1
|
Okada K, Shimizu T, Moriya S, Wada M, Abe K, Sawamura Y. Alternative splicing and deletion in S-RNase confer stylar-part self-compatibility in the apple cultivar 'Vered'. PLANT MOLECULAR BIOLOGY 2024; 114:113. [PMID: 39425855 DOI: 10.1007/s11103-024-01514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Although self-incompatibility in apples (Malus × domestica Borkh.) is regulated by a single S-locus with multiple S-haplotypes that comprise pistil S (S-RNase) and pollen S genes, it is not desirable in commercial orchards because it requires cross-pollination to achieve stable fruit production. Therefore, it is important to identify and characterize self-compatible apple cultivars. However, little is known about self-compatibility (SC) and its underlying molecular mechanisms in apples. In this study, we discovered that 'Vered', an early maturing and low chilling-requiring apple cultivar, exhibits stable SC, which was evaluated via self-pollination tests. The S-genotype of 'Vered' was designated as S24S39sm. Results of genetic analysis of selfed progeny of 'Vered' revealed that SC is associated with the S39sm-haplotype, and molecular analyses indicated that it is caused by alternative splicing and a 205-bp deletion in S39sm-RNase. These events induce frameshifts and ultimately produce the defective S39sm-RNase isoforms that lack their C-terminal half. These results enabled us to develop a 117-bp DNA marker that can be used to assist in the selection of self-compatible apples with the dysfunctional S39sm-RNase. Thus, analysis of 'Vered' provided insights into the molecular mechanism of the very rare trait of natural stylar-part SC. Moreover, 'Vered' is a valuable genetic resource for breeding cultivars with SC and/or low chilling requirement in apple. Our findings contribute to a better understanding of self-compatible molecular mechanisms in apple and provide for the accelerated breeding of self-compatible apple cultivars.
Collapse
Affiliation(s)
- Kazuma Okada
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki, 305-8605, Japan.
| | - Taku Shimizu
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Shigeki Moriya
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Masato Wada
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Kazuyuki Abe
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - Yutaka Sawamura
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| |
Collapse
|
2
|
Naert T, Yamamoto T, Han S, Horn M, Bethge P, Vladimirov N, Voigt FF, Figueiro-Silva J, Bachmann-Gagescu R, Helmchen F, Lienkamp SS. Pythia: Non-random DNA repair allows predictable CRISPR/Cas9 integration and gene editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614424. [PMID: 39386429 PMCID: PMC11463480 DOI: 10.1101/2024.09.23.614424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
CRISPR-based genome engineering holds enormous promise for basic science and therapeutic applications. Integrating and editing DNA sequences is still challenging in many cellular contexts, largely due to insufficient control of the repair process. We find that repair at the genome-cargo interface is predictable by deep-learning models and adheres to sequence context specific rules. Based on in silico predictions, we devised a strategy of triplet base-pair repeat repair arms that correspond to microhomologies at double-strand breaks (trimologies), which facilitated integration of large cargo (>2 kb) and protected the targeted locus and transgene from excessive damage. Successful integrations occurred in >30 loci in human cells and in in vivo models. Germline transmissible transgene integration in Xenopus, and endogenous tagging of tubulin in adult mice brains demonstrated integration during early embryonic cleavage and in non-dividing differentiated cells. Further, optimal repair arms for single- or double nucleotide edits were predictable, and facilitated small edits in vitro and in vivo using oligonucleotide templates. We provide a design-tool (Pythia, pythia-editing.org) to optimize custom integration, tagging or editing strategies. Pythia will facilitate genomic integration and editing for experimental and therapeutic purposes for a wider range of target cell types and applications.
Collapse
Affiliation(s)
- Thomas Naert
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Present address: Department of Biomedical Molecular Biology, Ghent University, B-9052 Ghent, Belgium
| | - Taiyo Yamamoto
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Shuting Han
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Melanie Horn
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Phillip Bethge
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
| | - Nikita Vladimirov
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Center for Microscopy and Image Analysis (ZMB), University of Zurich, Zurich, Switzerland
| | - Fabian F Voigt
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, USA
| | - Joana Figueiro-Silva
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
| | - Ruxandra Bachmann-Gagescu
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP) Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| | - Soeren S Lienkamp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
- Zurich Kidney Center
| |
Collapse
|
3
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
4
|
Jiao D, Zhao H, Sun H, Zhang J, Zhang H, Gong G, Anees M, Zhu H, Liu W, Xu Y. Identification of allelic relationship and translocation region among chromosomal translocation lines that leads to less-seed watermelon. HORTICULTURE RESEARCH 2024; 11:uhae087. [PMID: 38799123 PMCID: PMC11116901 DOI: 10.1093/hr/uhae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 05/29/2024]
Abstract
Less-seed and seedless traits are desirable characteristics in watermelon (Citrullus lanatus). Hybridization between watermelon chromosomal translocated lines and wild lines significantly reduced seed counts in the hybrid fruits, approaching even seedless. However, the allelic relationships and the chromosomal translocation breakpoints from different sources are unclear, which limits their utility in breeding practices. This study focused on three groups of chromosomal translocation materials from different sources and conducted inheritance and allelic relationship analysis of translocation points. The results from third-generation genome sequencing and fluorescence in situ hybridization (FISH) revealed that the specific translocations in the naturally mutated material MT-a involved reciprocal translocations between Chr6 and Chr10. The Co60γ radiation-induced mutant material MT-b involved reciprocal translocations between Chr1 and Chr5, Chr4 and Chr8. The Co60γ radiation-induced mutant material MT-c involved complex translocations among Chr1, Chr5, and Chr11. Cytological observation showed that heterozygous translocation hybrids showed chromosomal synapsis abnormalities during meiotic diakinesis. Further, dominant and codominant molecular markers were developed on both sides of the translocation breakpoints, which could facilitate rapid and efficient identification of chromosome translocation lines. This study provides technical guidance for utilizing chromosomal translocation materials in the development of less-seed watermelon varieties.
