1
|
Tian Z, Chen B, Sun Y, Sun G, Gao X, Pan Z, Song G, Du X, He S. GhGRF4/GhARF2-GhGASA24 module regulates fiber cell wall thickness by modulating cellulose biosynthesis in upland cotton (Gossypium hirsutum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1842-1856. [PMID: 39427330 DOI: 10.1111/tpj.17083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 10/03/2024] [Indexed: 10/22/2024]
Abstract
Fiber elongation rate is an essential characteristic of cotton fiber in the textile industry, yet it has been largely overlooked in genetic studies. Gibberellins (GAs) and auxin (IAA) are recognized for their role in directing numerous developmental processes in plants by influencing cell differentiation and elongation. However, the degree to which GA-IAA interaction governs cellular elongation in cotton fiber cells remains to be fully understood. In this study, we identified a causal gene, Gibberellic Acid-Stimulated in Arabidopsis 24 (GhGASA24), that appears to be responsible for fiber elongation rate via regulating fiber cell wall thickness. Subsequent experiments revealed that GhGASA24 influences cell wall formation by promoting the expression of GhCesA8 and GhCesA10. Our findings suggest that Auxin Response Factor 2 (GhARF2) regulates fiber elongation rate by directly binding to the AuxRE elements in GhGASA24 promoter. In addition, we identified Growth Regulation Factor 4 (GhGRF4) as a transcription factor that interacts with GhARF2 to form a heterodimer complex, which also transcriptionally activates GhGASA24. Intriguingly, GhGRF4 regulates GhARF2 expression by directly binding to its promoter, thereby acting as a cascade regulator to enhance the transcriptional levels of GhGASA24. We propose that the GhGRF4/GhARF2-GhGASA24-GhCesAs module may contribute to fiber cell wall thickness by modulating cellulose biosynthesis, and provide a theoretical basis for improvement of fiber quality.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science and Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Bi M, Wang Z, Cheng K, Meng S, Qi M. SlTCP29 and SlTCP24 participate in the morphological development of tomato compound leaves by integrating multiple pathways. PHYSIOLOGIA PLANTARUM 2024; 176:e14641. [PMID: 39659148 DOI: 10.1111/ppl.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Leaves are the primary vegetative organs of plants, and their morphology is an important trait affecting plant architecture, light energy utilization, environmental adaptation, and fruit quality and yield. Leaf development is highly flexible; however, understanding the regulatory mechanisms of factors coordinating leaf morphogenesis and differentiation remains limited. In this study, we obtained a double mutant for SlTCP29 and SlTCP24 genes from the CRISPR/Cas9 mutant population, both belonging to the CINCINNATA-like TCP (TEOSINTE BRANCHED, CYCLOIDEA and PCF1/2) transcription factor subfamily. Simultaneous mutations of SlTCP29 and SlTCP24 genes increase the complexity of tomato leaves, characterized by deeper leaf margin notches and increased number of leaflets. In conjunction with RNA-seq analysis, determination of plant hormone content, and molecular interaction assays, we identified the KNOXII gene SlTKNII5, SlMIR164a, and 1-aminocyclopropane-1-carboxylic acid synthase gene SlACS1A as direct downstream targets of SlTCP29 and SlTCP24, among which SlTKNII5 can physically interact with other KNOXII members to form heterodimers. Our study provides insight into the mechanisms by which SlTCP29 and SlTCP24 are involved in the morphological development of tomato compound leaves by integrating multiple pathways, including transcription factor, microRNA, and phytohormone.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
- Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| |
Collapse
|
3
|
Saleem MS, Khan SH, Ahmad A, Rana IA, Naveed ZA, Khan AI. The 4Fs of cotton: genome editing of cotton for fiber, food, feed, and fuel to achieve zero hunger. Front Genome Ed 2024; 6:1401088. [PMID: 39328243 PMCID: PMC11424549 DOI: 10.3389/fgeed.2024.1401088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
Cotton is globally known for its high-priority cellulose-rich natural fiber. In addition to providing fiber for the textile industry, it is an important source material for edible oil, livestock feed, and fuel products. Global warming and the growing population are the major challenges to the world's agriculture and the potential risks to food security. In this context, improving output traits in cotton is necessary to achieve sustainable cotton production. During the last few years, high throughput omics techniques have aided in identifying crucial genes associated with traits of cotton fiber, seed, and plant architecture which could be targeted with more precision and efficiency through the CIRPSR/Cas-mediated genome editing technique. The various CRISPR/Cas systems such as CRISPR/Cas9, CRISPR/nCas9, and CRISPR/Cas12a have been employed to edit cotton genes associated with a wide range of traits including fiber length, flowering, leaf colour, rooting, seed oil, plant architecture, gossypol content, somatic embryogenesis, and biotic and abiotic stresses tolerance, highlighting its effectiveness in editing the cotton genome. Thus, CRISPR/Cas-mediated genome editing has emerged as a technique of choice to tailor crop phenotypes for better yield potential and environmental resilience. The review covers a comprehensive analysis of cotton phenotypic traits and their improvement with the help of the latest genome editing tools to improve fiber, food, feed, and fuel-associated genes of cotton to ensure food security.
