1
|
Usovsky M, Bilyeu K, Bent A, Scaboo AM. Allele-tagged TaqMan ® PCR genotyping assays for high-throughput detection of soybean cyst nematode resistance. Mol Biol Rep 2024; 52:33. [PMID: 39621159 PMCID: PMC11611941 DOI: 10.1007/s11033-024-10114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024]
Abstract
BACKGROUND Whole genome resequencing (WGRS) platforms provide exceptional fingerprinting of the entire genome but are expensive and less flexible to use as a routine genotyping tool for targeting causal polymorphisms within a germplasm collection or breeding program. Therefore, there has been a continuous effort to develop small-scale genotyping platforms that facilitate robust and quick assessments of the allelic status of causal variants for important traits within soybean breeding programs. The objective was to develop a comprehensive panel of soybean cyst nematode (SCN) resistance TaqMan® assays via selecting the causative genes and analyzing their associated alleles. METHODS The Soybean Allele Catalog was utilized to investigate WGRS-derived variants which are predicted to cause a change in the amino acid sequence of a gene product. This panel of TaqMan® assays reflects current knowledge about known SCN resistance-causing genes and their associated alleles: GmSNAP18-a and -b, GmSNAP11, GmSHMT08, GmSNAP15, GmNSFRAN07, and GmSNAP02-ins and -del. Developed assays were tested using elite breeding lines and segregating populations. TaqMan assays were compared to other currently available KASP and CAPS assays. CONCLUSION All assays showed excellent allele determination efficiencies. This SCN genotyping assay panel can be utilized as a simplified, accurate and reliable genotyping platform further equipping the updated soybean breeding toolbox.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| | - Kristin Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, 65211, USA
| | - Andrew Bent
- Department of Plant Pathology, University of Wisconsin, Madison, WI, 53706, USA
| | - Andrew M Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
2
|
Stupar RM, Locke AM, Allen DK, Stacey MG, Ma J, Weiss J, Nelson RT, Hudson ME, Joshi T, Li Z, Song Q, Jedlicka JR, MacIntosh GC, Grant D, Parrott WA, Clemente TE, Stacey G, An YC, Aponte‐Rivera J, Bhattacharyya MK, Baxter I, Bilyeu KD, Campbell JD, Cannon SB, Clough SJ, Curtin SJ, Diers BW, Dorrance AE, Gillman JD, Graef GL, Hancock CN, Hudson KA, Hyten DL, Kachroo A, Koebernick J, Libault M, Lorenz AJ, Mahan AL, Massman JM, McGinn M, Meksem K, Okamuro JK, Pedley KF, Rainey KM, Scaboo AM, Schmutz J, Song B, Steinbrenner AD, Stewart‐Brown BB, Toth K, Wang D, Weaver L, Zhang B, Graham MA, O'Rourke JA. Soybean genomics research community strategic plan: A vision for 2024-2028. THE PLANT GENOME 2024; 17:e20516. [PMID: 39572930 PMCID: PMC11628913 DOI: 10.1002/tpg2.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 12/11/2024]
Abstract
This strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028). This work is the result of deliberations among over 50 soybean researchers during a 2-day workshop in St Louis, MO, USA, at the end of 2022. The plan is divided into seven traditional areas/disciplines: Breeding, Biotic Interactions, Physiology and Abiotic Stress, Functional Genomics, Biotechnology, Genomic Resources and Datasets, and Computational Resources. One additional section was added, Training the Next Generation of Soybean Researchers, when it was identified as a pressing issue during the workshop. This installment of the soybean genomics strategic plan provides a snapshot of recent progress while looking at future goals that will improve resources and enable innovation among the community of basic and applied soybean researchers. We hope that this work will inform our community and increase support for soybean research.
Collapse
Affiliation(s)
- Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Anna M. Locke
- USDA‐ARS Soybean & Nitrogen Fixation Research UnitRaleighNorth CarolinaUSA
| | - Doug K. Allen
- USDA‐ARS Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Minviluz G. Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jianxin Ma
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Jackie Weiss
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Rex T. Nelson
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | | | - Trupti Joshi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
- MU Institute for Data Science and InformaticsUniversity of Missouri–ColumbiaColumbiaMissouriUSA
| | - Zenglu Li
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Qijian Song
- USDA‐ARS Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research CenterBeltsvilleMarylandUSA
| | | | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowaUSA
| | - David Grant
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Tom E. Clemente
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Gary Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | | | | | | | - Ivan Baxter
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | | | - Steven B. Cannon
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | - Steven J. Clough
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Brian W. Diers
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinoisUSA
| | - Anne E. Dorrance
- Department of Plant PathologyThe Ohio State UniversityWoosterOhioUSA
| | | | - George L. Graef
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - C. Nathan Hancock
- Department of Biological, Environmental, and Earth SciencesUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Karen A. Hudson
- USDA‐ARS Crop Production and Pest Control Research UnitWest LafayetteIndianaUSA
| | - David L. Hyten
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Aardra Kachroo
- Department of Plant PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental SciencesAuburn UniversityAuburnAlabamaUSA
| | - Marc Libault
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Aaron J. Lorenz
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Adam L. Mahan
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Michaela McGinn
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural SystemsSouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Jack K. Okamuro
- USDA‐ARS Crop Production and ProtectionBeltsvilleMarylandUSA
| | - Kerry F. Pedley
- USDA‐ARS Foreign Disease‐Weed Science Research UnitFt. DetrickMarylandUSA
| | | | - Andrew M. Scaboo
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jeremy Schmutz
- DOE Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- HudsonAlpha Institute of BiotechnologyHuntsvilleAlabamaUSA
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | | | | | | | - Dechun Wang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Lisa Weaver
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Bo Zhang
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | | | | |
Collapse
|
3
|
Aoyagi LN, Ferreira EGC, da Silva DCG, Dos Santos AB, Avelino BB, Lopes-Caitar VS, de Oliveira MF, Abdelnoor RV, de Souto ER, Arias CA, Belzile F, Marcelino-Guimarães FC. Allelic variability in the Rpp1 locus conferring resistance to Asian soybean rust revealed by genome-wide association. BMC PLANT BIOLOGY 2024; 24:743. [PMID: 39095733 PMCID: PMC11297723 DOI: 10.1186/s12870-024-05454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars. Seven SNP markers were found to be associated with ASR resistance through GWAS, with three of them defining haplotypes that efficiently distinguished the accessions based on their ASR resistance and source of the Rpp gene. These haplotypes were subsequently validated using a bi-parental population and a diverse set of Rpp sources, demonstrating that the GWAS markers co-segregate with ASR resistance. We then examined the presence of these haplotypes in a diverse set of soybean genomes worldwide, finding a few new potential sources of Rpp1/Rpp1-b. Further genomic sequence analysis revealed nucleotide differences within the genes present in the Rpp1 locus, including the ULP1-NBS-LRR genes, which are potential R gene candidates. These results provide valuable insights into ASR resistance in soybean, thus helping the development of resistant soybean varieties through genetic breeding programs.
Collapse
Affiliation(s)
- Luciano Nobuhiro Aoyagi
- National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
- Maringá State University (UEM), Colombo Avenue, No. 5790, Maringá, PR, Brazil
| | | | - Danielle C Gregorio da Silva
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Adriana Brombini Dos Santos
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Bruna Barbosa Avelino
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - Ricardo V Abdelnoor
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | | | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil
| | - François Belzile
- Department of Plant Sciences and Institute of Integrative Biology and Systems (IBIS), Université Laval, Quebec City, Quebec, G1V 0A6, Canada
| | - Francismar C Marcelino-Guimarães
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Carlos João Strass Road, Warta County, Londrina, PR, Brazil.
| |
Collapse
|
4
|
Biová J, Kaňovská I, Chan YO, Immadi MS, Joshi T, Bilyeu K, Škrabišová M. Natural and artificial selection of multiple alleles revealed through genomic analyses. Front Genet 2024; 14:1320652. [PMID: 38259621 PMCID: PMC10801239 DOI: 10.3389/fgene.2023.1320652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
Genome-to-phenome research in agriculture aims to improve crops through in silico predictions. Genome-wide association study (GWAS) is potent in identifying genomic loci that underlie important traits. As a statistical method, increasing the sample quantity, data quality, or diversity of the GWAS dataset positively impacts GWAS power. For more precise breeding, concrete candidate genes with exact functional variants must be discovered. Many post-GWAS methods have been developed to narrow down the associated genomic regions and, ideally, to predict candidate genes and causative mutations (CMs). Historical natural selection and breeding-related artificial selection both act to change the frequencies of different alleles of genes that control phenotypes. With higher diversity and more extensive GWAS datasets, there is an increased chance of multiple alleles with independent CMs in a single causal gene. This can be caused by the presence of samples from geographically isolated regions that arose during natural or artificial selection. This simple fact is a complicating factor in GWAS-driven discoveries. Currently, none of the existing association methods address this issue and need to identify multiple alleles and, more specifically, the actual CMs. Therefore, we developed a tool that computes a score for a combination of variant positions in a single candidate gene and, based on the highest score, identifies the best number and combination of CMs. The tool is publicly available as a Python package on GitHub, and we further created a web-based Multiple Alleles discovery (MADis) tool that supports soybean and is hosted in SoyKB (https://soykb.org/SoybeanMADisTool/). We tested and validated the algorithm and presented the utilization of MADis in a pod pigmentation L1 gene case study with multiple CMs from natural or artificial selection. Finally, we identified a candidate gene for the pod color L2 locus and predicted the existence of multiple alleles that potentially cause loss of pod pigmentation. In this work, we show how a genomic analysis can be employed to explore the natural and artificial selection of multiple alleles and, thus, improve and accelerate crop breeding in agriculture.
Collapse
Affiliation(s)
- Jana Biová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| | - Ivana Kaňovská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| | - Yen On Chan
- MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, United States
| | - Manish Sridhar Immadi
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, United States
| | - Trupti Joshi
- MU Institute for Data Science and Informatics, University of Missouri-Columbia, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, United States
- Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, United States
- Department of Biomedical Informatics, Biostatistics and Medical Epidemiology, University of Missouri-Columbia, Columbia, MO, United States
| | - Kristin Bilyeu
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Columbia, MO, United States
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czechia
| |
Collapse
|
5
|
Jia Y, Shen T, Wen Z, Chen J, Liu Q. Combining Transcriptome and Whole Genome Re-Sequencing to Screen Disease Resistance Genes for Wheat Dwarf Bunt. Int J Mol Sci 2023; 24:17356. [PMID: 38139183 PMCID: PMC10743994 DOI: 10.3390/ijms242417356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Wheat dwarf bunt is a damaging disease caused by Tilletia controversa Kühn (TCK). Once the disease infects wheat, it is difficult to control and will significantly reduce wheat output and quality. RNA sequencing and whole genome re-sequencing were used to search for potential TCK resistance genes in Yili 053 (sensitive variety) and Zhongmai 175 (moderately resistant variety) in the mid-filling, late-filling, and maturity stages. The transcriptomic analysis revealed 11 potential disease resistance genes. An association analysis of the findings from re-sequencing found nine genes with single nucleotide polymorphism mutations. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that three up-regulated genes were involved in the synthesis of benzoxazinone and tryptophan metabolism. Additionally, quantitative real-time polymerase chain reaction confirmed the RNA sequencing results. The results revealed novel TCK resistance genes and provide a theoretical basis for researching the function of resistance genes and molecular breeding.