Collapse
Affiliation(s)
- Di Jiao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agriculture Sciences, Jinjing Road, Xiqing District, Tianjin 300192, China
| | - Hong Zhao
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Honghe Sun
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, New York 14853, USA
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York 14853, USA
| | - Jie Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Haiying Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Guoyi Gong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| | - Muhammad Anees
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Hongju Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Wenge Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Hanghai East Road, Guancheng District, Zhengzhou, Henan 450009, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Zhanghua Road, Haidian Districk, Beijing 100097, China
| |
Collapse
|
5
|
Mohamad Zamberi NN, Abuhamad AY, Low TY, Mohtar MA, Syafruddin SE. dCas9 Tells Tales: Probing Gene Function and Transcription Regulation in Cancer. CRISPR J 2024; 7:73-87. [PMID: 38635328 DOI: 10.1089/crispr.2023.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing is evolving into an essential tool in the field of biological and medical research. Notably, the development of catalytically deactivated Cas9 (dCas9) enzyme has substantially broadened its traditional boundaries in gene editing or perturbation. The conjugation of dCas9 with various molecular effectors allows precise control over transcriptional processes, epigenetic modifications, visualization of chromosomal dynamics, and several other applications. This expanded repertoire of CRISPR-Cas9 applications has emerged as an invaluable molecular tool kit that empowers researchers to comprehensively interrogate and gain insights into health and diseases. This review delves into the advancements in Cas9 protein engineering, specifically on the generation of various dCas9 tools that have significantly enhanced the CRISPR-based technology capability and versatility. We subsequently discuss the multifaceted applications of dCas9, especially in interrogating the regulation and function of genes that involve in supporting cancer pathogenesis. In addition, we also delineate the designing and utilization of dCas9-based tools as well as highlighting its current constraints and transformative potentials in cancer research.
Collapse
Affiliation(s)
- Nurul Nadia Mohamad Zamberi
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Asmaa Y Abuhamad
- Bionanotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - M Aiman Mohtar
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Malaysia, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Liu QW, Yang ZW, Tang QH, Wang WE, Chu DS, Ji JF, Fan QY, Jiang H, Yang QX, Zhang H, Liu XY, Xu XS, Wang XF, Liu JB, Fu D, Tao K, Yu H. The power and the promise of synthetic lethality for clinical application in cancer treatment. Biomed Pharmacother 2024; 172:116288. [PMID: 38377739 DOI: 10.1016/j.biopha.2024.116288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
Synthetic lethality is a phenomenon wherein the simultaneous deficiency of two or more genes results in cell death, while the deficiency of any individual gene does not lead to cell death. In recent years, synthetic lethality has emerged as a significant topic in the field of targeted cancer therapy, with certain drugs based on this concept exhibiting promising outcomes in clinical trials. Nevertheless, the presence of tumor heterogeneity and the intricate DNA repair mechanisms pose challenges to the effective implementation of synthetic lethality. This review aims to explore the concepts, development, and ethical quandaries surrounding synthetic lethality. Additionally, it will provide an in-depth analysis of the clinical application and underlying mechanism of synthetic lethality.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhi-Wen Yang
- Department of Pharmacy, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, Shanghai 200050, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region and College of Life Sciences, Hengyang Normal University, Hengyang, Hunan Province 421008, China
| | - Wen-Er Wang
- General Surgery, the Fourth Hospital Of Changsha, Changsha Hospital Of Hunan Normal University, Changsha, Hunan Province 410006, China
| | - Da-Sheng Chu
- Second Cadre Rest Medical and Health Center of Changning District, Shanghai Garrison, Shanghai226631, China
| | - Jin-Feng Ji
- Department of Integrated Traditional Chinese and Western Internal Medicine, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu Province 226631, China
| | - Qi-Yu Fan
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Hong Jiang
- Department of Thoracic Surgery, the 905th Hospital of Chinese People's Liberation Army Navy, Shanghai 200050, China
| | - Qin-Xin Yang
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Hui Zhang
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China
| | - Xin-Yun Liu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China
| | - Xiao-Sheng Xu
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Xiao-Feng Wang
- Department of Orthopedics, Xiamen Hospital, Zhongshan Hospital, Fudan University, Xiamen, Fujian Province 361015, China.