Collapse
Affiliation(s)
- Muhammad Sulyman Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zunaira Afzal Naveed
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture Faisalabad, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Azeem Iqbal Khan
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Sun Y, Tian Z, Zuo D, Cheng H, Wang Q, Zhang Y, Lv L, Song G. Strigolactone-induced degradation of SMXL7 and SMXL8 contributes to gibberellin- and auxin-mediated fiber cell elongation in cotton. THE PLANT CELL 2024; 36:3875-3893. [PMID: 39046066 PMCID: PMC11371155 DOI: 10.1093/plcell/koae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/22/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024]
Abstract
Cotton (Gossypium) fiber length, a key trait determining fiber yield and quality, is highly regulated by a class of recently identified phytohormones, strigolactones (SLs). However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. Here, we show that the SL signaling repressors MORE AXILLARY GROWTH2-LIKE7 (GhSMXL7) and GhSMXL8 negatively regulate cotton fiber elongation. Specifically, GhSMXL7 and GhSMXL8 inhibit the polyubiquitination and degradation of the gibberellin (GA)-triggered DELLA protein (GhSLR1). Biochemical analysis revealed that GhSMXL7 and GhSMXL8 physically interact with GhSLR1, which interferes with the association of GhSLR1 with the E3 ligase GA INSENSITIVE2 (GhGID2), leading to the repression of GA signal transduction. GhSMXL7 also interacts with the transcription factor GhHOX3, preventing its binding to the promoters of essential fiber elongation regulatory genes. Moreover, both GhSMXL7 and GhSMXL8 directly bind to the promoter regions of the AUXIN RESPONSE FACTOR (ARF) genes GhARF18-10A, GhARF18-10D, and GhARF19-7D to suppress their expression. Cotton plants in which GhARF18-10A, GhARF18-10D, and GhARF19-7D transcript levels had been reduced by virus-induced gene silencing (VIGS) displayed reduced fiber length compared with control plants. Collectively, our findings reveal a mechanism illustrating how SL integrates GA and auxin signaling to coordinately regulate plant cell elongation at the single-cell level.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailiang Cheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Youping Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Limin Lv
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoli Song
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Jia T, Wang H, Cui S, Li Z, Shen Y, Li H, Xiao G. Cotton BLH1 and KNOX6 antagonistically modulate fiber elongation via regulation of linolenic acid biosynthesis. PLANT COMMUNICATIONS 2024; 5:100887. [PMID: 38532644 PMCID: PMC11287173 DOI: 10.1016/j.xplc.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/19/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
BEL1-LIKE HOMEODOMAIN (BLH) proteins are known to function in various plant developmental processes. However, the role of BLHs in regulating plant cell elongation is still unknown. Here, we identify a BLH gene, GhBLH1, that positively regulates fiber cell elongation. Combined transcriptomic and biochemical analyses reveal that GhBLH1 enhances linolenic acid accumulation to promote cotton fiber cell elongation by activating the transcription of GhFAD7A-1 via binding of the POX domain of GhBLH1 to the TGGA cis-element in the GhFAD7A-1 promoter. Knockout of GhFAD7A-1 in cotton significantly reduces fiber length, whereas overexpression of GhFAD7A-1 results in longer fibers. The K2 domain of GhKNOX6 directly interacts with the POX domain of GhBLH1 to form a functional heterodimer, which interferes with the transcriptional activation of GhFAD7A-1 via the POX domain of GhBLH1. Overexpression of GhKNOX6 leads to a significant reduction in cotton fiber length, whereas knockout of GhKNOX6 results in longer cotton fibers. An examination of the hybrid progeny of GhBLH1 and GhKNOX6 transgenic cotton lines provides evidence that GhKNOX6 negatively regulates GhBLH1-mediated cotton fiber elongation. Our results show that the interplay between GhBLH1 and GhKNOX6 modulates regulation of linolenic acid synthesis and thus contributes to plant cell elongation.
