liu B, Chen C, Yan Y, Zhao L, Yang L. A novel HD-Zip I/C2H2-ZFP/WD-repeat complex regulates the size of spine base in cucumber. THE NEW PHYTOLOGIST 2022; 233:2643-2658. [PMID: 35037268 DOI: 10.1111/nph.17967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Fruit spine is an important trait in cucumber, affecting not only commercial quality, but also fruit smoothness, transportation and storage. Spine size is determined by a multi-cellular base. However, the molecular mechanism underlying the regulation of cucumber spine base remains largely unknown. Here, we report map-based cloning and characterization of a spine base size 1 (SBS1) gene, encoding a C2H2 zinc-finger transcription factor. Near-isogenic lines of cucumber were used to map, identify and quantify cucumber spine base size 1 (CsSBS1). Yeast-hybrid, bimolecular fluorescence complementation (BiFC), co-immunoprecipitation (Co-IP) and RNA-sequencing assays were used to explore the molecular mechanism of CsSBS1 in regulating spine base size development. CsSBS1 was specifically expressed in cucumber ovaries with particularly high expression in fruit spines. Overexpression of CsSBS1 resulted in large fruit spine base, while RNA-interference silencing of CsSBS1 inhibited the expansion of fruit spine base. Sequence analysis of natural cucumber accessions revealed that CsSBS1 was lost in small spine base accessions, resulting from a 4895 bp fragment deletion in CsSBS1 locus. CsSBS1 can form a trimeric complex with two positive regulators CsTTG1 and CsGL1 to regulate spine base development through ethylene signaling. A novel regulator network is proposed that the CsGL1/CsSBS1/CsTTG1 complex plays a significant role in regulating spine base formation and size, which offers a strategy for cucumber breeders to develop smooth fruit.
Collapse
Affiliation(s)
- Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Minjuan Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dengke Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kuixi Xie
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Pengfei Fan
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Junling Dou
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Bin Liu
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, 08193, Spain
| | - Chunhua Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lijun Zhao
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| |
Collapse
|
11
|
Graph-based pan-genome reveals structural and sequence variations related to agronomic traits and domestication in cucumber. Nat Commun 2022; 13:682. [PMID: 35115520 PMCID: PMC8813957 DOI: 10.1038/s41467-022-28362-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/19/2022] [Indexed: 12/21/2022] Open
Abstract
Structural variants (SVs) represent a major source of genetic diversity and are related to numerous agronomic traits and evolutionary events; however, their comprehensive identification and characterization in cucumber (Cucumis sativus L.) have been hindered by the lack of a high-quality pan-genome. Here, we report a graph-based cucumber pan-genome by analyzing twelve chromosome-scale genome assemblies. Genotyping of seven large chromosomal rearrangements based on the pan-genome provides useful information for use of wild accessions in breeding and genetic studies. A total of ~4.3 million genetic variants including 56,214 SVs are identified leveraging the chromosome-level assemblies. The pan-genome graph integrating both variant information and reference genome sequences aids the identification of SVs associated with agronomic traits, including warty fruits, flowering times and root growth, and enhances the understanding of cucumber trait evolution. The graph-based cucumber pan-genome and the identified genetic variants provide rich resources for future biological research and genomics-assisted breeding. Increasing studies have suggested that single reference genome is insufficient to capture all variations in the genome. Here, the authors report a graph-based cucumber pan-genome by analyzing 12 chromosome-scale assemblies and reveal variations associated with agronomic traits and domestication.
Collapse
|
12
|
Gan Z, Yuan X, Shan N, Wan C, Chen C, Zhu L, Xu Y, Kai W, Zhai X, Chen J. AcERF1B and AcERF073 Positively Regulate Indole-3-acetic Acid Degradation by Activating AcGH3.1 Transcription during Postharvest Kiwifruit Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13859-13870. [PMID: 34779211 DOI: 10.1021/acs.jafc.1c03954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ethylene can accelerate the postharvest ripening process of kiwifruit, while indole-3-acetic acid (IAA) delays it. However, the molecular mechanism by which ethylene regulates IAA degradation is unclear. Here, we found that ethephon promotes the degradation of free IAA in kiwifruit. Furthermore, ethylene can promote the expression of AcGH3.1 and enhance its promoter activity. Two ethylene response factors (ERFs), AcERF1B and AcERF073, were obtained using an AcGH3.1 promoter as bait for a yeast one-hybrid screening library. Both AcERF1B and AcERF073 bind to the AcGH3.1 promoter to activate it. Also, AcERF1B/073 enhanced AcGH3.1 expression, decreased the free IAA content, and increased the IAA-Asp content in kiwifruit. In addition, we found that the AcERF1B and AcERF073 proteins directly interact, and this interaction enhanced their binding to the AcGH3.1 promoter. In summary, our results suggest that AcERF1B and AcERF073 positively regulate IAA degradation by activating AcGH3.1 transcription, which accelerated postharvest kiwifruit ripening.