| | - Ji-Bin Liu
- Institute of Oncology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu Province 226631, China.
| | - Da Fu
- General Surgery, Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Kun Tao
- Department of Pathology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Hong Yu
- Department of Pathology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, Jiangsu Province 225300, China; Department of Pathology, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu Province 225300, China.
| |
Collapse
|
7
|
Bruter AV, Varlamova EA, Okulova YD, Tatarskiy VV, Silaeva YY, Filatov MA. Genetically modified mice as a tool for the study of human diseases. Mol Biol Rep 2024; 51:135. [PMID: 38236499 DOI: 10.1007/s11033-023-09066-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024]
Abstract
Modeling a human disease is an essential part of biomedical research. The recent advances in the field of molecular genetics made it possible to obtain genetically modified animals for the study of various diseases. Not only monogenic disorders but also chromosomal and multifactorial disorders can be mimicked in lab animals due to genetic modification. Even human infectious diseases can be studied in genetically modified animals. An animal model of a disease enables the tracking of its pathogenesis and, more importantly, to test new therapies. In the first part of this paper, we review the most common DNA modification technologies and provide key ideas on specific technology choices according to the task at hand. In the second part, we focus on the application of genetically modified mice in studying human diseases.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
- Federal State Budgetary Institution "National Medical Research Center of Oncology Named After N.N. Blokhin" of the Ministry of Health of the Russian Federation, Research Institute of Carcinogenesis, Moscow, Russia, 115478
| | - Yulia D Okulova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Yulia Y Silaeva
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334
| | - Maxim A Filatov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia, 119334.
| |
Collapse
|
8
|
Bai W, Huang M, Li C, Li J. The biological principles and advanced applications of DSB repair in CRISPR-mediated yeast genome editing. Synth Syst Biotechnol 2023; 8:584-596. [PMID: 37711546 PMCID: PMC10497738 DOI: 10.1016/j.synbio.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
To improve the performance of yeast cell factories for industrial production, extensive CRISPR-mediated genome editing systems have been applied by artificially creating double-strand breaks (DSBs) to introduce mutations with the assistance of intracellular DSB repair. Diverse strategies of DSB repair are required to meet various demands, including precise editing or random editing with customized gRNAs or a gRNA library. Although most yeasts remodeling techniques have shown rewarding performance in laboratory verification, industrial yeast strain manipulation relies only on very limited strategies. Here, we comprehensively reviewed the molecular mechanisms underlying recent industrial applications to provide new insights into DSB cleavage and repair pathways in both Saccharomyces cerevisiae and other unconventional yeast species. The discussion of DSB repair covers the most frequently used homologous recombination (HR) and nonhomologous end joining (NHEJ) strategies to the less well-studied illegitimate recombination (IR) pathways, such as single-strand annealing (SSA) and microhomology-mediated end joining (MMEJ). Various CRISPR-based genome editing tools and corresponding gene editing efficiencies are described. Finally, we summarize recently developed CRISPR-based strategies that use optimized DSB repair for genome-scale editing, providing a direction for further development of yeast genome editing.
Collapse
Affiliation(s)
- Wenxin Bai
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Meilan Huang
- School of Chemistry and Chemical Engineering, David Keir Building, Queen's University Belfast, Stranmillis Road, Northern Ireland, BT9 5AG, Belfast, United Kingdom
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| | - Chun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Jun Li
- Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, PR China
- The BIT-QUB International Joint Laboratory in Synthetic Biology, Beijing, 100081, PR China
| |
Collapse
|
9
|
Li Y, Huang B, Chen J, Huang L, Xu J, Wang Y, Cui G, Zhao H, Xin B, Song W, Zhu J, Lai J. Targeted large fragment deletion in plants using paired crRNAs with type I CRISPR system. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2196-2208. [PMID: 37641539 PMCID: PMC10579709 DOI: 10.1111/pbi.14122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 06/25/2023] [Indexed: 08/31/2023]
Abstract
The CRISPR-Cas systems have been widely used as genome editing tools, with type II and V systems typically introducing small indels, and type I system mediating long-range deletions. However, the precision of type I systems for large fragment deletion is still remained to be optimized. Here, we developed a compact Cascade-Cas3 Dvu I-C system with Cas11c for plant genome editing. The Dvu I-C system was efficient to introduce controllable large fragment deletion up to at least 20 kb using paired crRNAs. The paired-crRNAs design also improved the controllability of deletions for the type I-E system. Dvu I-C system was sensitive to spacer length and mismatch, which was benefit for target specificity. In addition, we showed that the Dvu I-C system was efficient for generating stable transgenic lines in maize and rice with the editing efficiency up to 86.67%. Overall, Dvu I-C system we developed here is powerful for achieving controllable large fragment deletions.
