1
|
Peng D, Guo Y, Hu H, Wang X, He S, Gao C, Liu Z, Chen M. Functional characterisation of BnaA02.TOP1α and BnaC02.TOP1α involved in true leaf biomass accumulation in Brassica napus L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1358-1376. [PMID: 39348559 DOI: 10.1111/tpj.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Leaves, as primary photosynthetic organs essential for high crop yield and quality, have attracted significant attention. The functions of DNA topoisomerase 1α (TOP1α) in various biological processes, including leaf development, in Brassica napus remain unknown. Here, four paralogs of BnaTOP1α, namely BnaA01.TOP1α, BnaA02.TOP1α, BnaC01.TOP1α and BnaC02.TOP1α, were identified and cloned in the B. napus inbred line 'K407'. Expression pattern analysis revealed that BnaA02.TOP1α and BnaC02.TOP1α, but not BnaA01.TOP1α and BnaC01.TOP1α, were persistently and highly expressed in B. napus true leaves. Preliminary analysis in Arabidopsis thaliana revealed that BnaA02.TOP1α and BnaC02.TOP1α paralogs, but not BnaA01.TOP1α and BnaC01.TOP1α, performed biological functions. Targeted mutations of four BnaTOP1α paralogs in B. napus using the CRISPR-Cas9 system revealed that BnaA02.TOP1α and BnaC02.TOP1α served as functional paralogs and redundantly promoted true leaf number and size, thereby promoting true leaf biomass accumulation. Moreover, BnaA02.TOP1α modulated the levels of endogenous gibberellins, cytokinins and auxins by indirectly regulating several genes related to their metabolism processes. BnaA02.TOP1α directly activated BnaA03.CCS52A2 and BnaC09.AN3 by facilitating the recruitment of RNA polymerase II and modulating H3K27me3, H3K36me2 and H3K36me3 levels at these loci and indirectly activated the BnaA08.PARL1 expression, thereby positively controlling the true leaf size in B. napus. Additionally, BnaA02.TOP1α indirectly activated the BnaA07.PIN1 expression to positively regulate the true leaf number. These results reveal the important functions of BnaTOP1α and provide insights into the regulatory network controlling true leaf biomass accumulation in B. napus.
Collapse
Affiliation(s)
- Danshuai Peng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Huan Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuangcheng He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chenhao Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zijin Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingxun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, National Yangling Agricultural Biotechnology & Breeding Center, Shaanxi Key Laboratory of Crop Heterosis, and College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
2
|
Hu H, Zhang R, Zhao Y, Yang J, Zhao H, Zhao L, Wang L, Cheng Z, Zhao W, Wang B, Larkin RM, Chen L. Cell wall remodeling confers plant architecture with distinct wall structure in Nelumbo nucifera. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1392-1409. [PMID: 39427333 DOI: 10.1111/tpj.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Lotus (Nelumbo nucifera G.) is a perennial aquatic horticultural plant with diverse architectures. Distinct plant architecture (PA) has certain attractive and practical qualities, but its genetic morphogenesis in lotus remains elusive. In this study, we employ genome-wide association analysis (GWAS) for the seven traits of petiole length (PLL), leaf length (LL), leaf width (LW), peduncle length (PLF), flower diameter (FD), petal length (PeL), and petal width (PeW) in 301 lotus accessions. A total of 90 loci are identified to associate with these traits across 4 years of trials. Meanwhile, we perform RNA sequencing (RNA-seq) to analyze the differential expression of the gene (DEG) transcripts between large and small PA (LPA and SPA) of lotus stems (peduncles and petioles). As a result, eight key candidate genes are identified that are all primarily involved in plant cell wall remodeling significantly associated with PA traits by integrating the results of DEGs and GWAS. To verify this result, we compare the cell wall compositions and structures of LPA versus SPA in representative lotus germplasms. Intriguingly, compared with the SPA lotus, the LPA varieties have higher content of cellulose and hemicellulose, but less filling substrates of pectin and lignin. Additionally, we verified longer cellulose chains and higher cellulose crystallinity with less interference in LPA varieties. Taken together, our study illustrates how plant cell wall remodeling affects PA in lotus, shedding light on the genetic architecture of this significant ornamental trait and offering a priceless genetic resource for future genomic-enabled breeding.