Collapse
Affiliation(s)
- Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Liqin Zhu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbin Kai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiawan Zhai
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang 330075, China
| |
Collapse
|
13
|
Wang Z, Wang L, Han L, Cheng Z, Liu X, Wang S, Liu L, Chen J, Song W, Zhao J, Zhou Z, Zhang X. HECATE2 acts with GLABROUS3 and Tu to boost cytokinin biosynthesis and regulate cucumber fruit wart formation. PLANT PHYSIOLOGY 2021; 187:1619-1635. [PMID: 34618075 PMCID: PMC8566225 DOI: 10.1093/plphys/kiab377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/16/2021] [Indexed: 05/24/2023]
Abstract
Warty fruit in cucumber (Cucumis sativus L.) is an important quality trait that greatly affects fruit appearance and market value. The cucumber wart consists of fruit trichomes (spines) and underlying tubercules, in which the existence of spines is prerequisite for tubercule formation. Although several regulators have been reported to mediate spine or tubercule formation, the direct link between spine and tubercule development remains unknown. Here, we found that the basic Helix-Loop-Helix (bHLH) gene HECATE2 (CsHEC2) was highly expressed in cucumber fruit peels including spines and tubercules. Knockout of CsHEC2 by the CRISPR/Cas9 system resulted in reduced wart density and decreased cytokinin (CTK) accumulation in the fruit peel, whereas overexpression of CsHEC2 led to elevated wart density and CTK level. CsHEC2 is directly bound to the promoter of the CTK hydroxylase-like1 gene (CsCHL1) that catalyzes CTK biosynthesis, and activated CsCHL1 expression. Moreover, CsHEC2 physically interacted with GLABROUS3 (CsGL3, a key spine regulator) and Tuberculate fruit (CsTu, a core tubercule formation factor), and such interactions further enhanced CsHEC2-mediated CsCHL1 expression. These data suggested that CsHEC2 promotes wart formation by acting as an important cofactor for CsGL3 and CsTu to directly stimulate CTK biosynthesis in cucumber. Thus, CsHEC2 can serve as a valuable target for molecular breeding of cucumber varieties with different wart density requirements.
Collapse
Affiliation(s)
- Zhongyi Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Liming Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Lijie Han
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhihua Cheng
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shaoyun Wang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Liu Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiyuan Song
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jianyu Zhao
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhaoyang Zhou
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint Laboratory for International Cooperation in Crop Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
14
|
Gebretsadik K, Qiu X, Dong S, Miao H, Bo K. Molecular research progress and improvement approach of fruit quality traits in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3535-3552. [PMID: 34181057 DOI: 10.1007/s00122-021-03895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/21/2021] [Indexed: 05/10/2023]
Abstract
Recent molecular studies revealed new opportunities to improve cucumber fruit quality. However, the fruit color and spine traits molecular basis remain vague despite the vast sources of genetic diversity. Cucumber is agriculturally, economically and nutritionally important vegetable crop. China produces three-fourths of the world's total cucumber production. Cucumber fruit quality depends on a number of traits such as the fruit color (peel and flesh color), spine (density, size and color), fruit shape, fruit size, defects, texture, firmness, taste, maturity stage and nutritional composition. Fruit color and spine traits determine critical quality attributes and have been the interest of researchers at the molecular level. Evaluating the molecular mechanisms of fruit quality traits is important to improve production and quality of cucumber varieties. Genes and qualitative trait locus (QTL) that are responsible for cucumber fruit color and fruit spine have been identified. The purpose of this paper is to reveal the molecular research progress of fruit color and spines as key quality traits of cucumber. The markers and genes identified so far could help for marker-assisted selection of the fruit color and spine trait in cucumber breeding and its associated nutritional improvement. Based on the previous studies, peel color and spine density as examples, we proposed a comprehensive approach for cucumber fruit quality traits improvement. Moreover, the markers and genes can be useful to facilitate cloning-mediated genetic breeding in cucumber. However, in the era of climate change, increased human population and high-quality demand of consumers, studies on molecular mechanisms of cucumber fruit quality traits are limited.