Collapse
Affiliation(s)
- Tingting Jia
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shiyan Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zihan Li
- Geosystems Research Institute, Mississippi State University, Starkville, MS 39762, USA
| | - Yongcui Shen
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Hongbin Li
- College of Life Sciences, Shihezi University, Shihezi 832003, China.
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
6
|
He P, Zhu L, Zhou X, Fu X, Zhang Y, Zhao P, Jiang B, Wang H, Xiao G. Gibberellic acid promotes single-celled fiber elongation through the activation of two signaling cascades in cotton. Dev Cell 2024; 59:723-739.e4. [PMID: 38359829 DOI: 10.1016/j.devcel.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
The agricultural green revolution spectacularly enhanced crop yield through modification of gibberellin (GA) signaling. However, in cotton, the GA signaling cascades remain elusive, limiting our potential to cultivate new cotton varieties and improve yield and quality. Here, we identified that GA prominently stimulated fiber elongation through the degradation of DELLA protein GhSLR1, thereby disabling GhSLR1's physical interaction with two transcription factors, GhZFP8 and GhBLH1. Subsequently, the resultant free GhBLH1 binds to GhKCS12 promoter and activates its expression to enhance VLCFAs biosynthesis. With a similar mechanism, the free GhZFP8 binds to GhSDCP1 promoter and activates its expression. As a result, GhSDCP1 upregulates the expression of GhPIF3 gene associated with plant cell elongation. Ultimately, the two parallel signaling cascades synergistically promote cotton fiber elongation. Our findings outline the mechanistic framework that translates the GA signal into fiber cell elongation, thereby offering a roadmap to improve cotton fiber quality and yield.
Collapse
Affiliation(s)
- Peng He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xin Zhou
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xuan Fu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Peng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Bin Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Guanghui Xiao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Jia P, Wang Y, Sharif R, Dong QL, Liu Y, Luan HA, Zhang XM, Guo SP, Qi GH. KNOTTED1-like homeobox (KNOX) transcription factors - Hubs in a plethora of networks: A review. Int J Biol Macromol 2023; 253:126878. [PMID: 37703987 DOI: 10.1016/j.ijbiomac.2023.126878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
KNOX (KNOTTED1-like HOMEOBOX) belongs to a class of important homeobox genes, which encode the homeodomain proteins binding to the specific element of target genes, and widely participate in plant development. Advancements in genetics and molecular biology research generate a large amount of information about KNOX genes in model and non-model plants, and their functions in different developmental backgrounds are gradually becoming clear. In this review, we summarize the known and presumed functions of the KNOX gene in plants, focusing on horticultural plants and crops. The classification and structural characteristics, expression characteristics and regulation, interacting protein factors, functions, and mechanisms of KNOX genes are systematically described. Further, the current research gaps and perspectives were discussed. These comprehensive data can provide a reference for the directional improvement of agronomic traits through KNOX gene regulation.