Collapse
Affiliation(s)
- Huizhen Hu
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Ran Zhang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yongjing Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Jie Yang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Hanqian Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Lin Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Li Wang
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Zhipeng Cheng
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Wanyue Zhao
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Bo Wang
- Wuhan Genoseq Technology Co., Ltd, Wuhan, 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Longqing Chen
- Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| |
Collapse
|
3
|
Peng A, Li S, Wang Y, Cheng F, Chen J, Zheng X, Xiong J, Ding G, Zhang B, Zhai W, Song L, Wei W, Chen L. Mining Candidate Genes for Leaf Angle in Brassica napus L. by Combining QTL Mapping and RNA Sequencing Analysis. Int J Mol Sci 2024; 25:9325. [PMID: 39273273 PMCID: PMC11394825 DOI: 10.3390/ijms25179325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/15/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Leaf angle (LA) is an important trait of plant architecture, and individuals with narrow LA can better capture canopy light under high-density planting, which is beneficial for increasing the overall yield per unit area. To study the genetic basis and molecular regulation mechanism of leaf angle in rapeseed, we carried out a series of experiments. Quantitative trait loci (QTL) mapping was performed using the RIL population, and seven QTLs were identified. Transcriptome analysis showed that the cell wall formation/biogenesis processes and biosynthesis/metabolism of cell wall components were the most enrichment classes. Most differentially expressed genes (DEGs) involved in the synthesis of lignin, xylan, and cellulose showed down-regulated expression in narrow leaf material. Microscopic analysis suggested that the cell size affected by the cell wall in the junction area of the stem and petiole was the main factor in leaf petiole angle (LPA) differences. Combining QTL mapping and RNA sequencing, five promising candidate genes BnaA01G0125600ZS, BnaA01G0135700ZS, BnaA01G0154600ZS, BnaA10G0154200ZS, and BnaC03G0294200ZS were identified in rapeseed, and most of them were involved in cell wall biogenesis and the synthesis/metabolism of cell wall components. The results of QTL, transcriptome analysis, and cytological analysis were highly consistent, collectively revealing that genes related to cell wall function played a crucial role in regulating the LA trait in rapeseed. The study provides further insights into LA traits, and the discovery of new QTLs and candidate genes is highly beneficial for genetic improvement.
Collapse
Affiliation(s)
- Aoyi Peng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Shuyu Li
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Yuwen Wang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Fengjie Cheng
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Jun Chen
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Xiaoxiao Zheng
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jie Xiong
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Ge Ding
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Bingchao Zhang
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wen Zhai
- Fuzhou Teachers' College, East China University of Technology, Fuzhou 344000, China
| | - Laiqiang Song
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Wenliang Wei
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Lunlin Chen
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Nanchang 330200, China
- Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| |
Collapse
|
4
|
Wang H, Li X, Meng B, Fan Y, Khan SU, Qian M, Zhang M, Yang H, Lu K. Exploring silique number in Brassica napus L.: Genetic and molecular advances for improving yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1897-1912. [PMID: 38386569 PMCID: PMC11182599 DOI: 10.1111/pbi.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Silique number is a crucial yield-related trait for the genetic enhancement of rapeseed (Brassica napus L.). The intricate molecular process governing the regulation of silique number involves various factors. Despite advancements in understanding the mechanisms regulating silique number in Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), the molecular processes involved in controlling silique number in rapeseed remain largely unexplored. In this review, we identify candidate genes and review the roles of genes and environmental factors in regulating rapeseed silique number. We use genetic regulatory networks for silique number in Arabidopsis and grain number in rice to uncover possible regulatory pathways and molecular mechanisms involved in regulating genes associated with rapeseed silique number. A better understanding of the genetic network regulating silique number in rapeseed will provide a theoretical basis for the genetic improvement of this trait and genetic resources for the molecular breeding of high-yielding rapeseed.