Collapse
Affiliation(s)
- Yufeng Jia
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tong Shen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiwei Wen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jing Chen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
6
|
Zhang L, Zhao J, Kong L, Huang W, Peng H, Peng D, Meksem K, Liu S. No Pairwise Interactions of GmSNAP18, GmSHMT08 and AtPR1 with Suppressed AtPR1 Expression Enhance the Susceptibility of Arabidopsis to Beet Cyst Nematode. PLANTS (BASEL, SWITZERLAND) 2023; 12:4118. [PMID: 38140445 PMCID: PMC10747334 DOI: 10.3390/plants12244118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
GmSNAP18 and GmSHMT08 are two major genes conferring soybean cyst nematode (SCN) resistance in soybean. Overexpression of either of these two soybean genes would enhance the susceptibility of Arabidopsis to beet cyst nematode (BCN), while overexpression of either of their corresponding orthologs in Arabidopsis, AtSNAP2 and AtSHMT4, would suppress it. However, the mechanism by which these two pairs of orthologous genes boost or inhibit BCN susceptibility of Arabidopsis still remains elusive. In this study, Arabidopsis with simultaneously overexpressed GmSNAP18 and GmSHMT0 suppressed the growth of underground as well as above-ground parts of plants. Furthermore, Arabidopsis that simultaneously overexpressed GmSNAP18 and GmSHMT08 substantially stimulated BCN susceptibility and remarkably suppressed expression of AtPR1 in the salicylic acid signaling pathway. However, simultaneous overexpression of GmSNAP18 and GmSHMT08 did not impact the expression of AtJAR1 and AtHEL1 in the jasmonic acid and ethylene signaling pathways. GmSNAP18, GmSHMT08, and a pathogenesis-related (PR) protein, GmPR08-Bet VI, in soybean, and AtSNAP2, AtSHMT4, and AtPR1 in Arabidopsis could interact pair-wisely for mediating SCN and BCN resistance in soybean and Arabidopsis, respectively. Both AtSNAP2 and AtPR1 were localized on the plasma membrane, and AtSHMT4 was localized both on the plasma membrane and in the nucleus of cells. Nevertheless, after interactions, AtSNAP2 and AtPR1 could partially translocate into the cell nucleus. GmSNAP18 interacted with AtSHMT4, and GmSHMT4 interacted with AtSNAP2. However, neither GmSNAP18 nor GmSHMT08 interacted with AtPR1. Thus, no pairwise interactions among α-SNAPs, SHMTs, and AtPR1 occurred in Arabidopsis overexpressing either GmSNAP18 or GmSHMT08, or both of them. Transgenic Arabidopsis overexpressing either GmSNAP18 or GmSHMT08 substantially suppressed AtPR1 expression, while transgenic Arabidopsis overexpressing either AtSNAP2 or AtSHMT4 remarkably enhanced it. Taken together, no pairwise interactions of GmSNAP18, GmSHMT08, and AtPR1 with suppressed expression of AtPR1 enhanced BCN susceptibility in Arabidopsis. This study may provide a clue that nematode-resistant or -susceptible functions of plant genes likely depend on both hosts and nematode species.
Collapse
Affiliation(s)
- Liuping Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.Z.); (J.Z.); (L.K.); (W.H.); (H.P.); (D.P.)
| |
Collapse
|
7
|
Mahmood A, Bilyeu KD, Škrabišová M, Biová J, De Meyer EJ, Meinhardt CG, Usovsky M, Song Q, Lorenz AJ, Mitchum MG, Shannon G, Scaboo AM. Cataloging SCN resistance loci in North American public soybean breeding programs. FRONTIERS IN PLANT SCIENCE 2023; 14:1270546. [PMID: 38053759 PMCID: PMC10694258 DOI: 10.3389/fpls.2023.1270546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 12/07/2023]
Abstract
Soybean cyst nematode (SCN) is a destructive pathogen of soybeans responsible for annual yield loss exceeding $1.5 billion in the United States. Here, we conducted a series of genome-wide association studies (GWASs) to understand the genetic landscape of SCN resistance in the University of Missouri soybean breeding programs (Missouri panel), as well as germplasm and cultivars within the United States Department of Agriculture (USDA) Uniform Soybean Tests-Northern Region (NUST). For the Missouri panel, we evaluated the resistance of breeding lines to SCN populations HG 2.5.7 (Race 1), HG 1.2.5.7 (Race 2), HG 0 (Race 3), HG 2.5.7 (Race 5), and HG 1.3.6.7 (Race 14) and identified seven quantitative trait nucleotides (QTNs) associated with SCN resistance on chromosomes 2, 8, 11, 14, 17, and 18. Additionally, we evaluated breeding lines in the NUST panel for resistance to SCN populations HG 2.5.7 (Race 1) and HG 0 (Race 3), and we found three SCN resistance-associated QTNs on chromosomes 7 and 18. Through these analyses, we were able to decipher the impact of seven major genetic loci, including three novel loci, on resistance to several SCN populations and identified candidate genes within each locus. Further, we identified favorable allelic combinations for resistance to individual SCN HG types and provided a list of available germplasm for integration of these unique alleles into soybean breeding programs. Overall, this study offers valuable insight into the landscape of SCN resistance loci in U.S. public soybean breeding programs and provides a framework to develop new and improved soybean cultivars with diverse plant genetic modes of SCN resistance.
Collapse
Affiliation(s)
- Anser Mahmood
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Kristin D. Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO, United States
| | - Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc, Czechia
| | - Elizabeth J. De Meyer
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Clinton G. Meinhardt
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Beltsville, MD, United States
| | - Aaron J. Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
| | - Melissa G. Mitchum
- Department of Plant Pathology and Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Grover Shannon
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Andrew M. Scaboo
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Torabi S, Seifi S, Geddes-McAlister J, Tenuta A, Wally O, Torkamaneh D, Eskandari M. Soybean-SCN Battle: Novel Insight into Soybean's Defense Strategies against Heterodera glycines. Int J Mol Sci 2023; 24:16232. [PMID: 38003422 PMCID: PMC10671692 DOI: 10.3390/ijms242216232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/28/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) poses a significant threat to global soybean production, necessitating a comprehensive understanding of soybean plants' response to SCN to ensure effective management practices. In this study, we conducted dual RNA-seq analysis on SCN-resistant Plant Introduction (PI) 437654, 548402, and 88788 as well as a susceptible line (Lee 74) under exposure to SCN HG type 1.2.5.7. We aimed to elucidate resistant mechanisms in soybean and identify SCN virulence genes contributing to resistance breakdown. Transcriptomic and pathway analyses identified the phenylpropanoid, MAPK signaling, plant hormone signal transduction, and secondary metabolite pathways as key players in resistance mechanisms. Notably, PI 437654 exhibited complete resistance and displayed distinctive gene expression related to cell wall strengthening, oxidative enzymes, ROS scavengers, and Ca2+ sensors governing salicylic acid biosynthesis. Additionally, host studies with varying immunity levels and a susceptible line shed light on SCN pathogenesis and its modulation of virulence genes to evade host immunity. These novel findings provide insights into the molecular mechanisms underlying soybean-SCN interactions and offer potential targets for nematode disease management.
Collapse
Affiliation(s)
- Sepideh Torabi
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Soren Seifi
- Aurora Cannabis Inc., Comox, BC V9M 4A1, Canada;
| | | | - Albert Tenuta
- Ontario Ministry of Agriculture, Food and Rural Affairs, Ridgetown, ON N0P 2C0, Canada;
| | - Owen Wally
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N0R 1G0, Canada;
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
9
|
Knizia D, Bellaloui N, Yuan J, Lakhssasi N, Anil E, Vuong T, Embaby M, Nguyen HT, Mengistu A, Meksem K, Kassem MA. Quantitative Trait Loci and Candidate Genes That Control Seed Sugars Contents in the Soybean 'Forrest' by 'Williams 82' Recombinant Inbred Line Population. PLANTS (BASEL, SWITZERLAND) 2023; 12:3498. [PMID: 37836238 PMCID: PMC10575016 DOI: 10.3390/plants12193498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Soybean seed sugars are among the most abundant beneficial compounds for human and animal consumption in soybean seeds. Higher seed sugars such as sucrose are desirable as they contribute to taste and flavor in soy-based food. Therefore, the objectives of this study were to use the 'Forrest' by 'Williams 82' (F × W82) recombinant inbred line (RIL) soybean population (n = 309) to identify quantitative trait loci (QTLs) and candidate genes that control seed sugar (sucrose, stachyose, and raffinose) contents in two environments (North Carolina and Illinois) over two years (2018 and 2020). A total of 26 QTLs that control seed sugar contents were identified and mapped on 16 soybean chromosomes (chrs.). Interestingly, five QTL regions were identified in both locations, Illinois and North Carolina, in this study on chrs. 2, 5, 13, 17, and 20. Amongst 57 candidate genes identified in this study, 16 were located within 10 Megabase (MB) of the identified QTLs. Amongst them, a cluster of four genes involved in the sugars' pathway was collocated within 6 MB of two QTLs that were detected in this study on chr. 17. Further functional validation of the identified genes could be beneficial in breeding programs to produce soybean lines with high beneficial sucrose and low raffinose family oligosaccharides.
Collapse
Affiliation(s)
- Dounya Knizia
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (E.A.); (M.E.); (K.M.)
| | - Nacer Bellaloui
- USDA, Agriculture Research Service, Crop Genetics Research Unit, 141 Experiment Station Road, Stoneville, MS 38776, USA;
| | - Jiazheng Yuan
- Plant Genomics and Biotechnology Lab, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA;
| | - Naoufal Lakhssasi
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (E.A.); (M.E.); (K.M.)
| | - Erdem Anil
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (E.A.); (M.E.); (K.M.)
| | - Tri Vuong
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (H.T.N.)
| | - Mohamed Embaby
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (E.A.); (M.E.); (K.M.)
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (H.T.N.)
| | - Alemu Mengistu
- USDA, Agriculture Research Service, Crop Genetics Research Unit, 605 Airways Blvd, Jackson, TN 38301, USA;
| | - Khalid Meksem
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (E.A.); (M.E.); (K.M.)
| | - My Abdelmajid Kassem
- Plant Genomics and Biotechnology Lab, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA;
| |
Collapse
|
10
|
Han S, Smith JM, Du Y, Bent AF. Soybean transporter AAT Rhg1 abundance increases along the nematode migration path and impacts vesiculation and ROS. PLANT PHYSIOLOGY 2023; 192:133-153. [PMID: 36805759 PMCID: PMC10152651 DOI: 10.1093/plphys/kiad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Rhg1 (Resistance to Heterodera glycines 1) mediates soybean (Glycine max) resistance to soybean cyst nematode (SCN; H. glycines). Rhg1 is a 4-gene, ∼30-kb block that exhibits copy number variation, and the common PI 88788-type rhg1-b haplotype carries 9 to 10 tandem Rhg1 repeats. Glyma.18G022400 (Rhg1-GmAAT), 1 of 3 resistance-conferring genes at the complex Rhg1 locus, encodes the putative amino acid transporter AATRhg1 whose mode of action is largely unknown. We discovered that AATRhg1 protein abundance increases 7- to 15-fold throughout root cells along the migration path of SCN. These root cells develop an increased abundance of vesicles and large vesicle-like bodies (VLB) as well as multivesicular and paramural bodies. AATRhg1 protein is often present in these structures. AATRhg1 abundance remained low in syncytia (plant cells reprogrammed by SCN for feeding), unlike the Rhg1 α-SNAP protein, whose abundance has previously been shown to increase in syncytia. In Nicotiana benthamiana, if soybean AATRhg1 was present, oxidative stress promoted the formation of large VLB, many of which contained AATRhg1. AATRhg1 interacted with the soybean NADPH oxidase GmRBOHG, the ortholog of Arabidopsis thaliana RBOHD previously found to exhibit upregulated expression upon SCN infection. AATRhg1 stimulated reactive oxygen species (ROS) generation when AATRhg1 and GmRBOHG were co-expressed. These findings suggest that AATRhg1 contributes to SCN resistance along the migration path as SCN invades the plant and does so, at least in part, by increasing ROS production. In light of previous findings about α-SNAPRhg1, this study also shows that different Rhg1 resistance proteins function via at least 2 spatially and temporally separate modes of action.