Collapse
Affiliation(s)
- Kiros Gebretsadik
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Science, Aksum University, Shire Campus, Shire, Ethiopia
| | - Xiyan Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
15
|
Zhang Y, Shen J, Bartholomew ES, Dong M, Chen S, Yin S, Zhai X, Feng Z, Ren H, Liu X. TINY BRANCHED HAIR functions in multicellular trichome development through an ethylene pathway in Cucumis sativus L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:753-765. [PMID: 33577109 DOI: 10.1111/tpj.15198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 05/24/2023]
Abstract
The fruit trichomes of Cucurbitaceae are widely desired in many Asian countries and have been a key determinant of cucumber (Cucumis sativus L.) cultivar selection for commercial production and breeding. However, our understanding of the initiation and development of cucumber trichomes is still limited. Here, we found that the cucumber TINY BRANCHED HAIR (TBH) gene is preferentially expressed in multicellular trichomes. Overexpression of CsTBH in tbh mutants restored the trichome phenotype and increased the percentage of female flowers, whereas silencing of CsTBH in wild-type plants resulted in stunted trichomes with a lower rate of female flowers. Furthermore, we provide evidence that CsTBH can directly bind to the promoters of cucumber 1-Aminocyclopropane-1-Carboxylate Synthase (CsACS) genes and regulate their expression, which affects multicellular trichome development, ethylene accumulation, and sex expression. Two cucumber acs mutants with different trichome morphology and sex morphs compared with their near-isogenic line further support our findings. Collectively, our study provides new information on the molecular mechanism of CsTBH in regulating multicellular trichome development and sex expression through an ethylene pathway.
Collapse
Affiliation(s)
- Yaqi Zhang
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Junjun Shen
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Ezra S Bartholomew
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Mingming Dong
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuying Chen
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Shuai Yin
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Xuling Zhai
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Zhongxuan Feng
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| | - Huazhong Ren
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin, China
| | - Xingwang Liu
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry on Education, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
16
|
Zhu L, Qian N, Sun Y, Lu X, Duan H, Qian L. Pseudomonas fluorescens DN16 Enhances Cucumber Defense Responses Against the Necrotrophic Pathogen Botrytis cinerea by Regulating Thermospermine Catabolism. FRONTIERS IN PLANT SCIENCE 2021; 12:645338. [PMID: 33692821 PMCID: PMC7937916 DOI: 10.3389/fpls.2021.645338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Plants can naturally interact with beneficial rhizobacteria to mediate defense responses against foliar pathogen infection. However, the mechanisms of rhizobacteria-mediated defense enhancement remain rarely clear. In this study, beneficial rhizobacterial strain Pseudomonas fluorescens DN16 greatly increased the resistance of cucumber plants against Botrytis cinerea infection. RNA-sequencing analyses showed that several polyamine-associated genes including a thermospermine (TSpm) synthase gene (CsACL5) and polyamine catabolic genes (CsPAO1, CsPAO5, and CsCuAO1) were notably induced by DN16. The associations of TSpm metabolic pathways with the DN16-mediated cucumber defense responses were further investigated. The inoculated plants exhibited the increased leaf TSpm levels compared with the controls. Accordantly, overexpression of CsACL5 in cucumber plants markedly increased leaf TSpm levels and enhanced defense against B. cinerea infection. The functions of TSpm catabolism in the DN16-mediated defense responses of cucumber plants to B. cinerea were further investigated by pharmacological approaches. Upon exposure to pathogen infection, the changes of leaf TSpm levels were positively related to the enhanced activities of polyamine catabolic enzymes including polyamine oxidases (PAOs) and copper amine oxidases (CuAOs), which paralleled the transcription of several defense-related genes such as pathogenesis-related protein 1 (CsPR1) and defensin-like protein 1 (CsDLP1). However, the inhibited activities of polyamine catabolic enzymes abolished the DN16-induced cucumber defense against B. cinerea infection. This was in line with the impaired expression of defense-related genes in the inoculated plants challenged by B. cinerea. Collectively, our findings unraveled a pivotal role of TSpm catabolism in the regulation of the rhizobacteria-primed defense states by mediating the immune responses in cucumber plants after B. cinerea infection.