Collapse
Affiliation(s)
- Yingnan Li
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Boyu Huang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jian Chen
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Liangliang Huang
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jianghai Xu
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yingying Wang
- College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Guanghui Cui
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Haiming Zhao
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Beibei Xin
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Weibin Song
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Jian‐Kang Zhu
- Institute of Advanced Biotechnology and School of Life SciencesSouthern University of Science and TechnologyShenzhenChina
- Center for Advanced Bioindustry TechnologiesChinese Academy of Agricultural SciencesBeijingChina
| | - Jinsheng Lai
- State Key Laboratory of Maize Bio‐breeding, National Maize Improvement Center, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
- Frontiers Science Center for Molecular Design BreedingChina Agricultural UniversityBeijingChina
- Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
- Hainan Yazhou Bay Seed LaboratorySanyaChina
| |
Collapse
|
10
|
de Koning R, Daryanavard H, Garmyn J, Kiekens R, Toili MEM, Angenon G. Fine-tuning CRISPR/Cas9 gene editing in common bean ( Phaseolus vulgaris L.) using a hairy root transformation system and in silico prediction models. FRONTIERS IN PLANT SCIENCE 2023; 14:1233418. [PMID: 37929181 PMCID: PMC10623320 DOI: 10.3389/fpls.2023.1233418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023]
Abstract
The stable transformation of common bean is a challenging and time-consuming process. Although CRISPR/Cas9 has revolutionized gene editing with its high efficiency and specificity, the performance of the system can be affected by multiple factors, such as sgRNA specificity and effectiveness, and the choice of promoter used to drive Cas9 expression. The use of a hairy root transformation system to initially check the efficiency of sgRNAs and the impact of different promoters could speed up this process and increase the chances of success. We initially tested three different transformation methods to induce hairy roots and selected a preferred method suitable for a variety of different common bean genotypes. This method involved inoculating a severed radicle with Rhizobium rhizogenes K599 and was fast, had a high transformation frequency of 42-48%, and resulted in numerous hairy roots. This method was further used for the transformation of explants using R. rhizogenes harboring different CRISPR/Cas9 constructs and evaluated the on-target activity of sgRNAs targeting raffinose family oligosaccharides biosynthetic genes and the impact of different promoters driving Cas9 on the gene editing efficiency. Additionally, we evaluated the reliability of the in silico tools, CRISPOR, CRISPR RGEN, and inDelphi to predict the sgRNA efficiencies and resulting mutations. Our results showed that the hairy root transformation system allows for rapid evaluation of multiple sgRNAs and promoters. We also identified several highly efficient sgRNAs that induced frameshift mutations at rates of up to 70% when a parsley ubiquitin promoter was driving Cas9 expression, providing valuable information for the selection of the most effective sgRNAs and promoters for future transformation experiments. Although most of the computational models used to predict the sgRNA efficiency did not match the in planta results, the Lindel model proved to be the most reliable for P. vulgaris, accurately predicting the sgRNA efficiency and the type of induced mutation in most hairy roots. Furthermore, the inDelphi algorithm could correctly predict deletions and single nucleotide insertions resulting from DNA double-strand breaks in common bean. These results offer promising implications for enhancing precise editing in plants because they provide the possibility of predicting repair outcomes.
Collapse
Affiliation(s)
- Ramon de Koning
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hana Daryanavard
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Joyce Garmyn
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Raphaël Kiekens
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mary Esther Muyoka Toili
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Geert Angenon
- Research Group Plant Genetics, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Dutta TK, Vashisth N, Ray S, Phani V, Chinnusamy V, Sirohi A. Functional analysis of a susceptibility gene (HIPP27) in the Arabidopsis thaliana-Meloidogyne incognita pathosystem by using a genome editing strategy. BMC PLANT BIOLOGY 2023; 23:390. [PMID: 37563544 PMCID: PMC10416466 DOI: 10.1186/s12870-023-04401-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Plant-parasitic root-knot nematodes cause immense yield declines in crop plants that ultimately obviate global food security. They maintain an intimate relationship with their host plants and hijack the host metabolic machinery to their own advantage. The existing resistance breeding strategies utilizing RNAi and resistance (R) genes might not be particularly effective. Alternatively, knocking out the susceptibility (S) genes in crop plants appears to be a feasible approach, as the induced mutations in S genes are likely to be long-lasting and may confer broad-spectrum resistance. This could be facilitated by the use of CRISPR/Cas9-based genome editing technology that precisely edits the gene of interest using customizable guide RNAs (gRNAs) and Cas9 endonuclease. RESULTS Initially, we characterized the nematode-responsive S gene HIPP27 from Arabidopsis thaliana by generating HIPP27 overexpression lines, which were inoculated with Meloidogyne incognita. Next, two gRNAs (corresponding to the HIPP27 gene) were artificially synthesized using laboratory protocols, sequentially cloned into a Cas9 editor plasmid, mobilized into Agrobacterium tumefaciens strain GV3101, and transformed into Arabidopsis plants using the floral dip method. Apart from 1-3 bp deletions and 1 bp insertions adjacent to the PAM site, a long deletion of approximately 161 bp was documented in the T0 generation. Phenotypic analysis of homozygous, 'transgene-free' T2 plants revealed reduced nematode infection compared to wild-type plants. Additionally, no growth impairment was observed in gene-edited plants. CONCLUSION Our results suggest that the loss of function of HIPP27 in A. thaliana by CRISPR/Cas9-induced mutagenesis can improve host resistance to M. incognita.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Neeraj Vashisth