Collapse
Affiliation(s)
- Shaojie Han
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 311121, China
| | - John M Smith
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Yulin Du
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| |
Collapse
|
11
|
Tian Y, Li D, Wang X, Zhang H, Wang J, Yu L, Guo C, Luan X, Liu X, Li H, Reif JC, Li YH, Qiu LJ. Deciphering the genetic basis of resistance to soybean cyst nematode combining IBD and association mapping. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:50. [PMID: 36912956 PMCID: PMC10011322 DOI: 10.1007/s00122-023-04268-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
IBD analysis clarified the dynamics of chromosomal recombination during the ZP pedigree breeding process and identified ten genomic regions resistant to SCN race3 combining association mapping. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pathogens for soybean production worldwide. The cultivar Zhongpin03-5373 (ZP), derived from SCN-resistant progenitor parents, Peking, PI 437654 and Huipizhi Heidou, is an elite line with high resistance to SCN race3. In the current study, a pedigree variation map was generated for ZP and its ten progenitors using 3,025,264 high-quality SNPs identified from an average of 16.2 × re-sequencing for each genome. Through identity by decent (IBD) tracking, we showed the dynamic change of genome and detected important IBD fragments, which revealed the comprehensively artificial selection of important traits during ZP breeding process. A total of 2,353 IBD fragments related to SCN resistance including SCN-resistant genes rhg1, rhg4 and NSFRAN07 were identified based on the resistant-related genetic paths. Moreover, 23 genomic regions underlying resistance to SCN race3 were identified by genome-wide association study (GWAS) in 481 re-sequenced cultivated soybeans. Ten common loci were found by both IBD tracking and GWAS analysis. Haplotype analysis of 16 potential candidate genes suggested a causative SNP (C/T, - 1065) located in the promoter of Glyma.08G096500 and encoding a predicted TIFY5b-related protein on chr8 was highly correlated with SCN race3 resistance. Our results more thoroughly elucidated the dynamics of genomic fragments during ZP pedigree breeding and the genetic basis of SCN resistance, which will provide useful information for gene cloning and the development of resistant soybean cultivars using a marker-assisted selection approach.
Collapse
Affiliation(s)
- Yu Tian
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Delin Li
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Xueqing Wang
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Hao Zhang
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Jiajun Wang
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Lijie Yu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Heilongjiang Province, Harbin, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Heilongjiang Province, Harbin, China
| | - Xiaoyan Luan
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xinlei Liu
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Hongjie Li
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China
| | - Jochen C Reif
- Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ying-Hui Li
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.
| | - Li-Juan Qiu
- The National Key Facility for Gene Resources and Genetic Improvement/Key Laboratory of Crop Germplasm Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing, 100081, People's Republic of China.
| |
Collapse
|
12
|
Li X, Shi Z, Gao J, Wang X, Guo K. CandiHap: a haplotype analysis toolkit for natural variation study. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:21. [PMID: 37313297 PMCID: PMC10248607 DOI: 10.1007/s11032-023-01366-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Haplotype blocks greatly assist association-based mapping of casual candidate genes by significantly reducing genotyping effort. The gene haplotype could be used to evaluate variants of affected traits captured from the gene region. While there is a rising interest in gene haplotypes, much of the corresponding analysis was carried out manually. CandiHap allows rapid and robust haplotype analysis and candidate identification preselection of candidate causal single-nucleotide polymorphisms and InDels from Sanger or next-generation sequencing data. Investigators can use CandiHap to specify a gene or linkage sites based on genome-wide association studies and explore favorable haplotypes of candidate genes for target traits. CandiHap can be run on computers with Windows, Mac, or UNIX platforms in a graphical user interface or command line, and applied to any species, such as plant, animal, and microbial. The CandiHap software, user manual, and example datasets are freely available at BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007080) or GitHub (https://github.com/xukaili/CandiHap). Supplementary information The online version contains supplementary material available at 10.1007/s11032-023-01366-4.
Collapse
Affiliation(s)
- Xukai Li
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Zhiyong Shi
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Jianhua Gao
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Xingchun Wang
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030031 China
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801 China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
13
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
14
|
Jiang H, Lv S, Zhou C, Qu S, Liu F, Sun H, Zhao X, Han Y. Identification of QTL, QTL-by-environment interactions, and their candidate genes for resistance HG Type 0 and HG Type 1.2.3.5.7 in soybean using 3VmrMLM. FRONTIERS IN PLANT SCIENCE 2023; 14:1177345. [PMID: 37152131 PMCID: PMC10162016 DOI: 10.3389/fpls.2023.1177345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Introduction Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is an important disease affecting soybean yield in the world. Potential SCN-related QTLs and QTL-by-environment interactions (QEIs) have been used in SCN-resistant breeding. Methods In this study, a compressed variance component mixed model, 3VmrMLM, in genome-wide association studies was used to detect QTLs and QEIs for resistance to SCN HG Type 0 and HG Type 1.2.3.5.7 in 156 different soybean cultivars materials. Results and discussion The results showed that 53 QTLs were detected in single environment analysis; 36 QTLs and 9 QEIs were detected in multi-environment analysis. Based on the statistical screening of the obtained QTLs, we obtained 10 novel QTLs and one QEI which were different from the previous studies. Based on previous studies, we identified 101 known genes around the significant/suggested QTLs and QEIs. Furthermore, used the transcriptome data of SCN-resistant (Dongnong L-10) and SCN-susceptible (Suinong 14) cultivars, 10 candidate genes related to SCN resistance were identified and verified by Quantitative real time polymerase chain reaction (qRT-PCR) analysis. Haplotype difference analysis showed that Glyma.03G005600 was associated with SCN HG Type 0 and HG Type 1.2.3.5.7 resistance and had a haplotype beneficial to multi-SCN-race resistance. These results provide a new idea for accelerating SCN disease resistance breeding.
Collapse
Affiliation(s)
- Haipeng Jiang
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Suchen Lv
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Changjun Zhou
- Daqing Branch, Heilongjiang Academy of Agricultural Science, Daqing, China
| | - Shuo Qu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Fang Liu
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Haowen Sun
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Xue Zhao
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
- *Correspondence: Yingpeng Han, ; Xue Zhao,
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
- *Correspondence: Yingpeng Han, ; Xue Zhao,
| |
Collapse
|
15
|
Zhao J, Duan Y, Kong L, Huang W, Peng D, Liu S. Opposite Beet Cyst Nematode Infection Phenotypes of Transgenic Arabidopsis Between Overexpressing GmSNAP18 and AtSNAP2 and Between Overexpressing GmSHMT08 and AtSHMT4. PHYTOPATHOLOGY 2022; 112:2383-2390. [PMID: 35439035 DOI: 10.1094/phyto-01-22-0011-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The rhg1-a GmSNAP18 (an α-SNAP) and Rhg4 GmSHMT08 are two major cloned genes conferring soybean cyst nematode resistance in Peking-type soybeans, but the application of α-SNAPs and SHMTs in cyst nematode management remains elusive. In this study, GmSNAP18 and GmSHMT08, together with their orthologs in Arabidopsis, AtSNAP2 (an α-SNAP) and AtSHMT4, were individually transformed into Arabidopsis Col-0 to generate the transgenic lines, and the growth of transgenic plants, beet cyst nematode (BCN) infection phenotypes, and AtSNAP2, AtSHMT4, and AtPR1 expression patterns were analyzed using Arabidopsis-BCN compatible interaction system, in addition with protein-protein interaction assay. Pulldown and BiFC assays revealed that GmSNAP18 and GmSHMT08 interacted with AtSHMT4 and AtSNAP2, respectively. Plant root growth was not impacted by overexpression of GmSNAP18 and AtSNAP2. However, overexpression of GmSHMT08 and AtSHMT4 both increased plant height, additionally, overexpression of GmSHMT08 decreased rosette leaf size. Overexpression of GmSNAP18 and GmSHMT08 both suppressed AtPR1 expression and significantly enhanced BCN susceptibility, while overexpression of AtSNAP2 and AtSHMT4 both substantially boosted AtPR1 expression and remarkably enhanced BCN resistance, in transgenic Arabidopsis. Overexpression of GmSNAP18 reduced, while overexpression of AtSNAP2 unaltered AtSHMT4 expression. Overexpression of GmSHMT08 and AtSHMT4 both suppressed AtSNAP2 expression in transgenic Arabidopsis. Thus, different expression patterns of AtPR1 and AtSHMT4 are likely associated with opposite BCN infection phenotypes of Arabidopsis between overexpressing GmSNAP18 and AtSNAP2, and between overexpressing GmSHMT08 and AtSHMT4; and boosted AtPR1 expression are required for enhanced BCN resistance in Arabidopsis. All these results establish a basis for extension of α-SNAPs and SHMTs in cyst nematode management.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Yukai Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| |
Collapse
|
16
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
17
|
Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode. Int J Mol Sci 2022; 23:ijms231911278. [PMID: 36232579 PMCID: PMC9570156 DOI: 10.3390/ijms231911278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
The serine hydroxymethyltransferase (SHMT; E.C. 2.1.2.1) is involved in the interconversion of serine/glycine and tetrahydrofolate (THF)/5,10-methylene THF, playing a key role in one-carbon metabolism, the de novo purine pathway, cellular methylation reactions, redox homeostasis maintenance, and methionine and thymidylate synthesis. GmSHMT08 is the soybean gene underlying soybean cyst nematode (SCN) resistance at the Rhg4 locus. GmSHMT08 protein contains four tetrahydrofolate (THF) cofactor binding sites (L129, L135, F284, N374) and six pyridoxal phosphate (PLP) cofactor binding/catalysis sites (Y59, G106, G107, H134, S190A, H218). In the current study, proteomic analysis of a data set of protein complex immunoprecipitated using GmSHMT08 antibodies under SCN infected soybean roots reveals the presence of enriched pathways that mainly use glycine/serine as a substrate (glyoxylate cycle, redox homeostasis, glycolysis, and heme biosynthesis). Root and leaf transcriptomic analysis of differentially expressed genes under SCN infection supported the proteomic data, pointing directly to the involvement of the interconversion reaction carried out by the serine hydroxymethyltransferase enzyme. Direct site mutagenesis revealed that all mutated THF and PLP sites at the GmSHMT08 resulted in increased SCN resistance. We have shown the involvement of PLP sites in SCN resistance. Specially, the effect of the two Y59 and S190 PLP sites was more drastic than the tested THF sites. This unprecedented finding will help us to identify the biological outcomes of THF and PLP residues at the GmSHMT08 and to understand SCN resistance mechanisms.