Collapse
Affiliation(s)
- Hui Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Xiaodong Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Boyu Meng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Minghao Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Haikun Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and BiotechnologySouthwest UniversityBeibeiChongqingP.R. China
- Engineering Research Center of South Upland Agriculture, Ministry of EducationChongqingP.R. China
- Academy of Agricultural SciencesSouthwest UniversityBeibeiChongqingP.R. China
| |
Collapse
|
5
|
Corlouer E, Sauvage C, Leveugle M, Nesi N, Laperche A. Envirotyping within a multi-environment trial allowed identifying genetic determinants of winter oilseed rape yield stability. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:164. [PMID: 38898332 PMCID: PMC11186914 DOI: 10.1007/s00122-024-04664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
KEY MESSAGE A comprehensive environmental characterization allowed identifying stable and interactive QTL for seed yield: QA09 and QC09a were detected across environments; whereas QA07a was specifically detected on the most stressed environments. A main challenge for rapeseed consists in maintaining seed yield while adapting to climate changes and contributing to environmental-friendly cropping systems. Breeding for cultivar adaptation is one of the keys to meet this challenge. Therefore, we propose to identify the genetic determinant of seed yield stability for winter oilseed rape using GWAS coupled with a multi-environmental trial and to interpret them in the light of environmental characteristics. Due to a comprehensive characterization of a multi-environmental trial using 79 indicators, four contrasting envirotypes were defined and used to identify interactive and stable seed yield QTL. A total of four QTLs were detected, among which, QA09 and QC09a, were stable (detected at the multi-environmental trial scale or for different envirotypes and environments); and one, QA07a, was specifically detected into the most stressed envirotype. The analysis of the molecular diversity at QA07a showed a lack of genetic diversity within modern lines compared to older cultivars bred before the selection for low glucosinolate content. The results were discussed in comparison with other studies and methods as well as in the context of breeding programs.
Collapse
Affiliation(s)
- Erwan Corlouer
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650, Le Rheu, France
| | | | | | - Nathalie Nesi
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650, Le Rheu, France
| | - Anne Laperche
- IGEPP, INRAE, Institut Agro, Université de Rennes, 35650, Le Rheu, France.
| |
Collapse
|
6
|
Calderwood A, Siles L, Eastmond PJ, Kurup S, Morris RJ. A causal inference and Bayesian optimisation framework for modelling multi-trait relationships-Proof-of-concept using Brassica napus seed yield under controlled conditions. PLoS One 2023; 18:e0290429. [PMID: 37656702 PMCID: PMC10473526 DOI: 10.1371/journal.pone.0290429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023] Open
Abstract
The improvement of crop yield is a major breeding target and there is a long history of research that has focussed on unravelling the mechanisms and processes that contribute to yield. Quantitative prediction of the interplay between morphological traits, and the effects of these trait-trait relationships on seed production remains, however, a challenge. Consequently, the extent to which crop varieties optimise their morphology for a given environment is largely unknown. This work presents a new combination of existing methodologies by framing crop breeding as an optimisation problem and evaluates the extent to which existing varieties exhibit optimal morphologies under the test conditions. In this proof-of-concept study using spring and winter oilseed rape plants grown under greenhouse conditions, we employ causal inference to model the hierarchically structured effects of 27 morphological yield traits on each other. We perform Bayesian optimisation of seed yield, to identify and quantify the morphologies of ideotype plants, which are expected to be higher yielding than the varieties in the studied panels. Under the tested growth conditions, we find that existing spring varieties occupy the optimal regions of trait-space, but that potentially high yielding strategies are unexplored in extant winter varieties. The same approach can be used to evaluate trait (morphology) space for any environment.
Collapse
Affiliation(s)
- Alexander Calderwood
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, United Kingdom
| | - Laura Siles
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Peter J. Eastmond
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Smita Kurup
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Richard J. Morris
- Department of Computational and Systems Biology, John Innes Centre, Norwich, Norfolk, United Kingdom
| |
Collapse
|
7
|
Systematic trait dissection in oilseed rape provides a comprehensive view, further insight, and exact roadmap for yield determination. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:38. [PMID: 35440054 PMCID: PMC9019968 DOI: 10.1186/s13068-022-02134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/03/2022] [Indexed: 11/10/2022]
Abstract
Background Yield is the most important and complex trait that is influenced by numerous relevant traits with very complicated interrelations. While there are a large number of studies on the phenotypic relationship and genetic basis of yield traits, systematic studies with further dissection focusing on yield are limited. Therefore, there is still lack of a comprehensive and in-depth understanding of the determination of yield. Results In this study, yield was systematically dissected at the phenotypic, genetic to molecular levels in oilseed rape (Brassica napus L.). The analysis of correlation, network, and principal component for 21 traits in BnaZN-RIL population showed that yield was determined by a complex trait network with key contributors. The analysis of the constructed high-density single nucleotide polymorphism (SNP) linkage map revealed the concentrated distribution of distorted and heterozygous markers, likely due to selection on genes controlling the growth period and yield heterosis. A total of 134 consensus quantitative trait loci (QTL) were identified for 21 traits, of which all were incorporated into an interconnecting QTL network with dozens of hub-QTL. Four representative hub-QTL were further dissected to the target or candidate genes that governed the causal relationships between the relevant traits. Conclusions The highly consistent results at the phenotypic, genetic, and molecular dissecting demonstrated that yield was determined by a multilayer composite network that involved numerous traits and genes showing complex up/down-stream and positive/negative regulation. This provides a systematic view, further insight, and exact roadmap for yield determination, which represents a significant advance toward the understanding and dissection of complex traits. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02134-w.