Collapse
Affiliation(s)
- Peng Jia
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| | - Yuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rahat Sharif
- Department of Horticulture, School of Horticulture and Landscape, Yangzhou University, Yangzhou 225009, China
| | - Qing-Long Dong
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Yang Liu
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Hao-An Luan
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Xue-Mei Zhang
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Sup-Ping Guo
- College of Forestry, Hebei Agricultural University, Baoding 071000, China
| | - Guo-Hui Qi
- College of Forestry, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
8
|
Wen X, Chen Z, Yang Z, Wang M, Jin S, Wang G, Zhang L, Wang L, Li J, Saeed S, He S, Wang Z, Wang K, Kong Z, Li F, Zhang X, Chen X, Zhu Y. A comprehensive overview of cotton genomics, biotechnology and molecular biological studies. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2214-2256. [PMID: 36899210 DOI: 10.1007/s11427-022-2278-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/12/2023]
Abstract
Cotton is an irreplaceable economic crop currently domesticated in the human world for its extremely elongated fiber cells specialized in seed epidermis, which makes it of high research and application value. To date, numerous research on cotton has navigated various aspects, from multi-genome assembly, genome editing, mechanism of fiber development, metabolite biosynthesis, and analysis to genetic breeding. Genomic and 3D genomic studies reveal the origin of cotton species and the spatiotemporal asymmetric chromatin structure in fibers. Mature multiple genome editing systems, such as CRISPR/Cas9, Cas12 (Cpf1) and cytidine base editing (CBE), have been widely used in the study of candidate genes affecting fiber development. Based on this, the cotton fiber cell development network has been preliminarily drawn. Among them, the MYB-bHLH-WDR (MBW) transcription factor complex and IAA and BR signaling pathway regulate the initiation; various plant hormones, including ethylene, mediated regulatory network and membrane protein overlap fine-regulate elongation. Multistage transcription factors targeting CesA 4, 7, and 8 specifically dominate the whole process of secondary cell wall thickening. And fluorescently labeled cytoskeletal proteins can observe real-time dynamic changes in fiber development. Furthermore, research on the synthesis of cotton secondary metabolite gossypol, resistance to diseases and insect pests, plant architecture regulation, and seed oil utilization are all conducive to finding more high-quality breeding-related genes and subsequently facilitating the cultivation of better cotton varieties. This review summarizes the paramount research achievements in cotton molecular biology over the last few decades from the above aspects, thereby enabling us to conduct a status review on the current studies of cotton and provide strong theoretical support for the future direction.
Collapse
Affiliation(s)
- Xingpeng Wen
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiwen Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Maojun Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangda Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Lingjian Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jianying Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sumbul Saeed
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun Wang
- College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- Shanxi Agricultural University, Jinzhong, 030801, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xiaoya Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, University of CAS, Chinese Academy of Sciences, Shanghai, 200032, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Yuxian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China.
- College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
9
|
Li P, Wu Y, Han X, Li H, Wang L, Chen B, Yu S, Wang Z. BrrA02.LMI1 Encodes a Homeobox Protein That Affects Leaf Margin Development in Brassica rapa. Int J Mol Sci 2023; 24:14205. [PMID: 37762508 PMCID: PMC10532282 DOI: 10.3390/ijms241814205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Leaf margin morphology is an important quality trait affecting the commodity and environmental adaptability of crops. Brassica rapa is an ideal research material for exploring the molecular mechanisms underlying leaf lobe development. Here, we identified BrrA02.LMI1 to be a promising gene underlying the QTL qBrrLLA02 controlling leaf lobe formation in B. rapa, which was detected in our previous study. Sequence comparison analysis showed that the promoter divergences were the most obvious variations of BrrA02.LMI1 between parental lines. The higher expression level and promoter activity of BrrA02.LMI1 in the lobe-leafed parent indicated that promoter variations of BrrA02.LMI1 were responsible for elevating expression and ultimately causing different allele effects. Histochemical GUS staining indicated that BrrA02.LMI1 is mainly expressed at the leaf margin, with the highest expression at the tip of each lobe. Subcellular localization results showed that BrrA02.LMI1 was in the nucleus. The ectopic expression of BrrA02.LMI1 in A. thaliana resulted in a deep leaf lobe in the wild-type plants, and lobed leaf formation was disturbed in BrrA02.LMI11-downregulated plants. Our findings revealed that BrrA02.LMI1 plays a vital role in regulating the formation of lobed leaves, providing a theoretical basis for the selection and breeding of leaf-shape-diverse varieties of B. rapa.