Collapse
|
18
|
Abstract
Resistance to the soybean cyst nematode (SCN) is a topic incorporating multiple mechanisms and multiple types of science. It is also a topic of substantial agricultural importance, as SCN is estimated to cause more yield damage than any other pathogen of soybean, one of the world's main food crops. Both soybean and SCN have experienced jumps in experimental tractability in the past decade, and significant advances have been made. The rhg1-b locus, deployed on millions of farm acres, has been durable and will remain important, but local SCN populations are gradually evolving to overcome rhg1-b. Multiple other SCN resistance quantitative trait loci (QTL) of proven value are now in play with soybean breeders. QTL causal gene discovery and mechanistic insights into SCN resistance are contributing to both basic and applied disciplines. Additional understanding of SCN and other cyst nematodes will also grow in importance and lead to novel disease control strategies.
Collapse
Affiliation(s)
- Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
19
|
Shaibu AS, Zhang S, Ma J, Feng Y, Huai Y, Qi J, Li J, Abdelghany AM, Azam M, Htway HTP, Sun J, Li B. The GmSNAP11 Contributes to Resistance to Soybean Cyst Nematode Race 4 in Glycine max. FRONTIERS IN PLANT SCIENCE 2022; 13:939763. [PMID: 35860531 PMCID: PMC9289622 DOI: 10.3389/fpls.2022.939763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Soybean cyst nematode (SCN) has devastating effects on soybean production, making it crucial to identify genes conferring SCN resistance. Here we employed next-generation sequencing-based bulked segregant analysis (BSA) to discover genomic regions, candidate genes, and diagnostic markers for resistance to SCN race 4 (SCN4) in soybean. Phenotypic analysis revealed highly significant differences among the reactions of 145 recombinant inbred lines (RILs) to SCN4. In combination with euclidean distance (ED) and Δsingle-nucleotide polymorphism (SNP)-index analyses, we identified a genomic region on Gm11 (designated as rhg1-paralog) associated with SCN4 resistance. Overexpression and RNA interference analyzes of the two candidate genes identified in this region (GmPLAC8 and GmSNAP11) revealed that only GmSNAP11 significantly contributes to SCN4 resistance. We developed a diagnostic marker for GmSNAP11. Using this marker, together with previously developed markers for SCN-resistant loci, rhg1 and Rhg4, we evaluated the relationship between genotypes and SCN4 resistance in 145 RILs and 30 soybean accessions. The results showed that all the SCN4-resistant lines harbored all the three loci, however, some lines harboring the three loci were still susceptible to SCN4. This suggests that these three loci are necessary for the resistance to SCN4, but they alone cannot confer full resistance. The GmSNAP11 and the diagnostic markers developed could be used in genomic-assisted breeding to develop soybean varieties with increased resistance to SCN4.
Collapse
Affiliation(s)
- Abdulwahab S. Shaibu
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Agronomy, Bayero University Kano, Kano, Nigeria
| | - Shengrui Zhang
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junkui Ma
- Institute of Industrial Crop Research, Shanxi Academy of Agricultural Sciences, Fenyang, China
| | - Yue Feng
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Huai
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Qi
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ahmed M. Abdelghany
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Azam
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honey Thet Paing Htway
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junming Sun
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Li
- The National Engineering Research Center for Crop Molecular Breeding, MARA Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Belzile F, Jean M, Torkamaneh D, Tardivel A, Lemay MA, Boudhrioua C, Arsenault-Labrecque G, Dussault-Benoit C, Lebreton A, de Ronne M, Tremblay V, Labbé C, O’Donoughue L, St-Amour VTB, Copley T, Fortier E, Ste-Croix DT, Mimee B, Cober E, Rajcan I, Warkentin T, Gagnon É, Legay S, Auclair J, Bélanger R. The SoyaGen Project: Putting Genomics to Work for Soybean Breeders. FRONTIERS IN PLANT SCIENCE 2022; 13:887553. [PMID: 35557742 PMCID: PMC9087807 DOI: 10.3389/fpls.2022.887553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance. The main deliverables related to molecular breeding in soybean will be reviewed here. These include: (1) SNP datasets capturing the genetic diversity within cultivated soybean (both within a worldwide collection of > 1,000 soybean accessions and a subset of 102 short-season accessions (MG0 and earlier) directly relevant to this group); (2) SNP markers for selecting favorable alleles at key maturity genes as well as loci associated with increased resistance to key pathogens and pests (Phytophthora sojae, Heterodera glycines, Sclerotinia sclerotiorum); (3) diagnostic tools to facilitate the identification and mapping of specific pathotypes of P. sojae; and (4) a genomic prediction approach to identify the most promising combinations of parents. As a result of this fruitful collaboration, breeders have gained new tools and approaches to implement molecular, genomics-informed breeding strategies. We believe these tools and approaches are broadly applicable to soybean breeding efforts around the world.
Collapse
Affiliation(s)
- François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Martine Jean
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Aurélie Tardivel
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Marc-André Lemay
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Chiheb Boudhrioua
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | | | | | - Amandine Lebreton
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Vanessa Tremblay
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Caroline Labbé
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Louise O’Donoughue
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Vincent-Thomas Boucher St-Amour
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Tanya Copley
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Eric Fortier
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | | | - Benjamin Mimee
- Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, QC, Canada
| | - Elroy Cober
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Tom Warkentin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Éric Gagnon
- Semences Prograin Inc., Saint-Césaire, QC, Canada
- Sevita Genetics, Inkerman, ON, Canada
| | | | | | - Richard Bélanger
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
21
|
Marsh JI, Hu H, Petereit J, Bayer PE, Valliyodan B, Batley J, Nguyen HT, Edwards D. Haplotype mapping uncovers unexplored variation in wild and domesticated soybean at the major protein locus cqProt-003. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1443-1455. [PMID: 35141762 PMCID: PMC9033719 DOI: 10.1007/s00122-022-04045-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
KEY MESSAGE The major soy protein QTL, cqProt-003, was analysed for haplotype diversity and global distribution, and results indicate 304 bp deletion and variable tandem repeats in protein coding regions are likely causal candidates. Here, we present association and linkage analysis of 985 wild, landrace and cultivar soybean accessions in a pan genomic dataset to characterize the major high-protein/low-oil associated locus cqProt-003 located on chromosome 20. A significant trait-associated region within a 173 kb linkage block was identified, and variants in the region were characterized, identifying 34 high confidence SNPs, 4 insertions, 1 deletion and a larger 304 bp structural variant in the high-protein haplotype. Trinucleotide tandem repeats of variable length present in the second exon of gene Glyma.20G085100 are strongly correlated with the high-protein phenotype and likely represent causal variation. Structural variation has previously been found in the same gene, for which we report the global distribution of the 304 bp deletion and have identified additional nested variation present in high-protein individuals. Mapping variation at the cqProt-003 locus across demographic groups suggests that the high-protein haplotype is common in wild accessions (94.7%), rare in landraces (10.6%) and near absent in cultivated breeding pools (4.1%), suggesting its decrease in frequency primarily correlates with domestication and continued during subsequent improvement. However, the variation that has persisted in under-utilized wild and landrace populations holds high breeding potential for breeders willing to forego seed oil to maximize protein content. The results of this study include the identification of distinct haplotype structures within the high-protein population, and a broad characterization of the genomic context and linkage patterns of cqProt-003 across global populations, supporting future functional characterization and modification.
Collapse
Affiliation(s)
- Jacob I Marsh
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Jakob Petereit
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Philipp E Bayer
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Babu Valliyodan
- Department of Agriculture and Environmental Sciences, Lincoln University, Jefferson City, MO, 65101, USA
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri, Columbia, MO, 65211, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, 6009, Australia.
| |
Collapse
|
22
|
Wei H, Lian Y, Li J, Li H, Song Q, Wu Y, Lei C, Wang S, Zhang H, Wang J, Lu W. Identification of Candidate Genes Controlling Soybean Cyst Nematode Resistance in "Handou 10" Based on Genome and Transcriptome Analyzes. FRONTIERS IN PLANT SCIENCE 2022; 13:860034. [PMID: 35371127 PMCID: PMC8965568 DOI: 10.3389/fpls.2022.860034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a highly destructive pathogen for soybean production worldwide. The use of resistant varieties is the most effective way of preventing yield loss. Handou 10 is a commercial soybean variety with desirable agronomic traits and SCN resistance, however genes underlying the SCN resistance in the variety are unknown. An F2:8 recombinant inbred line (RIL) population derived from a cross between Zheng 9525 (susceptible) and Handou 10 was developed and its resistance to SCN HG type 2.5.7 (race 1) and 1.2.5.7 (race 2) was identified. We identified seven quantitative trait loci (QTLs) with additive effects. Among these, three QTLs on Chromosomes 7, 8, and 18 were resistant to both races. These QTLs could explain 1.91-7.73% of the phenotypic variation of SCN's female index. The QTLs on chromosomes 8 and 18 have already been reported and were most likely overlapped with rhg1 and Rhg4 loci, respectively. However, the QTL on chromosome 7 was novel. Candidate genes for the three QTLs were predicted through genes functional analysis and transcriptome analysis of infected roots of Handou 10 vs. Zheng 9525. Transcriptome analysis performed also indicated that the plant-pathogen interaction played an important role in the SCN resistance for Handou 10. The information will facilitate SCN-resistant gene cloning, and the novel resistant gene will be a source for improving soybeans' resistance to SCN.
Collapse
Affiliation(s)
- He Wei
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Yun Lian
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Jinying Li
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Haichao Li
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, United States
| | - Yongkang Wu
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Chenfang Lei
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Shiwei Wang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Hui Zhang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Jinshe Wang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Weiguo Lu
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| |
Collapse
|
23
|
Grunwald DJ, Zapotocny RW, Ozer S, Diers BW, Bent AF. Detection of rare nematode resistance Rhg1 haplotypes in Glycine soja and a novel Rhg1 α-SNAP. THE PLANT GENOME 2022; 15:e20152. [PMID: 34716668 DOI: 10.1002/tpg2.20152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
This study pursued the hypothesis that wild plant germplasm accessions carrying alleles of interest can be identified using available single nucleotide polymorphism (SNP) genotypes for particular alleles of other (unlinked) genes that contribute to the trait of interest. The soybean cyst nematode (SCN, Heterodera glycines [HG]) resistance locus Rhg1 is widely used in farmed soybean [Glycine max (L.) Merr.]. The two known resistance-conferring haplotypes, rhg1-a and rhg1-b, typically contain three or seven to 10 tandemly duplicated Rhg1 segments, respectively. Each Rhg1 repeat carries four genes, including Glyma.18G022500, which encodes unusual isoforms of the vesicle-trafficking chaperone α-SNAP. Using SoySNP50K data for NSFRAN07 allele presence, we discovered a new Rhg1 haplotype, rhg1-ds, in six accessions of wild soybean, Glycine soja Siebold & Zucc. (0.5% of the ∼1,100 G. soja accessions in the USDA collection). The α-SNAP encoded by rhg1-ds is unique at an important site of amino acid variation and shares with the rhg1-a and rhg1-b α-SNAP proteins the traits of cytotoxicity and altered N-ethylmaleimide sensitive factor (NSF) protein interaction. Copy number assays indicate three repeats of rhg1-ds. G. soja PI 507613 and PI 507623 exhibit resistance to HG type 2.5.7 SCN populations, in part because of contributions from other loci. In a segregating F2 population, rhg1-b and rhg1-ds made statistically indistinguishable contributions to resistance to a partially virulent HG type 2.5.7 SCN population. Hence, the unusual multigene copy number variation Rhg1 haplotype was present but rare in ancestral G. soja and was present in accessions that offer multiple traits for SCN resistance breeding. The accessions were initially identified for study based on an unlinked SNP.