Collapse
Affiliation(s)
- Lin Zhu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Nana Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Yujun Sun
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| | - Xiaoming Lu
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Haiming Duan
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
| | - Lisheng Qian
- School of Life and Health Science, Anhui Science and Technology University, Bengbu, China
- College of Life science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Yang S, Zhang K, Zhu H, Zhang X, Yan W, Xu N, Liu D, Hu J, Wu Y, Weng Y, Yang L. Melon short internode (CmSi) encodes an ERECTA-like receptor kinase regulating stem elongation through auxin signaling. HORTICULTURE RESEARCH 2020; 7:202. [PMID: 33328451 PMCID: PMC7705010 DOI: 10.1038/s41438-020-00426-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/22/2020] [Accepted: 09/30/2020] [Indexed: 05/04/2023]
Abstract
Plant height is one of the most important agronomic traits that directly determines plant architecture, and compact or dwarf plants can allow for increased planting density and land utilization as well as increased lodging resistance and economic yield. At least four dwarf/semidwarf genes have been identified in different melon varieties, but none of them have been cloned, and little is known about the molecular mechanisms underlying internode elongation in melon. Here, we report map-based cloning and functional characterization of the first semidwarf gene short internode (Cmsi) in melon, which encodes an ERECTA-like receptor kinase regulating internode elongation. Spatial-temporal expression analyses revealed that CmSI exhibited high expression in the vascular bundle of the main stem during internode elongation. The expression level of CmSI was positively correlated with stem length in the different melon varieties examined. Ectopic expression of CmSI in Arabidopsis and cucumber suggested CmSI as a positive regulator of internode elongation in both species. Phytohormone quantitation and transcriptome analysis showed that the auxin content and the expression levels of a number of genes involved in the auxin signaling pathway were altered in the semidwarf mutant, including several well-known auxin transporters, such as members of the ABCB family and PIN-FORMED genes. A melon polar auxin transport protein CmPIN2 was identified by protein-protein interaction assay as physically interacting with CmSI to modulate auxin signaling. Thus, CmSI functions in an auxin-dependent regulatory pathway to control internode elongation in melon. Our findings revealed that the ERECTA family gene CmSI regulates stem elongation in melon through auxin signaling, which can directly affect polar auxin transport.
Collapse
Affiliation(s)
- Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China
| | - Kaige Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China
| | - Xiaojing Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China
| | - Wenkai Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, 210095, Nanjing, China
| | - Nana Xu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China
| | - Dongming Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yiqun Weng
- USDA-ARS, Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, 450002, Zhengzhou, China.
| |
Collapse
|
18
|
Zhao L, Zhu H, Zhang K, Wang Y, Wu L, Chen C, Liu X, Yang S, Ren H, Yang L. The MIXTA-LIKE transcription factor CsMYB6 regulates fruit spine and tubercule formation in cucumber. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110636. [PMID: 33180714 DOI: 10.1016/j.plantsci.2020.110636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/23/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
Cucumber fruit wart composed of tubercule and spine (trichome on fruit) is not only an important fruit quality trait in cucumber production, but also a well-studied model for plant cell-fate determination. The development of spine is closely related to the initiation and formation of tubercule. The spine differentiation regulator CsGL1 has been proved to be epistatic to the tubercule initiation factor CsTu, which is the only connection to be identified between spine and tubercule formations. Our previous studies found that the MIXTA-LIKE transcription factor CsMYB6 can suppress fruit spine initiation, which is independent of CsGL1. How the formation of spine and tubercule is regulated at the molecular level by CsMYB6 remains poorly understood. In this study, we characterized cucumber 35S:CsMYB6 transgenic plants, which displayed an obvious reduction in the number and size of fruit spines and tubecules. Molecular analyses showed that CsMYB6 directly interacted with the key spine formation factor CsTTG1 in regulating the formation of fruit spine, and CsTu in regulating the initiation of fruit tubercule, respectively. Based on these evidences, a novel regulatory network is proposed by which CsMYB6/CsTTG1 and CsMYB6/CsTu complexes play an important role in regulating epidermal development, including spine formation and tubercule initiation in cucumber.
Collapse
Affiliation(s)
- Lijun Zhao
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Kaige Zhang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Yueling Wang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Lin Wu
- Chongqing College Garden and Flower Engineering Research Center, Chongqing Engineering Research Center for Special Plant Seedlings, Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, 402168, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xingwang Liu
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Sen Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| | - Huazhong Ren
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China.