Collapse
|
8
|
Wang Y, Wang K, An T, Tian Z, Dun X, Shi J, Wang X, Deng J, Wang H. Genetic dissection of branch architecture in oilseed rape ( Brassica napus L.) germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:1053459. [PMID: 36388516 PMCID: PMC9650407 DOI: 10.3389/fpls.2022.1053459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Branch architecture is an important factor influencing rapeseed planting density, mechanized harvest, and yield. However, its related genes and regulatory mechanisms remain largely unknown. In this study, branch angle (BA) and branch dispersion degree (BD) were used to evaluate branch architecture. Branch angle exhibited a dynamic change from an increase in the early stage to a gradual decrease until reaching a stable state. Cytological analysis showed that BA variation was mainly due to xylem size differences in the vascular bundle of the branch junction. The phenotypic analysis of 327 natural accessions revealed that BA in six environments ranged from 24.3° to 67.9°, and that BD in three environments varied from 4.20 cm to 21.4 cm, respectively. A total of 115 significant loci were detected through association mapping in three models (MLM, mrMLM, and FarmCPU), which explained 0.53%-19.4% of the phenotypic variations. Of them, 10 loci were repeatedly detected in different environments and models, one of which qBAD.A03-2 was verified as a stable QTL using a secondary segregation population. Totally, 1066 differentially expressed genes (DEGs) were identified between branch adaxial- and abaxial- sides from four extremely large or small BA/BD accessions through RNA sequencing. These DEGs were significantly enriched in the pathways related to auxin biosynthesis and transport as well as cell extension such as indole alkaloid biosynthesis, other glycan degradation, and fatty acid elongation. Four known candidate genes BnaA02g16500D (PIN1), BnaA03g10430D (PIN2), BnaC03g06250D (LAZY1), and BnaC06g20640D (ARF17) were identified by both GWAS and RNA-seq, all of which were involved in regulating the asymmetric distribution of auxins. Our identified association loci and candidate genes provide a theoretical basis for further study of gene cloning and genetic improvement of branch architecture.
Collapse
Affiliation(s)
- Ying Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Kaixuan Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Tanzhou An
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Ze Tian
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinwu Deng
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinses Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
9
|
Liu H, Zou M, Zhang B, Yang X, Yuan P, Ding G, Xu F, Shi L. Genome-wide association study identifies candidate genes and favorable haplotypes for seed yield in Brassica napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:61. [PMID: 37313016 PMCID: PMC10248642 DOI: 10.1007/s11032-022-01332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape (Brassica napus L.) is one of the most essential oil crops. Genetic improvement of seed yield (SY) is a major aim of B. napus breeding. Several studies have been reported on the genetic mechanisms of SY of B. napus. Here, a genome-wide association study (GWAS) of SY was conducted using a panel of 403 natural accessions of B. napus, with more than five million high-quality single-nucleotide polymorphisms (SNPs). A total of 1773 significant SNPs were detected associated with SY, and 783 significant SNPs were co-located with previously reported QTLs. The lead SNPs chrA01__8920351 and chrA02__4555979 were jointly detected in Trial 2_2 and Trial 2_mean value, and in Trial 1_2 and Trial 1_mean value, respectively. Subsequently, two candidate genes of BnaA01g17200D and BnaA02g08680D were identified through combining transcriptome, candidate gene association analysis, and haplotype analysis. BnaA09g10430D detected through lead SNP chrA09__5160639 was associated with SY of B. napus. Our results provide valuable information for studying the genetic control of seed yield in B. napus and valuable genes, haplotypes, and cultivars resources for the breeding of high seed yield B. napus cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01332-6.