Collapse
Affiliation(s)
- Derrick J Grunwald
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ryan W Zapotocny
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Seda Ozer
- Dep. of Crop Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Brian W Diers
- Dep. of Crop Science, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Andrew F Bent
- Dep. of Plant Pathology, Univ. of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
24
|
Usovsky M, Robbins RT, Fultz Wilkes J, Crippen D, Shankar V, Vuong TD, Agudelo P, Nguyen HT. Classification Methods and Identification of Reniform Nematode Resistance in Known Soybean Cyst Nematode-Resistant Soybean Genotypes. PLANT DISEASE 2022; 106:382-389. [PMID: 34494868 DOI: 10.1094/pdis-01-21-0051-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant parasitic nematodes are a major yield-limiting factor of soybean in the United States and Canada. It has been indicated that soybean cyst nematode (SCN; Heterodera glycines Ichinohe) and reniform nematode (RN; Rotylenchulus reniformis Linford and Oliveira) resistance could be genetically related. For many years, fragmentary data have shown this relationship. This report evaluates RN reproduction on 418 plant introductions (PIs) selected from the U.S. Department of Agriculture Soybean Germplasm Collection with reported SCN resistance. The germplasm was divided into two tests of 214 PIs reported as resistant and 204 PIs reported as moderately resistant to SCN. The defining and reporting of RN resistance changed several times in the last 30 years, causing inconsistencies in RN resistance classification among multiple experiments. Comparison of four RN resistance classification methods was performed: (i) ≤10% as compared with the susceptible check, (ii) using normalized reproduction index (RI) values, and using (iii) transformed data log10(x), and (iv) transformed data log10(x + 1) in an optimal univariate k-means clustering analysis. The method of transformed data log10(x) was selected as the most accurate for classification of RN resistance. Among 418 PIs with reported SCN resistance, the log10(x) method grouped 59 PIs (15%) as resistant and 130 PIs (31%) as moderately resistant to RN. Genotyping of a subset of the most resistant PIs to both nematode species revealed their strong correlation with rhg1-a allele. This research identified genotypes with resistance to two nematode species and potential new sources of RN resistance that could be valuable to breeders in developing resistant cultivars.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211
| | - Robert T Robbins
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | - Juliet Fultz Wilkes
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Devany Crippen
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR 72701
| | - Vijay Shankar
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634
| | - Tri D Vuong
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211
| | - Paula Agudelo
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Henry T Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
25
|
Nissan N, Mimee B, Cober ER, Golshani A, Smith M, Samanfar B. A Broad Review of Soybean Research on the Ongoing Race to Overcome Soybean Cyst Nematode. BIOLOGY 2022; 11:211. [PMID: 35205078 PMCID: PMC8869295 DOI: 10.3390/biology11020211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/12/2022]
Abstract
Plant pathogens greatly impact food security of the ever-growing human population. Breeding resistant crops is one of the most sustainable strategies to overcome the negative effects of these biotic stressors. In order to efficiently breed for resistant plants, the specific plant-pathogen interactions should be understood. Soybean is a short-day legume that is a staple in human food and animal feed due to its high nutritional content. Soybean cyst nematode (SCN) is a major soybean stressor infecting soybean worldwide including in China, Brazil, Argentina, USA and Canada. There are many Quantitative Trait Loci (QTLs) conferring resistance to SCN that have been identified; however, only two are widely used: rhg1 and Rhg4. Overuse of cultivars containing these QTLs/genes can lead to SCN resistance breakdown, necessitating the use of additional strategies. In this manuscript, a literature review is conducted on research related to soybean resistance to SCN. The main goal is to provide a current understanding of the mechanisms of SCN resistance and list the areas of research that could be further explored.
Collapse
Affiliation(s)
- Nour Nissan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Benjamin Mimee
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu Research and Development Centre, Saint-Jean-sur-Richelieu, QC J3B 7B5, Canada;
| | - Elroy R. Cober
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Myron Smith
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| | - Bahram Samanfar
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON K1Y 4X2, Canada; (N.N.); (E.R.C.)
- Ottawa Institute of Systems Biology and Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (A.G.); (M.S.)
| |
Collapse
|
26
|
Patil GB, Stupar RM, Zhang F. Protoplast Isolation, Transfection, and Gene Editing for Soybean (Glycine max ). Methods Mol Biol 2022; 2464:173-186. [PMID: 35258833 DOI: 10.1007/978-1-0716-2164-6_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Protoplast is a versatile system for conducting cell-based assays, analyzing diverse signaling pathways, studying functions of cellular machineries, and functional genomics screening. Protoplast engineering has become an important tool for basic plant molecular biology research and developing genome-edited crops. This system allows the direct delivery of DNA, RNA, or proteins into plant cells and provides a high-throughput system to validate gene-editing reagents. It also facilitates the delivery of homology-directed repair templates (donor molecules) into plant cells, enabling precise DNA edits in the genome. There is a great deal of interest in the plant community to develop these precise edits, as they may expand the potential for developing value-added traits which may be difficult to achieve by other gene-editing applications and/or traditional breeding alone. This chapter provides improved working protocols for isolating and transforming protoplast from immature soybean seeds with 44% of transfection efficiency validated by the green fluorescent protein reporter. We also describe a method for gene editing in soybean protoplasts using single guide RNA molecules.
Collapse
Affiliation(s)
- Gunvant B Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA.
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
27
|
Vuong TD, Sonah H, Patil G, Meinhardt C, Usovsky M, Kim KS, Belzile F, Li Z, Robbins R, Shannon JG, Nguyen HT. Identification of genomic loci conferring broad-spectrum resistance to multiple nematode species in exotic soybean accession PI 567305. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3379-3395. [PMID: 34297174 DOI: 10.1007/s00122-021-03903-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Genetic analysis identified a unique combination of major QTL for resistance to important soybean nematodes concurrently present in a single soybean accession, which has not been reported earlier. An exotic soybean [Glycine max (L.) Merr.] accession, PI 567305, was reported to be highly resistant to three important nematode species, soybean cyst (SCN), root-knot (RKN), and reniform (RN) nematodes. However, genetic basis controlling broad-spectrum resistance in this germplasm has not been investigated. We report results of genetic analysis to identify genomic loci conferring resistance to these nematode species. A bi-parental population consisting of 242 F8-derived recombinant inbred lines (RILs) was developed from a cross of a nematode susceptible cultivar, Magellan, and resistant accession, PI 567305. The RILs were phenotyped for nematode resistance to three SCN HG types. They were genotyped using the Infinium SoySNP6K BeadChips and genotype-by-sequencing (GBS) methods in an attempt to evaluate the cost-effectiveness and efficiency of these two genotyping platforms. Genetic analysis confirmed the major QTL on chromosomes (Chrs) 10 and 18 with broad-spectrum resistance to the three nematodes present in this germplasm. Haplotype and copy number variation analyses of SCN resistance QTL indicated that PI 567305 has a different haplotype, which is associated with likely a unique SCN resistance mechanism different from Peking- or PI 88788-type resistance. The evaluations of both Infinium Beadchip- and GBS-based genotyping technologies provided comprehensive insights for researchers to choose a cost-effective and efficient platform for QTL mapping and for other genomic studies in soybeans.
Collapse
Affiliation(s)
- T D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - H Sonah
- Département de Phytologie, Faculté Des Sciences de L'Agriculture Et de L'Alimentation, Centre de Recherche en Horticulture, Université Laval, Québec, Canada
- National Agri-Food Biotechnology Institute, Sector 81, Mohali-140306, P.O. Manauli, Punjab, India
| | - G Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - C Meinhardt
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - M Usovsky
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - K S Kim
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
- LG Chem-FarmHannong, Ltd, Daejeon, 34115, Republic of Korea
| | - F Belzile
- Département de Phytologie, Université Laval, Pavillon Charles-Eugène Marchand 1030, Avenue de la Médecine, Québec, Canada
| | - Z Li
- Institute of Plant Breeding, Genetics, Genomics and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA
| | - R Robbins
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, 72701, USA
| | - J G Shannon
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - H T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
28
|
Whole-genome characterization and comparative genomics of a novel freshwater cyanobacteria species: Pseudanabaena punensis. Mol Phylogenet Evol 2021; 164:107272. [PMID: 34332035 DOI: 10.1016/j.ympev.2021.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 11/23/2022]
Abstract
Cyanobacteria are emerging as a potential source of novel, beneficial bioactive compounds. However, some cyanobacteria species can harm water quality and public health through the production of toxins. Therefore, surveying the occurrence and generating genomic resources of cyanobacteria producing harmful compounds could help develop the control methods necessary to manage their growth and limit the release contaminants into the water bodies. Here, we describe a novel strain, Pseudanabaena punensis isolated from the open ends of pipelines supplying freshwater. This isolate was characterized morphologically, biochemically and by whole-genome sequence analysis. We also provide genomic information for P. punensis to help understand and highlight the features unique to this isolate. Morphological and genetic (analysis using 16S rRNA and rbcL genes) data were used to assign this novel strain to phylogenetic and taxonomic groups. The isolate was identified as a filamentous and non-heterocystous cyanobacteria. Based on morphological and 16S rRNA phylogeny, this isolate shares characteristics with the Pseudanabaenaceae family, but remains distinct from well-characterized species suggesting its polyphyletic assemblage. The whole-genome sequence analysis suggests greater genomic and phenotypic plasticity. Genome-wide sequence and comparative genomic analyses, comparing against several closely related species, revealed diverse and important genes associated with synthesizing bioactive compounds, multi-drug resistance pathway, heavy metal resistance, and virulence factors. This isolate also produces several important fatty acids with potential industrial applications. The observations described in this study emphasize both industrial applications and risks associated with the freshwater contamination, and therefore genomic resources provided in this study offer an opportunity for further investigations.