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China.
| |
Collapse
|
19
|
Feng S, Zhang J, Mu Z, Wang Y, Wen C, Wu T, Yu C, Li Z, Wang H. Recent progress on the molecular breeding of Cucumis sativus L. in China. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1777-1790. [PMID: 31754760 DOI: 10.1007/s00122-019-03484-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Molecular breeding of Cucumis sativus L. is based on traditional breeding techniques and modern biological breeding in China. There are opportunities for further breeding improvement by molecular design breeding and the automation of phenotyping technology using untapped sources of genetic diversity. Cucumber (Cucumis sativus L.) is an important vegetable cultivated worldwide. It bears fruits of light fragrance, and crisp texture with high nutrition. China is the largest producer and consumer of cucumber, accounting for 70% of the world's total production. With increasing consumption demand, the production of Cucurbitaceae crops has been increasing yearly. Thus, new cultivars that can produce high-quality cucumber with high yield and easy cultivation are in need. Conventional genetic breeding has played an essential role in cucumber cultivar innovation over the past decades. However, its progress is slow due to the long breeding period, and difficulty in selecting stable genetic characters or genotypes, prompting researchers to apply molecular biotechnologies in cucumber breeding. Here, we first summarize the achievements of conventional cucumber breeding such as crossing and mutagenesis, and then focus on the current status of molecular breeding of cucumber in China, including the progress and achievements on cucumber genomics, molecular mechanism underlying important agronomic traits, and also on the creation of high-quality multi-resistant germplasm resources, new variety breeding and ecological breeding. Future development trends and prospects of cucumber molecular breeding in China are also discussed.
Collapse
Affiliation(s)
- Shengjun Feng
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Juping Zhang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zihan Mu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuji Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, 100097, China
| | - Tao Wu
- College of Horticulture and Landscape, Hunan Agricultural University, Changsha, 410128, China
| | - Chao Yu
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zheng Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, China.
| | - Huasen Wang
- The State Key Laboratory of Subtropical Silviculture, Laboratory of Plant Molecular and Developmental Biology, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
20
|
Wang Y, Bo K, Gu X, Pan J, Li Y, Chen J, Wen C, Ren Z, Ren H, Chen X, Grumet R, Weng Y. Molecularly tagged genes and quantitative trait loci in cucumber with recommendations for QTL nomenclature. HORTICULTURE RESEARCH 2020; 7:3. [PMID: 31908806 PMCID: PMC6938495 DOI: 10.1038/s41438-019-0226-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/05/2019] [Accepted: 11/08/2019] [Indexed: 05/06/2023]
Abstract
Cucumber, Cucumis sativus L. (2n = 2x = 14), is an important vegetable crop worldwide. It was the first specialty crop with a publicly available draft genome. Its relatively small, diploid genome, short life cycle, and self-compatible mating system offers advantages for genetic studies. In recent years, significant progress has been made in molecular mapping, and identification of genes and QTL responsible for key phenotypic traits, but a systematic review of the work is lacking. Here, we conducted an extensive literature review on mutants, genes and QTL that have been molecularly mapped or characterized in cucumber. We documented 81 simply inherited trait genes or major-effect QTL that have been cloned or fine mapped. For each gene, detailed information was compiled including chromosome locations, allelic variants and associated polymorphisms, predicted functions, and diagnostic markers that could be used for marker-assisted selection in cucumber breeding. We also documented 322 QTL for 42 quantitative traits, including 109 for disease resistances against seven pathogens. By alignment of these QTL on the latest version of cucumber draft genomes, consensus QTL across multiple studies were inferred, which provided insights into heritable correlations among different traits. Through collaborative efforts among public and private cucumber researchers, we identified 130 quantitative traits and developed a set of recommendations for QTL nomenclature in cucumber. This is the first attempt to systematically summarize, analyze and inventory cucumber mutants, cloned or mapped genes and QTL, which should be a useful resource for the cucurbit research community.