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Soham Ray
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, Balurghat, West Bengal, 733133, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
12
|
Tanihara F, Hirata M, Namula Z, Wittayarat M, Do LTK, Lin Q, Takebayashi K, Hara H, Nagahara M, Otoi T. GHR-mutant pig derived from domestic pig and microminipig hybrid zygotes using CRISPR/Cas9 system. Mol Biol Rep 2023; 50:5049-5057. [PMID: 37101010 DOI: 10.1007/s11033-023-08388-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/15/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Pigs are excellent large animal models with several similarities to humans. They provide valuable insights into biomedical research that are otherwise difficult to obtain from rodent models. However, even if miniature pig strains are used, their large stature compared with other experimental animals requires a specific maintenance facility which greatly limits their usage as animal models. Deficiency of growth hormone receptor (GHR) function causes small stature phenotypes. The establishment of miniature pig strains via GHR modification will enhance their usage as animal models. Microminipig is an incredibly small miniature pig strain developed in Japan. In this study, we generated a GHR mutant pig using electroporation-mediated introduction of the CRISPR/Cas9 system into porcine zygotes derived from domestic porcine oocytes and microminipig spermatozoa. METHODS AND RESULTS First, we optimized the efficiency of five guide RNAs (gRNAs) designed to target GHR in zygotes. Embryos that had been electroporated with the optimized gRNAs and Cas9 were then transferred into recipient gilts. After embryo transfer, 10 piglets were delivered, and one carried a biallelic mutation in the GHR target region. The GHR biallelic mutant showed a remarkable growth-retardation phenotype. Furthermore, we obtained F1 pigs derived from the mating of GHR biallelic mutant with wild-type microminipig, and GHR biallelic mutant F2 pigs through sib-mating of F1 pigs. CONCLUSIONS We have successfully demonstrated the generation of biallelic GHR-mutant small-stature pigs. Backcrossing of GHR-deficient pig with microminipig will establish the smallest pig strain which can contribute significantly to the field of biomedical research.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Zhao Namula
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Manita Wittayarat
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Lanh Thi Kim Do
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Qingyi Lin
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Koki Takebayashi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Hiromasa Hara
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, 3290498, Japan
- Laboratory of Regenerative And Cellular Medicine, Jichi Medical University, Tochigi, 3290498, Japan
| | - Megumi Nagahara
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan.
- Bio-Innovation Research Center, Tokushima University, Ishii, Myozai-gun, Tokushima, 7793233, Japan.
| |
Collapse
|
13
|
Targeting DNA repair pathways with B02 and Nocodazole small molecules to improve CRIS-PITCh mediated cassette integration in CHO-K1 cells. Sci Rep 2023; 13:3116. [PMID: 36813818 PMCID: PMC9947112 DOI: 10.1038/s41598-023-29863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
CRISPR-mediated integration could be used to develop the recombinant CHO (rCHO) cells by knock-in into the hotspot loci. However, low HDR efficiency besides the complex donor design is the main barrier for achieving so. The recently introduced MMEJ-mediated CRISPR system (CRIS-PITCh) uses a donor with short homology arms, being linearized in the cells via two sgRNAs. In this paper, a new approach to improve CRIS-PITCh knock-in efficiency by employing small molecules was investigated. Two small molecules, B02, a Rad51 inhibitor, and Nocodazole, a G2/M cell cycle synchronizer, were used to target the S100A hotspot site using a bxb1 recombinase comprised landing pad in CHO-K1 cells. Following transfection, the CHO-K1 cells were treated with the optimum concentration of one or combination of small molecules, being determined by the cell viability or flow cytometric cell cycle assay. Stable cell lines were generated and the single-cell clones were achieved by the clonal selection procedure. The finding showed that B02 improved the PITCh-mediated integration approximately twofold. In the case of Nocodazole treatment, the improvement was even more significant, up to 2.4-fold. However, the combinatorial effects of both molecules were not substantial. Moreover, according to the copy number and out-out PCR analyses, 5 and 6 of 20 clonal cells exhibited mono-allelic integration in Nocodazole and B02 groups, respectively. The results of the present study as the first attempt to enhance the CHO platform generation by exploiting two small molecules in the CRIS-PITCh system could be used in future researches to establish rCHO clones.