Collapse
Affiliation(s)
- Pan Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yudi Wu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiangyang Han
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Hui Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Limin Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Bin Chen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (P.L.); (Y.W.); (X.H.); (H.L.); (L.W.); (B.C.); (S.Y.)
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| |
Collapse
|
10
|
Liu P, Bu C, Chen P, El-Kassaby YA, Zhang D, Song Y. Enhanced genome-wide association reveals the role of YABBY11-NGATHA-LIKE1 in leaf serration development of Populus. PLANT PHYSIOLOGY 2023; 191:1702-1718. [PMID: 36535002 PMCID: PMC10022644 DOI: 10.1093/plphys/kiac585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaf margins are complex plant morphological features that contribute to leaf shape diversity, which affects plant structure, yield, and adaptation. Although several leaf margin regulators have been identified to date, the genetic basis of their natural variation has not been fully elucidated. In this study, we profiled two distinct leaf morphology types (serrated and smooth) using the persistent homology mathematical framework (PHMF) in two poplar species (Populus tomentosa and Populus simonii, respectively). A combined genome-wide association study (GWAS) and expression quantitative trait nucleotide (eQTN) mapping were applied to create a leaf morphology control module using data from P. tomentosa and P. simonii populations. Natural variation in leaf margins was associated with YABBY11 (YAB11) transcript abundance in poplar. In P. tomentosa, PtoYAB11 carries a premature stop codon (PtoYAB11PSC), resulting in the loss of its positive regulation of NGATHA-LIKE1 (PtoNGAL-1) and RIBULOSE BISPHOSPHATE CARBOXYLASE LARGE SUBUNIT (PtoRBCL). Overexpression of PtoYAB11PSC promoted serrated leaf margins, enlarged leaves, enhanced photosynthesis, and increased biomass. Overexpression of PsiYAB11 in P. tomentosa promoted smooth leaf margins, higher stomatal density, and greater light damage repair ability. In poplar, YAB11-NGAL1 is sensitive to environmental conditions, acts as a positive regulator of leaf margin serration, and may also link environmental signaling to leaf morphological plasticity.
Collapse
Affiliation(s)
- Peng Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Chenhao Bu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Panfei Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| | - Yuepeng Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P.R. China
| |
Collapse
|
11
|
Pi M, Zhong R, Hu S, Cai Z, Plunkert M, Zhang W, Liu Z, Kang C. A GT-1 and PKc domain-containing transcription regulator SIMPLE LEAF1 controls compound leaf development in woodland strawberry. THE NEW PHYTOLOGIST 2023; 237:1391-1404. [PMID: 36319612 DOI: 10.1111/nph.18589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Leaves are strikingly diverse in terms of shapes and complexity. The wild and cultivated strawberry plants mostly develop trifoliate compound leaves, yet the underlying genetic basis remains unclear in this important fruit crop in Rosaceae. Here, we identified two EMS mutants designated simple leaf1 (sl1-1 and sl1-2) and one natural simple-leafed mutant monophylla in Fragaria vesca. Their causative mutations all reside in SL1 (FvH4_7g28640) causing premature stop codon at different positions in sl1-1 and sl1-2 and an eight-nucleotide insertion (GTTCATCA) in monophylla. SL1 encodes a transcription regulator with the conserved DNA-binding domain GT-1 and the catalytic domain of protein kinases PKc. Expression of SL1pro::SL1 in sl1-1 completely restored compound leaf formation. The 35S::SL1 lines developed palmate-like leaves with four or five leaflets at a low penetrance. However, overexpressing the truncated SL1ΔPK caused no phenotypes, probably due to the disruption of homodimerization. SL1 is preferentially expressed at the tips of leaflets and serrations. Moreover, SL1 is closely associated with the auxin pathway and works synergistically with FveLFYa in leaf morphogenesis. Overall, our work uncovered a new type of transcription regulator that promotes compound leaf formation in the woodland strawberry and shed new lights on the diversity of leaf complexity control.