Collapse
Affiliation(s)
- Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Junsong Pan
- Department of Plant Sciences, Shanghai Jiaotong University, Shanghai, 200240 China
| | - Yuhong Li
- Horticulture College, Northwest A&F University, Yangling, 712100 China
| | - Jinfeng Chen
- Horticulture College, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changlong Wen
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097 China
| | - Zhonghai Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, 271018 China
| | - Huazhong Ren
- College of Horticulture, China Agricultural University, Beijing, 100193 China
| | - Xuehao Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI 53706 USA
- USDA-ARS Vegetable Crops Research Unit, 1575 Linden Dr., Madison, WI 53706 USA
| |
Collapse
|
21
|
Liu B, Guan D, Zhai X, Yang S, Xue S, Chen S, Huang J, Ren H, Liu X. Selection footprints reflect genomic changes associated with breeding efforts in 56 cucumber inbred lines. HORTICULTURE RESEARCH 2019; 6:127. [PMID: 31754434 PMCID: PMC6856066 DOI: 10.1038/s41438-019-0209-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 09/01/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Cucumber selective breeding over recent decades has dramatically increased productivity and quality, but the genomic characterizations and changes associated with this breeding history remain unclear. Here, we analyzed the genome resequencing data of 56 artificially selected cucumber inbred lines that exhibit various phenotypes to detect trait-associated sequence variations that reflect breeding improvement. We found that the 56 cucumber lines could be assigned to group 1 and group 2, and the two groups formed a distinctive genetic structure due to the breeding history involving hybridization and selection. Differentially selected regions were identified between group 1 and group 2, with implications for genomic-selection breeding signatures. These regions included known quantitative trait loci or genes that were reported to be associated with agronomic traits. Our results advance knowledge of cucumber genomics, and the 56 selected inbred lines could be good germplasm resources for breeding.
Collapse
Affiliation(s)
- Bin Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, 08193 Spain
| | - Xuling Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Sen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shudan Xue
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Shuying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN 47907 USA
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193 P. R. China
| |
Collapse
|
22
|
Xue S, Dong M, Liu X, Xu S, Pang J, Zhang W, Weng Y, Ren H. Classification of fruit trichomes in cucumber and effects of plant hormones on type II fruit trichome development. PLANTA 2019; 249:407-416. [PMID: 30225671 DOI: 10.1007/s00425-018-3004-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/03/2018] [Indexed: 05/25/2023]
Abstract
Cucumber fruit trichomes could be classified into eight types; all of them are multicellular with complex and different developmental processes as compared with unicellular trichomes in other plants. The fruit trichomes or fruit spines of cucumber, Cucumis sativus L., are highly specialized structures originating from epidermal cells with diverse morphology, which grow perpendicular to the fruit surface. To understand the underlying molecular mechanisms of fruit trichome development, in this study, we conducted morphological characterization and classification of cucumber fruit trichomes and their developmental processes. We examined the fruit trichomes among 200 cucumber varieties, which could be classified into eight morphologically distinct types (I-VIII). Investigation of the organogenesis of the eight types of trichomes revealed two main developmental patterns. The development of glandular trichomes had multiple stages including initiation and expansion of the trichome precursor cell protuberating out of the epidermal surface, followed by periclinal bipartition to two cells (top and bottom) which later formed the head region and the stalk, respectively, through subsequent cell divisions. The non-glandular trichome development started with the expansion of the precursor cell perpendicularly to the epidermal plane followed by cell periclinal division to form a stalk comprising of some rectangle cells and a pointed apex cell. The base cell then started anticlinal bipartition to two cells, which then underwent many cell divisions to form a multicellular spherical structure. In addition, phytohormones as environmental cues were closely related to trichome development. We found that GA and BAP were capable of increasing trichome number per fruit with distinct effects under different concentrations.
Collapse
Affiliation(s)
- Shudan Xue
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Mingming Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Shuo Xu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Jinan Pang
- Tianjin Derit Seeds Co. Ltd, Tianjin, China
| | | | - Yiqun Weng
- USDA-ARS Vegetable Crops Research Unit, Horticulture Department, University of Wisconsin-Madison, Madison, USA.