Collapse
|
14
|
Hoffie RE, Perovic D, Habekuß A, Ordon F, Kumlehn J. Novel resistance to the Bymovirus BaMMV established by targeted mutagenesis of the PDIL5-1 susceptibility gene in barley. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:331-341. [PMID: 36221782 PMCID: PMC9884012 DOI: 10.1111/pbi.13948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/24/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
The Potyviridae are the largest family of plant-pathogenic viruses. Members of this family are the soil-borne bymoviruses barley yellow mosaic virus (BaYMV) and barley mild mosaic virus (BaMMV), which, upon infection of young winter barley seedlings in autumn, can cause yield losses as high as 50%. Resistance breeding plays a major role in coping with these pathogens. However, some viral strains have overcome the most widely used resistance. Thus, there is a need for novel sources of resistance. In ancient landraces and wild relatives of cultivated barley, alleles of the susceptibility factor PROTEIN DISULFIDE ISOMERASE LIKE 5-1 (PDIL5-1) were identified to confer resistance to all known strains of BaYMV and BaMMV. Although the gene is highly conserved throughout all eukaryotes, barley is thus far the only species for which PDIL5-1-based virus resistance has been reported. Whereas introgression by crossing to the European winter barley breeding pool is tedious, time-consuming and additionally associated with unwanted linkage drag, the present study exemplifies an approach to targeted mutagenesis of two barley cultivars employing CRISPR-associated endonuclease technology to induce site-directed mutations similar to those described for PDIL5-1 alleles that render certain landraces resistant. Homozygous primary mutants were produced in winter barley, and transgene-free homozygous M2 mutants were produced in spring barley. A variety of mutants carrying novel PDIL5-1 alleles were mechanically inoculated with BaMMV, by which all frameshift mutations and certain in-frame mutations were demonstrated to confer resistance to this virus. Under greenhouse conditions, virus-resistant mutants showed no adverse effects in terms of growth and yield.
Collapse
Affiliation(s)
- Robert Eric Hoffie
- Plant Reproductive BiologyLeibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| | - Dragan Perovic
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Antje Habekuß
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Frank Ordon
- Institute for Resistance Research and Stress ToleranceJulius Kuehn Institute (JKI)Federal Research Centre for Cultivated PlantsQuedlinburgGermany
| | - Jochen Kumlehn
- Plant Reproductive BiologyLeibniz‐Institute of Plant Genetics and Crop Plant Research (IPK)SeelandGermany
| |
Collapse
|
15
|
Goto T, Yogo K, Hochi S, Hirabayashi M. Characterization of homozygous Foxn1 mutations induced in rat embryos by different delivery forms of Cas9 nuclease. Mol Biol Rep 2023; 50:1231-1239. [PMID: 36441374 DOI: 10.1007/s11033-022-08054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The Cas9 nuclease is delivered in the form of either Cas9 protein or mRNA along with CRISPR guide RNA (gRNA: dual-crRNA:tracrRNA or chimeric single-guide RNA) or in a plasmid package encoding both Cas9 and the CRISPR gRNA. METHODS AND RESULTS We directly compared the efficiency of producing rat blastocysts with homozygous mutations of the Foxn1 locus by pronuclear injection of Cas9 in the form of protein, mRNA, or plasmid DNA. For highly efficient production of rat blastocysts with homozygous Foxn1 mutations, pronuclear injection of Cas9 protein at 60 ng/µl was likely optimal. While blastocyst harvest in the mRNA groups was higher than those in the protein and plasmid DNA groups, genotype analysis showed that 63.6%, 8.7-20.0%, and 25.0% of the analyzed blastocysts were homozygous mutants in the protein, mRNA, and plasmid DNA groups, respectively. The high efficiency of producing homozygous mutant blastocysts in the 60 ng/µl protein group may be associated with primary genome editing being initiated before the first cleavage. In most cases, homozygous mutations at the target Foxn1 locus are triggered by deletion and repair via nonhomologous end joining or microhomology-mediated end joining. Deletion downstream of the Cas9 break site was more likely than deletion in the upstream direction. CONCLUSIONS The Cas9 nuclease in protein form, when coinjected with the CRISPR gRNA (ribonucleoprotein) into a rat zygote pronucleus, can access the target genome site and induce double-strand breaks promptly, resulting in the efficient production of homozygous mutants.