Collapse
Affiliation(s)
- Haijiang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Maoyan Zou
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Bingbing Zhang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Xinyu Yang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Pan Yuan
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Guangda Ding
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Fangsen Xu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| | - Lei Shi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan, 430070 Hubei Province China
| |
Collapse
|
10
|
Qadir M, Qin L, Ye J, Ahmad N, Wang X, Shi J, Wang H. Genetic dissection of the natural variation of ovule number per ovary in oilseed rape germplasm ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:999790. [PMID: 36176675 PMCID: PMC9513589 DOI: 10.3389/fpls.2022.999790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Oilseed rape is one of the world's largest oil and industrial crops, providing humans with various products, such as vegetable oil and biofuel. Ovules are the direct precursors of seeds, and ovule number per ovary (ONPO) largely determines seed number per fruit that affects both yield and fitness of seed crops. The ONPO shows wide variation in oilseed rape, whereas the underlying genes and mechanisms are poorly known. The present study performed the genetic, physiological and transcriptomic analyses of ovule number per ovary using an association panel and the extreme lines. The ONPO of 327 accessions planted in four environments showed a large variation from 19.2 to 43.8, indicating a great potential for the further genetic improvement of ovule number. The genome-wide association study (GWAS) identified a total of 43 significant SNP markers. Further, these SNPs were integrated into 18 association loci, which were distributed on chromosomes A01, A03, A06, A07, A09, C01, C03, C06, C07, and C09, explaining 4.3-11.5% of the phenotypic variance. The ONPO decreased as their appearance order on the inflorescence and was associated with the level of several types of endogenous phytohormones but not related to leaf area and photosynthetic rate. Comparative transcriptomic analysis identified a total of 4,449 DEGs enriched in 30 classes, including DNA, RNA, protein, signaling, transport, development, cell wall, lipid metabolism, and secondary metabolism. Nearly half of DEGs were involved in the known pathways in regulating ovule number, of which 12 were homologous to know ovule number regulating genes, indicating a strong link between the identified DEGs and ovule number. A total of 73 DEGs were located within the genomic regions of association loci, of which six were identified as candidates based on functional annotation. These results provide useful information for the further genetic improvement of ovule and seed number in oilseed rape.
Collapse
Affiliation(s)
- Muslim Qadir
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Lei Qin
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Jiang Ye
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jiaqin Shi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
11
|
Wang Y, Li N, Zhan J, Wang X, Zhou XR, Shi J, Wang H. Genome-wide analysis of the JAZ subfamily of transcription factors and functional verification of BnC08.JAZ1-1 in Brassica napus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:93. [PMID: 36096884 PMCID: PMC9469596 DOI: 10.1186/s13068-022-02192-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.
Collapse
Affiliation(s)
- Ying Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Li
- grid.464499.2The Laboratory of Melon Crops, Zhengzhou Fruit Research Institute of the Chinese Academy of Agricultural Sciences, Zhengzhou, Henan Province China
| | - Jiepeng Zhan
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xinfa Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| | - Xue-Rong Zhou
- grid.1016.60000 0001 2173 2719Commonwealth Scientific & Industrial Research Organisation (CSIRO) Agriculture &Food, Canberra, ACT Australia
| | - Jiaqin Shi
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Hanzhong Wang
- grid.418524.e0000 0004 0369 6250Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China ,Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
12
|
Chao H, Li H, Yan S, Zhao W, Chen K, Wang H, Raboanatahiry N, Huang J, Li M. Further insight into decreases in seed glucosinolate content based on QTL mapping and RNA-seq in Brassica napus L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2969-2991. [PMID: 35841418 DOI: 10.1007/s00122-022-04161-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
The QTL hotspots determining seed glucosinolate content instead of only four HAG1 loci and elucidation of a potential regulatory model for rapeseed SGC variation. Glucosinolates (GSLs) are amino acid-derived, sulfur-rich secondary metabolites that function as biopesticides and flavor compounds, but the high seed glucosinolate content (SGC) reduces seed quality for rapeseed meal. To dissect the genetic mechanism and further reduce SGC in rapeseed, QTL mapping was performed using an updated high-density genetic map based on a doubled haploid (DH) population derived from two parents that showed significant differences in SGC. In 15 environments, a total of 162 significant QTLs were identified for SGC and then integrated into 59 consensus QTLs, of which 32 were novel QTLs. Four QTL hotspot regions (QTL-HRs) for SGC variation were discovered on chromosomes A09, C02, C07 and C09, including seven major QTLs that have previously been reported and four novel major QTLs in addition to HAG1 loci. SGC was largely determined by superimposition of advantage allele in the four QTL-HRs. Important candidate genes directly related to GSL pathways were identified underlying the four QTL-HRs, including BnaC09.MYB28, BnaA09.APK1, BnaC09.SUR1 and BnaC02.GTR2a. Related differentially expressed candidates identified in the minor but environment stable QTLs indicated that sulfur assimilation plays an important rather than dominant role in SGC variation. A potential regulatory model for rapeseed SGC variation constructed by combining candidate GSL gene identification and differentially expressed gene analysis based on RNA-seq contributed to a better understanding of the GSL accumulation mechanism. This study provides insights to further understand the genetic regulatory mechanism of GSLs, as well as the potential loci and a new route to further diminish the SGC in rapeseed.