Collapse
|
29
|
Usovsky M, Lakhssassi N, Patil GB, Vuong TD, Piya S, Hewezi T, Robbins RT, Stupar RM, Meksem K, Nguyen HT. Dissecting nematode resistance regions in soybean revealed pleiotropic effect of soybean cyst and reniform nematode resistance genes. THE PLANT GENOME 2021; 14:e20083. [PMID: 33724721 DOI: 10.1002/tpg2.20083] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Reniform nematode (RN, Rotylenchulus reniformis Linford & Oliveira) has emerged as one of the most important plant parasitic nematodes of soybean [Glycine max (L.) Merr.]. Planting resistant varieties is the most effective strategy for nematode management. The objective of this study was to identify quantitative trait loci (QTL) for RN resistance in an exotic soybean line, PI 438489B, using two linkage maps constructed from the Universal Soybean Linkage Panel (USLP 1.0) and next-generation whole-genome resequencing (WGRS) technology. Two QTL controlling RN resistance were identified-the soybean cyst nematode (SCN, Heterodera glycines) resistance gene GmSNAP18 at the rhg1 locus and its paralog GmSNAP11. Strong association between resistant phenotype and haplotypes of the GmSNAP11 and GmSNAP18 was observed. The results indicated that GmSNAP11 possibly could have epistatic effect on GmSNAP18, or vice versa, with the presence of a significant correlation in RN resistance of rhg1-a GmSNAP18 vs. rhg1-b GmSNAP18. Most importantly, our preliminary data suggested that GmSNAP18 and GmSNAP11 proteins physically interact in planta, suggesting that they belong to the same pathway for resistance. Unlike GmSNAP18, no indication of GmSNAP11 copy number variation was found. Moreover, gene-based single nucleotide polymorphism (SNP) markers were developed for rapid detection of RN or SCN resistance at these loci. Our analysis substantiates synergic interaction between GmSNAP11 and GmSNAP18 genes and confirms their roles in RN as well as SCN resistance. These results could contribute to a better understanding of evolution and subfunctionalization of genes conferring resistance to multiple nematode species and provide a framework for further investigations.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Gunvant B Patil
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Robert T Robbins
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
30
|
Huang M, Qin R, Li C, Liu C, Jiang Y, Yu J, Chang D, Roberts PA, Chen Q, Wang C. Transgressive resistance to Heterodera glycines in chromosome segment substitution lines derived from susceptible soybean parents. THE PLANT GENOME 2021; 14:e20091. [PMID: 33817979 DOI: 10.1002/tpg2.20091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Chromosome segment substitution lines (CSSLs) are valuable genetic resources for quantitative trait loci (QTL) mapping of complex agronomic traits especially suitable for minor effect QTL. Here, 162 BC3 F7 -BC7 F3 CSSLs derived from crossing two susceptible parent lines, soybean [Glycine max (L.) Merr.] 'Suinong14' (recurrent parent) × wild soybean (G. soja Siebold & Zucc.) ZYD00006, were used for QTL mapping of soybean cyst nematode (SCN, Heterodera glycine Ichinohe) resistance based on female index (FI) and cysts per gram root (CGR) through phenotypic screening and whole-genome resequencing of CSSLs. Phenotypic results displayed a wide range of distribution and transgressive lines in both HG Type 2.5.7 FI and CGR and demonstrated a higher correlation between CGR and root weight (R2 = .5424) compared with than between FI and CGR (R2 = .0018). Using the single-marker analysis nonparametric mapping test, 33 significant QTL were detected on 18 chromosomes contributing resistance to FI and CGR. Fourteen QTL contributing 5.6-15.5% phenotypic variance (PVE) to FI were revealed on 11 chromosomes, and 16 QTL accounting for 6.1-36.2% PVE in CGR were detected on 14 chromosomes with strong additive effect by multiple-QTL model (MQM) mapping. Twenty-five and 13 out of all 38 QTL identified for FI and CGR on 20 chromosomes were from ZYD00006 and Suinong14, respectively. The CSSLs with the combination of positive alleles for FI, CGR, and root weight exhibited low nematode reproduction. For the first time, QTL associated with CGR have been detected, and both FI and CGR should be considered for breeding purposes in the absence of strong resistance genes such as rhg1 and Rhg4.
Collapse
Affiliation(s)
- Minghui Huang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruifeng Qin
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunjie Li
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
| | - Chunyan Liu
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Ye Jiang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinyao Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
| | - Doudou Chang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Philip A Roberts
- Department of Nematology, University of California, Riverside, CA, 92521, USA
| | - Qingshan Chen
- College of Agronomy, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Congli Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
31
|
Yano M, Inoue T, Nakata R, Teraishi M, Yoshinaga N, Ono H, Okumoto Y, Mori N. Evaluation of antixenosis in soybean against Spodoptera litura by dual-choice assay aided by a statistical analysis model: Discovery of a novel antixenosis in Peking. JOURNAL OF PESTICIDE SCIENCE 2021; 46:182-188. [PMID: 34135679 PMCID: PMC8175227 DOI: 10.1584/jpestics.d21-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
The method for evaluating soybean (Glycine max) antixenosis against the common cutworm (Spodoptera litura) was developed based on a dual-choice assay aided by a statistical analysis model. This model was constructed from the results of a dual-choice assay in which Enrei, a soybean cultivar susceptible to S. litura, was used as both a standard and a test leaf disc for 2nd-5th instar larvae. The statistical criterion created by this model enabled the evaluation of the presence of antixenosis. This method was applied to four soybean varieties, including Tamahomare (susceptible), Himeshirazu (resistant), IAC100 (resistant), and Peking (unknown), as well as Enrei. Subsequently, the degrees of antixenosis were also compared by F-test, followed by maximum likelihood estimation (MLE). According to the results, the antixenosis of Tamahomare, Himeshirazu, and IAC100 was statistically reevaluated and Peking exhibited a novel antixenosis, which was stronger for 3rd-5th instar larvae than for 2nd instar.
Collapse
Affiliation(s)
- Mariko Yano
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Takato Inoue
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Ryu Nakata
- Department of Bioscience and Biotechnology, Kyoto University of Advanced Science, 1–1 Nanjo Otani, Sogabe, Kameoka, Kyoto 621–8555, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Naoko Yoshinaga
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Hajime Ono
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Yutaka Okumoto
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| | - Naoki Mori
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Sakyo, Kyoto, Kyoto 606–8502, Japan
| |
Collapse
|
32
|
Kofsky J, Zhang H, Song BH. Novel resistance strategies to soybean cyst nematode (SCN) in wild soybean. Sci Rep 2021; 11:7967. [PMID: 33846373 PMCID: PMC8041904 DOI: 10.1038/s41598-021-86793-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
Soybean cyst nematode (SCN, Heterodera glycine Ichinohe) is the most damaging soybean pest worldwide and management of SCN remains challenging. The current SCN resistant soybean cultivars, mainly developed from the cultivated soybean gene pool, are losing resistance due to SCN race shifts. The domestication process and modern breeding practices of soybean cultivars often involve strong selection for desired agronomic traits, and thus, decreased genetic variation in modern cultivars, which consequently resulted in limited sources of SCN resistance. Wild soybean (Glycine soja) is the wild ancestor of cultivated soybean (Glycine max) and it's gene pool is indisputably more diverse than G. max. Our aim is to identify novel resistant genetic resources from wild soybean for the development of new SCN resistant cultivars. In this study, resistance response to HG type 2.5.7 (race 5) of SCN was investigated in a newly identified SCN resistant ecotype, NRS100. To understand the resistance mechanism in this ecotype, we compared RNA seq-based transcriptomes of NRS100 with two SCN-susceptible accessions of G. soja and G. max, as well as an extensively studied SCN resistant cultivar, Peking, under both control and nematode J2-treated conditions. The proposed mechanisms of resistance in NRS100 includes the suppression of the jasmonic acid (JA) signaling pathway in order to allow for salicylic acid (SA) signaling-activated resistance response and polyamine synthesis to promote structural integrity of root cell walls. Our study identifies a set of novel candidate genes and associated pathways involved in SCN resistance and the finding provides insight into the mechanism of SCN resistance in wild soybean, advancing the understanding of resistance and the use of wild soybean-sourced resistance for soybean improvement.
Collapse
Affiliation(s)
- Janice Kofsky
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Hengyou Zhang
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Donald Danforth Plant Science Center, Saint Louis, MO, 63132, USA
| | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA.
| |
Collapse
|
33
|
Zhou L, Song L, Lian Y, Ye H, Usovsky M, Wan J, Vuong TD, Nguyen HT. Genetic characterization of qSCN10 from an exotic soybean accession PI 567516C reveals a novel source conferring broad-spectrum resistance to soybean cyst nematode. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:859-874. [PMID: 33394061 DOI: 10.1007/s00122-020-03736-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE The qSCN10 locus with broad-spectrum SCN resistance was fine-mapped to a 379-kb region on chromosome 10 in soybean accession PI 567516C. Candidate genes and potential application benefits of this locus were discussed. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating pests of soybean, causing significant yield losses worldwide every year. Genetic resistance has been the major strategy to control this pest. However, the overuse of the same genetic resistance derived primarily from PI 88788 has led to the genetic shifts in nematode populations and resulted in the reduced effectiveness in soybean resistance to SCN. Therefore, novel genetic resistance resources, especially those with broad-spectrum resistance, are needed to develop new resistant cultivars to cope with the genetic shifts in nematode populations. In this study, a quantitative trait locus (QTL) qSCN10 previously identified from a soybean landrace PI 567516C was confirmed to confer resistance to multiple SCN HG Types. This QTL was further fine-mapped to a 379-kb region. There are 51 genes in this region. Four of them are defense-related and were regulated by SCN infection, suggesting their potential role in mediating resistance to SCN. The phylogenetic and haplotype analyses of qSCN10 as well as other information indicate that this locus is different from other reported resistance QTL or genes. There was no yield drag or other unfavorable traits associated with this QTL when near-isogenic lines with and without qSCN10 were tested in a SCN-free field. Therefore, our study not only provides further insight into the genetic basis of soybean resistance to SCN, but also identifies a novel genetic resistance resource for breeding soybean for durable, broad-spectrum resistance to this pest.
Collapse
Affiliation(s)
- Lijuan Zhou
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
| | - Yun Lian
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Mariola Usovsky
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jinrong Wan
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
34
|
Usovsky M, Ye H, Vuong TD, Patil GB, Wan J, Zhou L, Nguyen HT. Fine-mapping and characterization of qSCN18, a novel QTL controlling soybean cyst nematode resistance in PI 567516C. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:621-631. [PMID: 33185711 DOI: 10.1007/s00122-020-03718-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The qSCN18 QTL from PI 56756C was confirmed and fine-mapped to improve soybean resistance to the SCN population HG Type 2.5.7 using near-isogenic lines carrying recombination crossovers within the QTL region. The QTL underlying resistance was fine-mapped to a 166-Kbp region on chromosome 18, and the candidate genes were selected based on genomic analyses. Soybean cyst nematode (SCN, Heterodera glycines, Ichinohe) is the most devastating pathogen of soybean. Understanding the genetic basis of SCN resistance is crucial for managing this parasite in the field. Two major loci, rhg1 and Rhg4, were previously characterized as valuable resources for SCN resistance. However, their continuous use has caused shifts in the virulence of SCN populations, which can overcome the resistance conferred by these two major loci. Reduced effectiveness became a major concern in the soybean industry due to continuous use of rhg1 for decades. Thus, it is imperative to identify sources of SCN resistance for durable SCN management. A novel QTL qSCN18 was identified in PI567516C. To fine-map qSCN18 and identify resistance genes, a large backcross population was developed. Nineteen near-isogenic lines (NILs) carrying recombination crossovers within the QTL region were identified. The first phase of fine-mapping narrowed the QTL region to 549-Kbp, whereas the second phase confined the region to 166-Kbp containing 23 genes. Two flanking markers, MK-1 and MK-6, were developed and validated to detect the presence of the qSCN18 resistance allele. Haplotype analysis clustered the fine-mapped qSCN18 region from PI 567516C with the cqSCN-007 locus previously mapped in the wild soybean accession PI 468916. The NILs were developed to further characterize the causal gene(s) harbored in this QTL. This study also confirmed the previously identified qSCN18. The results will facilitate marker-assisted selection (MAS) introducing the qSCN18 locus from PI 567516C into high-yielding soybean cultivars with durable resistance to SCN.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Heng Ye
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Tri D Vuong
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Gunvant B Patil
- Institute for Genomics of Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79415, USA
| | - Jinrong Wan
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Lijuan Zhou
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Henry T Nguyen
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
35
|
Wilkes J, Saski C, Klepadlo M, Fallen B, Agudelo P. Quantitative Trait Loci Associated with Rotylenchulus reniformis Host Suitability in Soybean. PHYTOPATHOLOGY 2020; 110:1511-1521. [PMID: 32370659 DOI: 10.1094/phyto-02-20-0035-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reniform nematode (Rotylenchulus reniformis) is a yield-limiting pathogen of soybean (Glycine max) in the southeastern region of the United States. A population of 250 recombinant inbred lines (RIL) (F2:8) developed from a cross between reniform nematode resistant soybean cultivar Forrest and susceptible cultivar Williams 82 was utilized to identify regions associated with host suitability. A genetic linkage map was constructed using single-nucleotide polymorphism markers generated by genotyping-by-sequencing. The phenotype was measured in the RIL population and resistance was characterized using normalized and transformed nematode reproduction indices in an optimal univariate cluster analysis. Quantitative trait loci (QTL) analysis using normalized phenotype scores identified two QTLs on each arm of chromosome 18 (rrn-1 and rrn-2). The same QTL analysis performed with log10(x) transformed phenotype data also identified two QTLs: one on chromosome 18 overlapping the same region in the other analysis (rrn-1), and one on chromosome 11 (rrn-3). While rrn-1 and rrn-3 have been reported associated with reduced reproduction of reniform nematode, this is the first report of the rrn-2 region associated with host suitability to reniform nematode. The resistant parent allele at rrn-2 showed an inverse relationship with the resistance phenotype, correlating with an increase in nematode reproduction or host suitability. Several candidate genes within these regions corresponded with host plant defense systems. Interestingly, a characteristic pathogen resistance gene with a leucine-rich repeat was discovered within rrn-2. These genetic markers can be used by soybean breeders in marker-assisted selection to develop lines with resistance to reniform nematode.