Collapse
Affiliation(s)
- Teppei Goto
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 444-8787, Okazaki, Aichi, Japan.,Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, 650-0047, Kobe, Hyogo, Japan
| | - Kyoko Yogo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 444-8787, Okazaki, Aichi, Japan
| | - Shinichi Hochi
- Faculty of Textile Science and Technology, Shinshu University, 386-8567, Ueda, Nagano, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 444-8787, Okazaki, Aichi, Japan. .,The Graduate University of Advanced Studies, 444-8787, Okazaki, Aichi, Japan.
| |
Collapse
|
16
|
Liu H, Lin B, Ren Y, Hao P, Huang L, Xue B, Jiang L, Zhu Y, Hua S. CRISPR/Cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed ( Brassica napus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1034215. [PMID: 36483970 PMCID: PMC9723152 DOI: 10.3389/fpls.2022.1034215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Seed oleic acid is an important quality trait sought in rapeseed breeding programs. Many methods exist to increase seed oleic acid content, such as the CRISPR/Cas9-mediated genome editing system, yet there is no report on seed oleic acid content improvement via this system's precise editing of the double loci of BnFAD2. Here, a precise CRISPR/Cas9-mediated genome editing of the encoded double loci (A5 and C5) of BnFAD2 was established. The results demonstrated high efficiency of regeneration and transformation, with the rapeseed genotype screened in ratios of 20.18% and 85.46%, respectively. The total editing efficiency was 64.35%, whereas the single locus- and double locus-edited ratios were 21.58% and 78.42%, respectively. The relative proportion of oleic acid with other fatty acids in seed oil of mutants was significantly higher for those that underwent the editing on A5 copy than that on C5 copy, but it was still less than 80%. For double locus-edited mutants, their relative proportion of oleic acid was more than 85% in the T1 and T4 generations. A comparison of the sequences between the double locus-edited mutants and reference showed that no transgenic border sequences were detected from the transformed vector. Analysis of the BnFAD2 sequence on A5 and C5 at the mutated locus of double loci mutants uncovered evidence for base deletion and insertion, and combination. Further, no editing issue of FAD2 on the copy of A1 was detected on the three targeted editing regions. Seed yield, yield component, oil content, and relative proportion of oleic acid between one selected double loci-edited mutant and wild type were also compared. These results showed that although the number of siliques per plant of the wild type was significantly higher than those of the mutant, the differences in seed yield and oil content were not significant between them, albeit with the mutant having a markedly higher relative proportion of oleic acid. Altogether, our results confirmed that the established CRISPR/Cas9-mediated genome editing of double loci (A5 and C5) of the BnFAD2 can precisely edit the targeted genes, thereby enhancing the seed oleic acid content to a far greater extent than can a single locus-editing system.
Collapse
Affiliation(s)
- Han Liu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
- Department of Seed Management, Yongding Agriculture and Rural Bureau of Longyan, Longyan, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Institution of Crop Science, Huzhou, China
| | - Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Bowen Xue
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yang Zhu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou, China
| |
Collapse
|
17
|
Přibylová A, Fischer L, Pyott DE, Bassett A, Molnar A. DNA methylation can alter CRISPR/Cas9 editing frequency and DNA repair outcome in a target-specific manner. THE NEW PHYTOLOGIST 2022; 235:2285-2299. [PMID: 35524464 PMCID: PMC9545110 DOI: 10.1111/nph.18212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/02/2022] [Indexed: 05/31/2023]
Abstract
The impact of epigenetic modifications on the efficacy of CRISPR/Cas9-mediated double-stranded DNA breaks and subsequent DNA repair is poorly understood, especially in plants. In this study, we investigated the effect of the level of cytosine methylation on the outcome of CRISPR/Cas9-induced mutations at multiple Cas9 target sites in Nicotiana benthamiana leaf cells using next-generation sequencing. We found that high levels of promoter methylation, but not gene-body methylation, decreased the frequency of Cas9-mediated mutations. DNA methylation also influenced the ratio of insertions and deletions and potentially the type of Cas9 cleavage in a target-specific manner. In addition, we detected an over-representation of deletion events governed by a single 5'-terminal nucleotide at Cas9-induced DNA breaks. Our findings suggest that DNA methylation can indirectly impair Cas9 activity and subsequent DNA repair, probably through changes in the local chromatin structure. In addition to the well described Cas9-induced blunt-end double-stranded DNA breaks, we provide evidence for Cas9-mediated staggered DNA cuts in plant cells. Both types of cut may direct microhomology-mediated DNA repair by a novel, as yet undescribed, mechanism.