Collapse
Affiliation(s)
- Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wang
- Hybrid Rapeseed Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Nadia Raboanatahiry
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jinyong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
13
|
Zheng M, Terzaghi W, Wang H, Hua W. Integrated strategies for increasing rapeseed yield. TRENDS IN PLANT SCIENCE 2022; 27:742-745. [PMID: 35501261 DOI: 10.1016/j.tplants.2022.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Over the past few years, rapeseed yields have been considerably lower than those of cereal crops, and progress has been slow due to its limitations for genetic improvement. Here, we propose a comprehensive strategy to consider the interactions between genetics, management practices, and environment, concentrating on using ideotype and heterosis to maximize yield.
Collapse
Affiliation(s)
- Ming Zheng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | | | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China.
| |
Collapse
|
14
|
Wang Y, He Y, Wang J, Liu C, Li L, Tan X, Tan B. An endeavor of "deep-underground agriculture": storage in a gold mine impacts the germination of canola (Brassica napus L.) seeds. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46357-46370. [PMID: 35169945 DOI: 10.1007/s11356-022-19125-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Exploring and utilizing the agronomic potential of deep-underground is one of the ways to cope with the challenges of sudden environmental change on agriculture. Understanding the effects of environmental stresses on the morphological and physiological indicators of crop seeds after their storage deep-underground is crucial to developing and implementing strategies for agriculture in the deep-underground space. In this study, we stored canola seeds in tunnels with horizontal depths of 0, 240, 690, and 1410 m in a gold mine. Seeds in envelopes were retrieved at 42, 66, 90, and 227 days of storage, whereas seeds in sealed packages were retrieved at 66 and 227 days of storage. The germination tests were conducted to investigate the effects of storage depth, duration, and packing method on stored and non-stored seeds. Results showed that increased depth and duration reduced seed germination rate, with the germination and vigor indexes also descending to varying degrees. Increased hypocotyl length and biomass accumulation suggested that deep-underground environment had a more significant compensatory effect on seed germination. For all indicators, the performance of seeds sealed in packages was superior to those stored in envelopes. Regression analysis showed that it was difficult to obtain the optimal value of each indicator simultaneously. The successful germination experiment foreshadowed the possibilities of deep-underground agriculture in the future.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Yuxin He
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China.
| | - Jingchen Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Chao Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Longguo Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Xiao Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| | - Bo Tan
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
- College of Water Resource and Hydropower, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Fine mapping of qDB.A03, a QTL for rapeseed branching, and identification of the candidate gene. Mol Genet Genomics 2022; 297:699-710. [DOI: 10.1007/s00438-022-01881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
|
16
|
Helal MMU, Gill RA, Tang M, Yang L, Hu M, Yang L, Xie M, Zhao C, Cheng X, Zhang Y, Zhang X, Liu S. SNP- and Haplotype-Based GWAS of Flowering-Related Traits in Brassica napus. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112475. [PMID: 34834840 PMCID: PMC8619824 DOI: 10.3390/plants10112475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/05/2023]
Abstract
Traits related to flowering time are the most promising agronomic traits that directly impact the seed yield and oil quality of rapeseed (Brassica napus L.). Developing early flowering and maturity rapeseed varieties is an important breeding objective in B. napus. Many studies have reported on days to flowering, but few have reported on budding, bolting, and the interval between bolting and DTF. Therefore, elucidating the genetic architecture of QTLs and genes regulating flowering time, we presented an integrated investigation on SNP and haplotype-based genome-wide association study of 373 diverse B. napus germplasm, which were genotyped by the 60K SNP array and were phenotyped in the four environments. The results showed that a total of 15 and 37 QTLs were detected from SNP and haplotype-based GWAS, respectively. Among them, seven QTL clusters were identified by haplotype-based GWAS. Moreover, three and eight environmentally stable QTLs were detected by SNP-GWAS and haplotype-based GWAS, respectively. By integrating the above two approaches and by co-localizing the four traits, ten (10) genomic regions were under selection on chromosomes A03, A07, A08, A10, C06, C07, and C08. Interestingly, the genomic regions FT.A07.1, FT.A08, FT.C06, and FT.C07 were identified as novel. In these ten regions, a total of 197 genes controlling FT were detected, of which 14 highly expressed DEGs were orthologous to 13 Arabidopsis thaliana genes after integration with transcriptome results. In a nutshell, the above results uncovered the genetic architecture of important agronomic traits related to flowering time and provided a basis for multiple molecular marker-trait associations in B. napus.