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Rett-Cadman S, Colle M, Mansfeld B, Barry CS, Wang Y, Weng Y, Gao L, Fei Z, Grumet R. QTL and Transcriptomic Analyses Implicate Cuticle Transcription Factor SHINE as a Source of Natural Variation for Epidermal Traits in Cucumber Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1536. [PMID: 31827480 PMCID: PMC6890859 DOI: 10.3389/fpls.2019.01536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/04/2019] [Indexed: 05/11/2023]
Abstract
The fruit surface is a unique tissue with multiple roles influencing fruit development, post-harvest storage and quality, and consumer acceptability. Serving as the first line of protection against herbivores, pathogens, and abiotic stress, the surface can vary markedly among species, cultivars within species, and developmental stage. In this study we explore developmental changes and natural variation of cucumber (Cucumis sativus L.) fruit surface properties using two cucumber lines which vary greatly for these traits and for which draft genomes and a single nucleotide polymorphism (SNP) array are available: Chinese fresh market type, Chinese Long '9930' (CL9930), and pickling type, 'Gy14'. Thin-section samples were prepared from the mid-region of fruit harvested at 0, 4, 8, 12, 16, 20, 24 and 30 days post pollination (dpp), stained with Sudan IV and evaluated for cuticle thickness, depth of wax intercalation between epidermal cells, epidermal cell size and shape, and number and size of lipid droplets. 'Gy14' is characterized by columnar shaped epidermal cells, a 2-3 fold thicker cuticular layer than CL9930, increased cuticular intercalations between cells and a larger number and larger sized lipid droplets. In both lines maximal deposition of cuticle and increase in epidermal size coincided with exponential fruit growth and was largely completed by approximately 16 dpp. Phenotyping and quantitative trait locus mapping (QTL) of fruit sampled from an F7:F8 Gy14 × CL9930 recombinant inbred line (RIL) population identified QTL regions on chromosomes 1, 4 and 5. Strong QTL for epidermal cell height, cuticle thickness, intercalation depth, and diameter of lipid droplets co-localized on chromosome 1. SSR markers on chromosome 1 were used to screen for recombinants in an extended RIL population to refine the QTL region. Further fine mapping by KASP assay combined with gene expression profiling suggested a small number of candidate genes. Tissue specificity, developmental analysis of expression, allelic diversity and gene function implicate the regulatory factor CsSHINE1/WIN1 as a source of natural variation for cucumber fruit epidermal traits.
Collapse
Affiliation(s)
- Stephanie Rett-Cadman
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Marivi Colle
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Ben Mansfeld
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Cornelius S. Barry
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
| | - Yuhui Wang
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, United States
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, Madison, WI, United States
| | - Lei Gao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Rebecca Grumet
- Department of Horticulture and Graduate Program in Plant Breeding, Genetics and Biotechnology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Rebecca Grumet,
| |
Collapse
|
24
|
Zhu H, Zhang M, Sun S, Yang S, Li J, Li H, Yang H, Zhang K, Hu J, Liu D, Yang L. A Single Nucleotide Deletion in an ABC Transporter Gene Leads to a Dwarf Phenotype in Watermelon. FRONTIERS IN PLANT SCIENCE 2019; 10:1399. [PMID: 31798601 PMCID: PMC6863960 DOI: 10.3389/fpls.2019.01399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/10/2019] [Indexed: 05/15/2023]
Abstract
Dwarf habit is one of the most important traits in crop plant architecture, as it can increase plant density and improved land utilization, especially for protected cultivation, as well as increasing lodging resistance and economic yield. At least four dwarf genes have been identified in watermelon, but none of them has been cloned. In the current study, the Cldw-1 gene was primary-mapped onto watermelon chromosome 9 by next-generation sequencing-aided bulked-segregant analysis (BSA-seq) of F2 plants derived from a cross between a normal-height line, WT4, and a dwarf line, WM102, in watermelon. The candidate region identified by BSA-seq was subsequently validated and confirmed by linkage analysis using 30 simple sequence repeat (SSR) markers in an F2 population of 124 plants. The Cldw-1 gene was further fine-mapped by chromosome walking in a large F2 population of 1,053 plants and was delimited into a candidate region of 107.00 kb. Six genes were predicted to be in the candidate region, and only one gene, Cla010337, was identified to have two single nucleotide polymorphisms (SNPs) and a single nucleotide deletion in the exons in the dwarf line, WM102. A derived cleaved amplified polymorphic sequence (dCAPS) marker was developed from the single nucleotide deletion, co-segregated with the dwarf trait in both the F2 population and a germplasm collection of 165 accessions. Cla010337 encoded an ATP-binding cassette transporter (ABC transporter) protein, and the expression levels of Cla010337 were significantly reduced in all the tissues tested in the dwarf line, WM102. The results of this study will be useful in achieving a better understanding of the molecular mechanism of the dwarf plant trait in watermelon and for the development of marker-assisted selection (MAS) for new dwarf cultivars.
Collapse
|