Collapse
Affiliation(s)
- Juliet Wilkes
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Mariola Klepadlo
- Division of Plant Sciences, University of Missouri, Columbia, MO 65201
| | - Benjamin Fallen
- Pee Dee Research and Education Center, Clemson University, Florence, SC 29506
| | - Paula Agudelo
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
36
|
Chen S. Dynamics of Population Density and Virulence Phenotype of the Soybean Cyst Nematode as Influenced by Resistance Source Sequence and Tillage. PLANT DISEASE 2020; 104:2111-2122. [PMID: 32539592 DOI: 10.1094/pdis-09-19-1916-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The soybean cyst nematode (SCN), Heterodera glycines, is the most damaging pathogen of soybean. Use of resistant cultivars is an effective strategy to manage SCN, but it also selects for virulent populations over time. A 12-year field experiment was initiated in 2003 to study how tillage and 11 different sequences of four cultivars impact SCN population dynamics and virulence. An SCN-susceptible cultivar and three resistant cultivars (R1, R2, and R3 derived from cultivars PI 88788, Peking, and PI 437654, respectively) were used. Tillage had minimal effect on SCN population density. Compared with no till, conventional tillage resulted in a faster increase of SCN virulence to Peking when the SCN was selected by R2 and virulence to PI 88788 by R3. Among the three SCN-resistant cultivars, R1 supported the greatest population density, R2 supported intermediate population density, and R3 supported the least SCN population density. The SCN populations selected by R1 overcame the resistance in PI 88788 but not in Peking and PI 437654. R2 selected SCN populations that overcame the resistance in Peking but not in PI 88788 and PI 437654. In contrast, R3 selected SCN populations that overcame both PI 88788 and Peking sources of resistance. There was no increase of virulence to PI 437654 in any cultivar sequence. R1 in rotation with R2 or R3 had a negative effect on female index on Peking. Susceptible soybean reduced SCN virulence to Peking, indicating that there was fitness cost of the Peking virulent SCN type. These results suggest that rotation of Peking with PI 88788 is a good strategy for managing the SCN, and susceptible cultivar and no till may reduce SCN virulence selection pressure in some rotations.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Senyu Chen
- Southern Research and Outreach Center, University of Minnesota, Waseca, MN 56093
| |
Collapse
|
37
|
Lakhssassi N, Piya S, Bekal S, Liu S, Zhou Z, Bergounioux C, Miao L, Meksem J, Lakhssassi A, Jones K, Kassem MA, Benhamed M, Bendahmane A, Lambert K, Boualem A, Hewezi T, Meksem K. A pathogenesis-related protein GmPR08-Bet VI promotes a molecular interaction between the GmSHMT08 and GmSNAP18 in resistance to Heterodera glycines. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1810-1829. [PMID: 31960590 PMCID: PMC7336373 DOI: 10.1111/pbi.13343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 05/19/2023]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is the most devastating pest affecting soybean production worldwide. SCN resistance requires both the GmSHMT08 and the GmSNAP18 in 'Peking'-type resistance. Here, we describe the molecular interaction between GmSHMT08 and GmSNAP18, which is potentiated by a pathogenesis-related protein GmPR08-Bet VI. Like GmSNAP18 and GmSHMT08, GmPR08-Bet VI expression was induced in response to SCN and its overexpression decreased SCN cysts by 65% in infected transgenic soybean roots. Overexpression of GmPR08-Bet VI did not have an effect on SCN resistance when the two cytokinin-binding sites in GmPR08-Bet VI were mutated, indicating a new role of GmPR08-Bet VI in SCN resistance. GmPR08-Bet VI was mapped to a QTL for resistance to SCN using different mapping populations. GmSHMT08, GmSNAP18 and GmPR08-Bet VI localize to the cytosol and plasma membrane. GmSNAP18 expression and localization hyper-accumulated at the plasma membrane and was specific to the root cells surrounding the nematode in SCN-resistant soybeans. Genes encoding key components of the salicylic acid signalling pathway were induced under SCN infection. GmSNAP18 and GmPR08-Bet VI were also induced under salicylic acid and cytokinin exogenous treatments, while GmSHMT08 was induced only when the resistant GmSNAP18 was present, pointing to the presence of a molecular crosstalk between SCN-resistant genes and defence genes. Expression analysis of GmSHMT08 and GmSNAP18 identified the need of a minimum expression requirement to trigger the SCN resistance reaction. These results provide insight into a new response mechanism towards plant nematode resistance involving haplotype compatibility, gene dosage and hormone signalling.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Sarbottam Piya
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Sadia Bekal
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Shiming Liu
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Zhou Zhou
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | - Catherine Bergounioux
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Long Miao
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | | | - Aicha Lakhssassi
- Faculty of Sciences and TechnologiesUniversity of LorraineNancyFrance
| | - Karen Jones
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| | | | - Moussa Benhamed
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Abdelhafid Bendahmane
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Kris Lambert
- Department of Crop SciencesUniversity of IllinoisUrbanaILUSA
| | - Adnane Boualem
- INRAInstitute of Plant Sciences Paris‐Saclay (IPS2)CNRSUniversité Paris‐SudOrsayFrance
| | - Tarek Hewezi
- Department of Plant SciencesUniversity of TennesseeKnoxvilleTNUSA
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural SystemsSouthern Illinois UniversityCarbondaleILUSA
| |
Collapse
|
38
|
Rambani A, Pantalone V, Yang S, Rice JH, Song Q, Mazarei M, Arelli PR, Meksem K, Stewart CN, Hewezi T. Identification of introduced and stably inherited DNA methylation variants in soybean associated with soybean cyst nematode parasitism. THE NEW PHYTOLOGIST 2020; 227:168-184. [PMID: 32112408 DOI: 10.1111/nph.16511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
DNA methylation is a widespread epigenetic mark that contributes to transcriptome reprogramming during plant-pathogen interactions. However, the distinct role of DNA methylation in establishing resistant and susceptible responses remains largely unexplored. Here, we developed and used a pair of near-isogenic lines (NILs) to characterize DNA methylome landscapes of soybean roots during the susceptible and resistant interactions with soybean cyst nematode (SCN; Heterodera glycines). We also compared the methylomes of the NILs and their parents to identify introduced and stably inherited methylation variants. The genomes of the NILs were substantially differentially methylated under uninfected conditions. This difference was associated with differential gene expression that may prime the NIL responses to SCN infection. In response to SCN infection, the susceptible line exhibited reduced global methylation levels in both protein-coding genes and transposable elements, whereas the resistant line showed the opposite response, increased global methylation levels. Heritable and novel nonparental differentially methylated regions overlapping with genes associated with soybean response to SCN infection were identified and validated using transgenic hairy root system. Our analyses indicate that DNA methylation patterns associated with the susceptible and resistant interactions are highly specific and that novel and stably inherited methylation variants are of biological significance.
Collapse
Affiliation(s)
- Aditi Rambani
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Songnan Yang
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - J Hollis Rice
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville Agricultural Research Center, Beltsville, MD, 20705, USA
| | - Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL, 62901, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
39
|
Lakhssassi N, Piya S, Knizia D, El Baze A, Cullen MA, Meksem J, Lakhssassi A, Hewezi T, Meksem K. Mutations at the Serine Hydroxymethyltransferase Impact its Interaction with a Soluble NSF Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines (Basel) 2020; 8:vaccines8030349. [PMID: 32629961 PMCID: PMC7563484 DOI: 10.3390/vaccines8030349] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Resistance to soybean cyst nematodes (SCN) in “Peking-type” resistance is bigenic, requiring Rhg4-a and rhg1-a. Rhg4-a encodes a serine hydroxymethyltransferase (GmSHMT08) and rhg1-a encodes a soluble NSF attachment protein (GmSNAP18). Recently, it has been shown that a pathogenesis-related protein, GmPR08-Bet VI, potentiates the interaction between GmSHMT08 and GmSNAP18. Mutational analysis using spontaneously occurring and ethyl methanesulfonate (EMS)-induced mutations was carried out to increase our knowledge of the interacting GmSHMT08/GmSNAP18/GmPR08-Bet VI multi-protein complex. Mutations affecting the GmSHMT08 protein structure (dimerization and tetramerization) and interaction sites with GmSNAP18 and GmPR08-Bet VI proteins were found to impact the multi-protein complex. Interestingly, mutations affecting the PLP/THF substrate binding and catalysis did not affect the multi-protein complex, although they resulted in increased susceptibility to SCN. Most importantly, GmSHMT08 and GmSNAP18 from PI88788 were shown to interact within the cell, being potentiated in the presence of GmPR08-Bet VI. In addition, we have shown the presence of incompatibility between the GmSNAP18 (rhg1-b) of PI88788 and GmSHMT08 (Rhg4-a) from Peking. Components of the reactive oxygen species (ROS) pathway were shown to be induced in the SCN incompatible reaction and were mapped to QTLs for resistance to SCN using different mapping populations.
Collapse
Affiliation(s)
- Naoufal Lakhssassi
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Dounya Knizia
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Abdelhalim El Baze
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Mallory A. Cullen
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
| | - Jonas Meksem
- Trinity College of Arts and Sciences, Duke University, Durham, NC 27708, USA;
| | - Aicha Lakhssassi
- Faculty of Sciences and Technologies, University of Lorraine, 54000 Nancy, France;
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA; (S.P.); (T.H.)
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (N.L.); (D.K.); (A.E.B.); (M.A.C.)