Collapse
Affiliation(s)
- MMU Helal
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Rafaqat Ali Gill
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Minqiang Tang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Key Laboratory of Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants (Ministry of Education), College of Forestry, Hainan University, Haikou 570228, China
| | - Li Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Ming Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Lingli Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Meili Xie
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| | - Yuanyuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
- Correspondence: (Y.Z.); (X.Z.)
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (M.M.U.H.); (R.A.G.); (M.T.); (L.Y.); (M.H.); (L.Y.); (M.X.); (C.Z.); (X.C.); (S.L.)
| |
Collapse
|
17
|
Liu H, Wang J, Zhang B, Yang X, Hammond JP, Ding G, Wang S, Cai H, Wang C, Xu F, Shi L. Genome-wide association study dissects the genetic control of plant height and branch number in response to low-phosphorus stress in Brassica napus. ANNALS OF BOTANY 2021; 128:919-930. [PMID: 34490877 PMCID: PMC8577194 DOI: 10.1093/aob/mcab115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND AIMS Oilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes. METHODS An association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha-1) and a sufficient P supply (P, 40 kg ha-1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies. KEY RESULTS A total of 2127 SNPs were strongly associated (P < 6·25 × 10-07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply. CONCLUSION Our results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus.
Collapse
Affiliation(s)
- Haijiang Liu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingchi Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingbing Zhang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Yang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading RG6 6AR, UK
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia
| | - Guangda Ding
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmei Cai
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuang Wang
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Lab of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Key Lab of Cultivated Land Conservation, Ministry of Agriculture and Rural Affairs/Microelement Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
18
|
Khan SU, Saeed S, Khan MHU, Fan C, Ahmar S, Arriagada O, Shahzad R, Branca F, Mora-Poblete F. Advances and Challenges for QTL Analysis and GWAS in the Plant-Breeding of High-Yielding: A Focus on Rapeseed. Biomolecules 2021; 11:1516. [PMID: 34680149 PMCID: PMC8533950 DOI: 10.3390/biom11101516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Yield is one of the most important agronomic traits for the breeding of rapeseed (Brassica napus L), but its genetic dissection for the formation of high yield remains enigmatic, given the rapid population growth. In the present review, we review the discovery of major loci underlying important agronomic traits and the recent advancement in the selection of complex traits. Further, we discuss the benchmark summary of high-throughput techniques for the high-resolution genetic breeding of rapeseed. Biparental linkage analysis and association mapping have become powerful strategies to comprehend the genetic architecture of complex agronomic traits in crops. The generation of improved crop varieties, especially rapeseed, is greatly urged to enhance yield productivity. In this sense, the whole-genome sequencing of rapeseed has become achievable to clone and identify quantitative trait loci (QTLs). Moreover, the generation of high-throughput sequencing and genotyping techniques has significantly enhanced the precision of QTL mapping and genome-wide association study (GWAS) methodologies. Furthermore, this study demonstrates the first attempt to identify novel QTLs of yield-related traits, specifically focusing on ovule number per pod (ON). We also highlight the recent breakthrough concerning single-locus-GWAS (SL-GWAS) and multi-locus GWAS (ML-GWAS), which aim to enhance the potential and robust control of GWAS for improved complex traits.
Collapse
Affiliation(s)
- Shahid Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Muhammad Hafeez Ullah Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (S.U.K.); (S.S.); (M.H.U.K.)