Collapse
Affiliation(s)
- Mengting Pi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ruhan Zhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhuoying Cai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Madison Plunkert
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Weiyi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
12
|
Li S, Xing K, Qanmber G, Chen G, Liu L, Guo M, Hou Y, Lu L, Qu L, Liu Z, Yang Z. GhBES1 mediates brassinosteroid regulation of leaf size by activating expression of GhEXO2 in cotton (Gossypium hirsutum). PLANT MOLECULAR BIOLOGY 2023; 111:89-106. [PMID: 36271986 DOI: 10.1007/s11103-022-01313-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We proposed a working model of BR to promote leaf size through cell expansion. In the BR signaling pathway, GhBES1 affects cotton leaf size by binding to and activating the expression of the E-box element in the GhEXO2 promoter region. Brassinosteroid (BR) is an essential phytohormone that controls plant growth. However, the mechanisms of BR regulation of leaf size remain to be determined. Here, we found that the BR deficient cotton mutant pagoda1 (pag1) had a smaller leaf size than wild-type CRI24. The expression of EXORDIUM (GhEXO2) gene, was significantly downregulated in pag1. Silencing of BRI1-EMS-SUPPRESSOR 1 (GhBES1), inhibited leaf cell expansion and reduced leaf size. Overexpression of GhBES1.4 promoted leaf cell expansion and enlarged leaf size. Expression analysis showed GhEXO2 expression positively correlated with GhBES1 expression. In plants, altered expression of GhEXO2 promoted leaf cell expansion affecting leaf size. Furthermore, GhBES1.4 specifically binds to the E-box elements in the GhEXO2 promoter, inducing its expression. RNA-seq data revealed many down-regulated genes related to cell expansion in GhEXO2 silenced plants. In summary, we discovered a novel mechanism of BR regulation of leaf size through GhBES1 directly activating the expression of GhEXO2.
Collapse
Affiliation(s)
- Shengdong Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Kun Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Biology (Hebei Base), Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoquan Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Le Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Mengzhen Guo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Yan Hou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Henan, 450001, Zhengzhou, China
| | - Zhao Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
| | - Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Henan, 450001, Zhengzhou, China.
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
13
|
Chen K, Qu C, Zhang XY, Wang W, Gu CR, Liu GF, Yu QB, Yang CP, Jiang J. Molecular mechanism of leaf adaxial upward curling caused by BpPIN3 suppression in Betula pendula. FRONTIERS IN PLANT SCIENCE 2022; 13:1060228. [PMID: 36531359 PMCID: PMC9751824 DOI: 10.3389/fpls.2022.1060228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Leaves are one of the vegetative organs of plants that are essential for plant growth and development. PIN-FORMED (PINs) gene is an indoleacetic acid (IAA) transporter that plays a critical role in leaf development. To determine the function of BpPIN3 in leaf polarity formation in Betula pendula, the transgenic lines with BpPIN3 overexpression (OE) and BpPIN3-reduced expression (RE) were analyzed using the Agrobacterium-mediated method. The RE lines displayed the characteristics of leaf margin adaxial upward curling, with lower expression of BpPIN3 resulting in greater rolling. Tissue localization of IAA in the auxin GUS reporter system proved that auxin in the RE was mainly distributed in the secondary veins, palisade tissues, and epidermal cells in the leaf margin area. The auxin content in the leaf margin area was significantly greater than that in the main vein tissue. The cell density of the palisade tissue and the ratio of palisade tissue to spongy tissue in the curled leaf margin of the RE lines were found to be significantly decreased. RNA-seq analysis revealed that the RE hormone-signaling pathway genes were significantly enriched compared with those of the OE and WT lines; in particular, the auxin response-related genes SAURs (i.e., SAUR23, SAUR24, SAUR28, and SAUR50) and GH3.10 were found to be significantly upregulated. qRT-PCR analysis indicated that BpPIN3 expression at the leaf margin was significantly lower than that near the main vein in the RE lines. In contrast, the expression levels of SAURs and GH3.10 were significantly higher than those near the midrib. In conclusion, BpPIN3 regulates the expression of auxin response-related genes and the polar transport of auxin to change the polar form of the proximal and distal axes of birch leaves.