- Correspondence: ; Tel.: +1-618-453-3103
| |
Collapse
|
40
|
Guo W, Chen JS, Zhang F, Li ZY, Chen HF, Zhang CJ, Chen LM, Yuan SL, Li R, Cao D, Hao QN, Chen SL, Shan ZH, Yang ZL, Zhang XJ, Qiu DZ, You QB, Dai WJ, Zhou XA, Shen XJ, Jiao YQ. Characterization of Pingliang xiaoheidou (ZDD 11047), a soybean variety with resistance to soybean cyst nematode Heterodera glycines. PLANT MOLECULAR BIOLOGY 2020; 103:253-267. [PMID: 32152894 DOI: 10.1007/s11103-020-00990-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
KEY MESSAGE A novel QTL (qSCN-PL10) for SCN resistance and related candidate genes were identified in the soybean variety Pingliang xiaoheidou, and plant basal immunity seems to contribute to the SCN resistance. Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is one of the most devastating soybean pests worldwide. The development of host plant resistance represents an effective strategy to control SCN. However, owing to the lack of diversity of resistance genes in soybean varieties, further investigation is necessary to identify new SCN resistance genes. By analyzing the resistance phenotypes of soybean variety Pingliang xiaoheidou (Pingliang, ZDD 11047), we found that it exhibited the different resistance phenotypes from PI 88788 and Peking varieties. Because Pingliang variety contains the Rhg1-a (low copy) haplotype and lacks the resistant Rhg4 haplotype, novel quantitative trait locus might account for their SCN resistance. After sequencing parental lines (Magellan and Pingliang) and 200 F2:3 progenies, a high-density genetic map was constructed using the specific length amplified fragment sequencing method and qSCN-PL10 was identified as a novel locus for SCN resistance. Candidate genes were predicted by RNA sequencing (RNA-seq) in the qSCN-PL10 locus region. The RNA-seq analysis performed also indicated that plant basal immunity plays an important role in the resistance of Pingliang to SCN. These results lay a foundation for the use of marker-assisted breeding to enhance the resistance to SCN.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| | - Jing S Chen
- Daqing Branch of the Heilongjiang Academy of Agricultural Sciences, Daqing, 163316, Heilongjiang, China
| | - Feng Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Ze Y Li
- Daqing Branch of the Heilongjiang Academy of Agricultural Sciences, Daqing, 163316, Heilongjiang, China
| | - Hai F Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Chan J Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Li M Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Song L Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Rong Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Dong Cao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Qing N Hao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Shui L Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Zhi H Shan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Zhong L Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xiao J Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - De Z Qiu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Qing B You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Wen J Dai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin A Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China
| | - Xin J Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.
| | - Yong Q Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
41
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
42
|
Korasick DA, Kandoth PK, Tanner JJ, Mitchum MG, Beamer LJ. Impaired folate binding of serine hydroxymethyltransferase 8 from soybean underlies resistance to the soybean cyst nematode. J Biol Chem 2020; 295:3708-3718. [PMID: 32014996 PMCID: PMC7076220 DOI: 10.1074/jbc.ra119.012256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Management of the agricultural pathogen soybean cyst nematode (SCN) relies on the use of SCN-resistant soybean cultivars, a strategy that has been failing in recent years. An underutilized source of resistance in the soybean genotype Peking is linked to two polymorphisms in serine hydroxy-methyltransferase 8 (SHMT8). SHMT is a pyridoxal 5'-phosphate-dependent enzyme that converts l-serine and (6S)-tetrahydrofolate to glycine and 5,10-methylenetetrahydrofolate. Here, we determined five crystal structures of the 1884-residue SHMT8 tetramers from the SCN-susceptible cultivar (cv.) Essex and the SCN-resistant cv. Forrest (whose resistance is derived from the SHMT8 polymorphisms in Peking); the crystal structures were determined in complex with various ligands at 1.4-2.35 Å resolutions. We find that the two Forrest-specific polymorphic substitutions (P130R and N358Y) impact the mobility of a loop near the entrance of the (6S)-tetrahydrofolate-binding site. Ligand-binding and kinetic studies indicate severely reduced affinity for folate and dramatically impaired enzyme activity in Forrest SHMT8. These findings imply widespread effects on folate metabolism in soybean cv. Forrest that have implications for combating the widespread increase in virulent SCN.
Collapse
Affiliation(s)
- David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211
| | - Pramod K Kandoth
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211; Department of Chemistry, University of Missouri, Columbia, Missouri 65211
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211
| | - Lesa J Beamer
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211; Department of Chemistry, University of Missouri, Columbia, Missouri 65211.
| |
Collapse
|
43
|
Lian Y, Wei H, Wang J, Lei C, Li H, Li J, Wu Y, Wang S, Zhang H, Wang T, Du P, Guo J, Lu W. Chromosome-level reference genome of X12, a highly virulent race of the soybean cyst nematode Heterodera glycines. Mol Ecol Resour 2019; 19:1637-1646. [PMID: 31339217 PMCID: PMC6899682 DOI: 10.1111/1755-0998.13068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 07/09/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is a major pest of soybean that is spreading across major soybean production regions worldwide. Increased SCN virulence has recently been observed in both the United States and China. However, no study has reported a genome assembly for H. glycines at the chromosome scale. Herein, the first chromosome-level reference genome of X12, an unusual SCN race with high infection ability, is presented. Using whole-genome shotgun (WGS) sequencing, Pacific Biosciences (PacBio) sequencing, Illumina paired-end sequencing, 10X Genomics linked reads and high-throughput chromatin conformation capture (Hi-C) genome scaffolding techniques, a 141.01-megabase (Mb) assembled genome was obtained with scaffold and contig N50 sizes of 16.27 Mb and 330.54 kilobases (kb), respectively. The assembly showed high integrity and quality, with over 90% of Illumina reads mapped to the genome. The assembly quality was evaluated using Core Eukaryotic Genes Mapping Approach and Benchmarking Universal Single-Copy Orthologs. A total of 11,882 genes were predicted using de novo, homolog and RNAseq data generated from eggs, second-stage juveniles (J2), third-stage juveniles (J3) and fourth-stage juveniles (J4) of X12, and 79.0% of homologous sequences were annotated in the genome. These high-quality X12 genome data will provide valuable resources for research in a broad range of areas, including fundamental nematode biology, SCN-plant interactions and co-evolution, and also contribute to the development of technology for overall SCN management.
Collapse
Affiliation(s)
- Yun Lian
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - He Wei
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jinshe Wang
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Chenfang Lei
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Haichao Li
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jinying Li
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Yongkang Wu
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Shufeng Wang
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Hui Zhang
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Tingfeng Wang
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Pei Du
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| | - Jianqiu Guo
- Luoyang Academy of Agriculture and Forestry SciencesLuoyangChina
| | - Weiguo Lu
- Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of the Ministry of Agriculture/Institute of Industrial CropsHenan Academy of Agricultural SciencesZhengzhouChina
| |
Collapse
|
44
|
Liu S, Ge F, Huang W, Lightfoot DA, Peng D. Effective identification of soybean candidate genes involved in resistance to soybean cyst nematode via direct whole genome re-sequencing of two segregating mutants. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2677-2687. [PMID: 31250041 DOI: 10.1007/s00122-019-03381-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Three soybean candidate genes involved in resistance to soybean cyst nematode race 4 were identified via direct whole genome re-sequencing of two segregating mutants. The genes conferring resistance to soybean cyst nematode (SCN) race 4 (Hg type 1.2.3.5.7) in soybean (Glycine max L. Merr.) remains unknown. Next generation sequencing-based methods identify a wide range of targets, it is difficult to identify genes underlying traits. Use of the MutMap and QTL-seq methods to identify trait candidate genes needs backcrossing and is very time-consuming. Here we report a simple method to effectively identify candidate genes involved in resistance to SCN race 4. Two ethane methylsulfonate mutagenized mutants of soybean 'PI 437654', whose SCN race 4-infection phenotype altered, were selected. Six relevant whole genomes were re-sequenced, and then calling of genomic variants (SNPs and InDels) was conducted and compared to 'Williams 82'. The comparison eliminated many genomic variants from the mutant lines that overlapped two non-phenotypic but mutant progeny plants, wild-type PI 437654 and 'Zhonghuang 13'. Finally, only 27 mutations were found among 10 genes. Of these 10 genes, 3 genes, Glyma.09g054000, Glyma.16g065700 and Glyma.18g192200 were overlapped between two phenotypic mutant progeny plants. Therefore, the three genes may be the candidate genes involved in resistance of PI 437654 to soybean cyst nematode race 4. This method simplifies the effective identification of candidate genes.
Collapse
Affiliation(s)
- Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| | - Fengyong Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - David A Lightfoot
- College of Agricultural Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| |
Collapse
|
45
|
Bayless AM, Zapotocny RW, Han S, Grunwald DJ, Amundson KK, Bent AF. The rhg1-a ( Rhg1 low-copy) nematode resistance source harbors a copia-family retrotransposon within the Rhg1-encoded α-SNAP gene. PLANT DIRECT 2019; 3:e00164. [PMID: 31468029 PMCID: PMC6712407 DOI: 10.1002/pld3.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/13/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
Soybean growers widely use the Resistance to Heterodera glycines 1 (Rhg1) locus to reduce yield losses caused by soybean cyst nematode (SCN). Rhg1 is a tandemly repeated four gene block. Two classes of SCN resistance-conferring Rhg1 haplotypes are recognized: rhg1-a ("Peking-type," low-copy number, three or fewer Rhg1 repeats) and rhg1-b ("PI 88788-type," high-copy number, four or more Rhg1 repeats). The rhg1-a and rhg1-b haplotypes encode α-SNAP (alpha-Soluble NSF Attachment Protein) variants α-SNAP Rhg1 LC and α-SNAP Rhg1 HC, respectively, with differing atypical C-terminal domains, that contribute to SCN resistance. Here we report that rhg1-a soybean accessions harbor a copia retrotransposon within their Rhg1 Glyma.18G022500 (α-SNAP-encoding) gene. We termed this retrotransposon "RAC," for Rhg1 alpha-SNAP copia. Soybean carries multiple RAC-like retrotransposon sequences. The Rhg1 RAC insertion is in the Glyma.18G022500 genes of all true rhg1-a haplotypes we tested and was not detected in any examined rhg1-b or Rhg1WT (single-copy) soybeans. RAC is an intact element residing within intron 1, anti-sense to the rhg1-a α-SNAP open reading frame. RAC has intrinsic promoter activities, but overt impacts of RAC on transgenic α-SNAP Rhg1 LC mRNA and protein abundance were not detected. From the native rhg1-a RAC+ genomic context, elevated α-SNAP Rhg1 LC protein abundance was observed in syncytium cells, as was previously observed for α-SNAP Rhg1 HC (whose rhg1-b does not carry RAC). Using a SoySNP50K SNP corresponding with RAC presence, just ~42% of USDA accessions bearing previously identified rhg1-a SoySNP50K SNP signatures harbor the RAC insertion. Subsequent analysis of several of these putative rhg1-a accessions lacking RAC revealed that none encoded α-SNAPRhg1LC, and thus, they are not rhg1-a. rhg1-a haplotypes are of rising interest, with Rhg4, for combating SCN populations that exhibit increased virulence against the widely used rhg1-b resistance. The present study reveals another unexpected structural feature of many Rhg1 loci, and a selectable feature that is predictive of rhg1-a haplotypes.
Collapse
Affiliation(s)
- Adam M. Bayless
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Ryan W. Zapotocny
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Shaojie Han
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | | | - Kaela K. Amundson
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| | - Andrew F. Bent
- Department of Plant PathologyUniversity of Wisconsin – MadisonMadisonWIUSA
| |
Collapse
|