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| | - Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Raheel Shahzad
- Department of Biotechnology, Faculty of Science & Technology, Universitas Muhammadiyah Bandung, Bandung 40614, Indonesia;
| | - Ferdinando Branca
- Department of Agriculture, Food and Environment (Di3A), University of Catania, 95123 Catania, Italy;
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3465548, Chile;
| |
Collapse
|
19
|
Zhu Y, Ye J, Zhan J, Zheng X, Zhang J, Shi J, Wang X, Liu G, Wang H. Validation and Characterization of a Seed Number Per Silique Quantitative Trait Locus qSN.A7 in Rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2020; 11:68. [PMID: 32153604 PMCID: PMC7047150 DOI: 10.3389/fpls.2020.00068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Seed number is a key character/trait tightly related to the plant fitness/evolution and crop domestication/improvement. The seed number per silique (SNPS) shows a huge variation from several to more than 30, however the underlying regulatory mechanisms are poorly known, which has hindered its improvement. To answer this question, several representative lines with extreme SNPS were previously subjected to systematic genetic and cytological analyses. The results showed that the natural variation of seed number per silique is mainly controlled by maternal and embryonic genotype, which are co-determined by ovule number per ovary, fertile ovule ratio, ovule fertilization rate, and fertilized ovule development rate. More importantly, we also mapped two repeatable quantitative trait loci (QTLs) for SNPS using the F2:3 population derived from Zhongshuang11 and No. 73290, of which the major QTL qSN.A6 has been fine-mapped. In the current study, the near-isogenic lines (NILs) of qSN.A7 were successfully developed by the successive backcross of F1 with Zhongshuang11. First, the effect of qSN.A7 was validated by evaluating the SNPS of two types of homozygous NILs from BC3F2 population, which showed a significant difference of 2.23 on average. Then, qSN.A7 was successfully fine-mapped from the original 4.237 to 1.389 Mb, using a BC4F2 segregating population of 2,551 individuals. To further clarify the regulatory mechanism of qSN.A7, the two types of homologous NILs were subjected to genetic and cytological analyses. The results showed that the difference in SNPS between the two homologous NILs was determined by the embryonic genotypic effect. Highly accordant with this, no significant difference was observed in ovule number per ovary, ovule fertility, fertilization rate, and pollen fertility between the two homologous NILs. Therefore, the regulatory mechanism of qSN.A7 is completely different from the cloned qSS.C9 and qSN.A6. These results will advance the understanding of SNPS and facilitate gene cloning and molecular breeding in Brassica napus.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiaqin Shi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministryof Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | | | | | | |
Collapse
|
20
|
Wang T, Wei L, Wang J, Xie L, Li YY, Ran S, Ren L, Lu K, Li J, Timko MP, Liu L. Integrating GWAS, linkage mapping and gene expression analyses reveals the genetic control of growth period traits in rapeseed ( Brassica napus L.). BIOTECHNOLOGY FOR BIOFUELS 2020; 13:134. [PMID: 32774455 PMCID: PMC7397576 DOI: 10.1186/s13068-020-01774-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/24/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND Brassica napus is one of the most important oilseed crops, and also an important biofuel plant due to its low air pollution and renewability. Growth period are important traits that affect yield and are crucial for its adaptation to different environments in B. napus. RESULTS To elucidate the genetic basis of growth period traits, genome-wide association analysis (GWAS) and linkage mapping were employed to detect the quantitative trait loci (QTL) for days to initial flowering (DIF), days to final flowering (DFF), flowering period (FP), maturity time (MT), and whole growth period (GP). A total of 146 SNPs were identified by association mapping, and 83 QTLs were identified by linkage mapping using the RIL population. Among these QTLs, 19 were pleiotropic SNPs related to multiple traits, and six (q18DFF.A03-2, q18MT.A03-2, q17DFF.A05-1, q18FP.C04, q17DIF.C05 and q17GP.C09) were consistently detected using both mapping methods. Additionally, we performed RNA sequencing to analyze the differential expression of gene (DEG) transcripts between early- and late-flowering lines selected from the RIL population, and the DEGs were integrated with association mapping and linkage analysis to confirm their roles in the growth period. Consequently, 12 candidate genes associated with growth period traits were identified in B. napus. Among these genes, seven have polymorphic sites in the coding sequence and the upstream 2-kb sequence based on the resequencing data. The haplotype BnaSOC1.A05-Haplb and BnaLNK2.C06-Hapla showed more favorable phenotypic traits. CONCLUSIONS The candidate genes identified in this study will contribute to our genetic understanding of growth period traits and can be used as targets for target mutations or marker-assisted breeding for rapeseed adapted to different environments.
Collapse
Affiliation(s)
- Tengyue Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Jia Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Ling Xie
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Yang Yang Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Shuyao Ran
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Lanyang Ren
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| | - Michael P. Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904 USA
| | - Liezhao Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715 China
| |
Collapse
|