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chang Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiao-yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wei Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chen-rui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Gui-feng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qi-bin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Chuan-ping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Shi Z, Chen X, Xue H, Jia T, Meng F, Liu Y, Luo X, Xiao G, Zhu S. GhBZR3 suppresses cotton fiber elongation by inhibiting very-long-chain fatty acid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:785-799. [PMID: 35653239 PMCID: PMC9544170 DOI: 10.1111/tpj.15852] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 05/29/2023]
Abstract
The BRASSINAZOLE-RESISTANT (BZR) transcription factor is a core component of brassinosteroid (BR) signaling and is involved in the development of many plant species. BR is essential for the initiation and elongation of cotton fibers. However, the mechanism of BR-regulating fiber development and the function of BZR is poorly understood in Gossypium hirsutum L. (cotton). Here, we identified a BZR family transcription factor protein referred to as GhBZR3 in cotton. Overexpression of GhBZR3 in Arabidopsis caused shorter root hair length, hypocotyl length, and hypocotyl cell length, indicating that GhBZR3 negatively regulates cell elongation. Pathway enrichment analysis from VIGS-GhBZR3 cotton plants found that fatty acid metabolism and degradation might be the regulatory pathway that is primarily controlled by GhBZR3. Silencing GhBZR3 expression in cotton resulted in taller plant height as well as longer fibers. The very-long-chain fatty acid (VLCFA) content was also significantly increased in silenced GhBZR3 plants compared with the wild type. The GhKCS13 promoter, a key gene for VLCFA biosynthesis, contains two GhBZR3 binding sites. The results of yeast one-hybrid, electrophoretic mobility shift, and luciferase assays revealed that GhBZR3 directly interacted with the GhKCS13 promoter to suppress gene expression. Taken together, these results indicate that GhBZR3 negatively regulates cotton fiber development by reducing VLCFA biosynthesis. This study not only deepens our understanding of GhBZR3 function in cotton fiber development, but also highlights the potential of improving cotton fiber length and plant growth using GhBZR3 and its related genes in future cotton breeding programs.
Collapse
Affiliation(s)
- Zemin Shi
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xia Chen
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Huidan Xue
- School of Food and Biological EngineeringShaanxi University of Science and TechnologyXi'an710021China
- School of Ecology and EnvironmentNorthwestern Polytechnical UniversityXi'an710012China
| | - Tingting Jia
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Funing Meng
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yunfei Liu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
- College of Life ScienceUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xiaomin Luo
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| | - Guanghui Xiao
- College of Life SciencesShaanxi Normal UniversityXi'an710062China
| | - Shengwei Zhu
- Key Laboratory of Plant Molecular PhysiologyInstitute of Botany, Chinese Academy of SciencesBeijing100093China
| |
Collapse
|
15
|
Han G, Li Y, Yang Z, Wang C, Zhang Y, Wang B. Molecular Mechanisms of Plant Trichome Development. FRONTIERS IN PLANT SCIENCE 2022; 13:910228. [PMID: 35720574 PMCID: PMC9198495 DOI: 10.3389/fpls.2022.910228] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/13/2022] [Indexed: 05/25/2023]
Abstract
Plant trichomes, protrusions formed from specialized aboveground epidermal cells, provide protection against various biotic and abiotic stresses. Trichomes can be unicellular, bicellular or multicellular, with multiple branches or no branches at all. Unicellular trichomes are generally not secretory, whereas multicellular trichomes include both secretory and non-secretory hairs. The secretory trichomes release secondary metabolites such as artemisinin, which is valuable as an antimalarial agent. Cotton trichomes, also known as cotton fibers, are an important natural product for the textile industry. In recent years, much progress has been made in unraveling the molecular mechanisms of trichome formation in Arabidopsis thaliana, Gossypium hirsutum, Oryza sativa, Cucumis sativus, Solanum lycopersicum, Nicotiana tabacum, and Artemisia annua. Here, we review current knowledge of the molecular mechanisms underlying fate determination and initiation, elongation, and maturation of unicellular, bicellular and multicellular trichomes in several representative plants. We emphasize the regulatory roles of plant hormones, transcription factors, the cell cycle and epigenetic modifications in different stages of trichome development. Finally, we identify the obstacles and key points for future research on plant trichome development, and speculated the development relationship between the salt glands of halophytes and the trichomes of non-halophytes, which provides a reference for future studying the development of plant epidermal cells.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
16
|
Zeng RF, Fu LM, Deng L, Liu MF, Gan ZM, Zhou H, Hu SF, Hu CG, Zhang JZ. CiKN1 and CiKN6 are involved in leaf development in citrus by regulating CimiR164. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:828-848. [PMID: 35165956 DOI: 10.1111/tpj.15707] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Ren-Fang Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li-Ming Fu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Luo Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Feng Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhou
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Si-Fan Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Li X, Cai K, Han Z, Zhang S, Sun A, Xie Y, Han R, Guo R, Tigabu M, Sederoff R, Pei X, Zhao C, Zhao X. Chromosome-Level Genome Assembly for Acer pseudosieboldianum and Highlights to Mechanisms for Leaf Color and Shape Change. FRONTIERS IN PLANT SCIENCE 2022; 13:850054. [PMID: 35310631 PMCID: PMC8927880 DOI: 10.3389/fpls.2022.850054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.
Collapse
Affiliation(s)
- Xiang Li
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Kewei Cai
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiming Han
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Shikai Zhang
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Anran Sun
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Ying Xie
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| | - Rui Han
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Ruixue Guo
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Mulualem Tigabu
- Southern Swedish Forest Research Centre, Faculty of Forest Science, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Xiaona Pei
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Chunli Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
| | - Xiyang Zhao
- College of Forestry and Grassland, Jilin Agricultural University, Changchun, China
- State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
18
|
Zhang X, Zhao J, Wu X, Hu G, Fan S, Ma Q. Evolutionary Relationships and Divergence of KNOTTED1-Like Family Genes Involved in Salt Tolerance and Development in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:774161. [PMID: 34970288 PMCID: PMC8712452 DOI: 10.3389/fpls.2021.774161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/25/2021] [Indexed: 05/16/2023]
Abstract
The KNOX (KNOTTED1-like homeobox) transcription factors play an important role in leaf, shoot apical meristem and seed development and respond to biotic and abiotic stresses. In this study, we analyzed the diversity and evolutionary history of the KNOX gene family in the genome of tetraploid cotton (Gossypium hirsutum). Forty-four putative KNOX genes were identified. All KNOX genes from seven higher plant species were classified into KNOXI, KNOXII, and KNATM clades based on a phylogenetic analysis. Chromosomal localization and collinearity analysis suggested that whole-genome duplication and a polyploidization event contributed to the expansion of the cotton KNOX gene family. Analyses of expression profiles revealed that the GhKNOX genes likely responded to diverse stresses and were involved in cotton growth developmental processes. Silencing of GhKNOX2 enhanced the salt tolerance of cotton seedlings, whereas silencing of GhKNOX10 and GhKNOX14 reduced seedling tolerance to salt stress. Silencing of GhSTM3 influenced the cotton flowering time and plant development. These findings clarify the evolution of the cotton KNOX gene family and provide a foundation for future functional studies of KNOX proteins in cotton growth and development and response to abiotic stresses.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiangyuan Wu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- *Correspondence: Shuli Fan,
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- Qifeng Ma,
| |
Collapse
|