Collapse
Affiliation(s)
- Adéla Přibylová
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Lukáš Fischer
- Faculty of ScienceCharles UniversityPrague128 44Czech Republic
| | - Douglas E. Pyott
- The Wellcome Trust Center for Cell BiologyInstitute of Cell BiologyThe University of EdinburghEdinburghEH9 3BFUK
| | - Andrew Bassett
- Wellcome Sanger InstituteWellcome Genome CampusHinxtonCB10 1SAUK
| | - Attila Molnar
- Institute of Molecular Plant SciencesThe University of EdinburghEdinburghEH9 3BFUK
| |
Collapse
|
18
|
Baidya S, Choudhury S, De RK. A Novel CRISPR-MultiTargeter Multi-agent Reinforcement learning (CMT-MARL) algorithm to identify editable target regions using a Hybrid scoring from multiple similar sequences. APPL INTELL 2022. [DOI: 10.1007/s10489-022-03871-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Barka GD, Lee J. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected Solanaceae crop plants. Bioengineered 2022; 13:14646-14666. [PMID: 35891620 PMCID: PMC9342254 DOI: 10.1080/21655979.2022.2099599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Genome-editing tools for the development of traits to tolerate abiotic and biotic adversaries are the recently devised breeding techniques revolutionizing molecular breeding by addressing the issues of rapidness and precision. To that end, disease resistance development by disrupting disease susceptibility genes (S genes) to intervene in the biological mechanism of pathogenicity has significantly improved the techniques of molecular breeding. Despite the achievements in genome-editing aimed at the intervention of the function of susceptibility determinants or gene regulatory elements, off-target effects associated with yield-related traits are still the main setbacks. The challenges are attributed to the complexity of the inheritance of traits controlled by pleiotropic genes. Therefore, a more rigorous genome-editing tool with ultra-precision and efficiency for the development of broad-spectrum and durable disease resistance applied to staple crop plants is of critical importance in molecular breeding programs. The main objective of this article is to review the most impressive progresses achieved in resistance breeding against the main diseases of three Solanaceae crops (potato, Solanum tuberosum; tomato, Solanum lycopersicum and pepper, Capsicum annuum) using genome-editing by disrupting the sequences of S genes, their promoters, or pathogen genes. In this paper, we discussed the complexity and applicability of genome-editing tools, summarized the main disease of Solanaceae crops, and compiled the recent reports on disease resistance developed by S-gene silencing and their off-target effects. Moreover, GO count and gene annotation were made for pooled S-genes from biological databases. Achievements and prospects of S-gene-based next-generation breeding technologies are also discussed. Most S genes are membrane –anchored and are involved in infection and pre-penetration process S gene-editing is less likely to cause an off-target effect Gene-editing has been considered a more acceptable engineering tool Editing S genes either from the pathogen or host ends has opened new possibilities
Collapse
Affiliation(s)
- Geleta Dugassa Barka
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju, South Korea.,Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Jundae Lee
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
20
|
Qiao H, Wu J, Zhang X, Luo J, Wang H, Ming D. The Advance of CRISPR-Cas9-Based and NIR/CRISPR-Cas9-Based Imaging System. Front Chem 2021; 9:786354. [PMID: 34976954 PMCID: PMC8716450 DOI: 10.3389/fchem.2021.786354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The study of different genes, chromosomes and the spatiotemporal relationship between them is of great significance in the field of biomedicine. CRISPR-Cas9 has become the most widely used gene editing tool due to its excellent targeting ability. In recent years, a series of advanced imaging technologies based on Cas9 have been reported, providing fast and convenient tools for studying the sites location of genome, RNA, and chromatin. At the same time, a variety of CRISPR-Cas9-based imaging systems have been developed, which are widely used in real-time multi-site imaging in vivo. In this review, we summarized the component and mechanism of CRISPR-Cas9 system, overviewed the NIR imaging and the application of NIR fluorophores in the delivery of CRISPR-Cas9, and highlighted advances of the CRISPR-Cas9-based imaging system. In addition, we also discussed the challenges and potential solutions of CRISPR-Cas9-based imaging methods, and looked forward to the development trend of the field.
Collapse
Affiliation(s)
- Huanhuan Qiao
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jieting Wu
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaodong Zhang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Hao Wang
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Hao Wang, ; Dong Ming,
| | - Dong Ming
- Functional Materials Laboratory, Institute of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- *Correspondence: Hao Wang, ; Dong Ming,
| |
Collapse
|
21
|
Vu TV, Das S, Nguyen CC, Kim J, Kim JY. Single-strand annealing: Molecular mechanisms and potential applications in CRISPR-Cas-based precision genome editing. Biotechnol J 2021; 17:e2100413. [PMID: 34846104 DOI: 10.1002/biot.202100413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Spontaneous double-stranded DNA breaks (DSBs) frequently occur within the genome of all living organisms and must be well repaired for survival. Recently, more important roles of the DSB repair pathways that were previously thought to be minor pathways, such as single-strand annealing (SSA), have been shown. Nevertheless, the biochemical mechanisms and applications of the SSA pathway in genome editing have not been updated. PURPOSE AND SCOPE Understanding the molecular mechanism of SSA is important to design potential applications in gene editing. This review provides insights into the recent progress of SSA studies and establishes a model for their potential applications in precision genome editing. SUMMARY AND CONCLUSION The SSA mechanism involved in DNA DSB repair appears to be activated by a complex signaling cascade starting with broken end sensing and 5'-3' resection to reveal homologous repeats on the 3' ssDNA overhangs that flank the DSB. Annealing the repeats would help to amend the discontinuous ends and restore the intact genome, resulting in the missing of one repeat and the intervening sequence between the repeats. We proposed a model for CRISPR-Cas-based precision insertion or replacement of DNA fragments to take advantage of the characteristics. The proposed model can add a tool to extend the choice for precision gene editing. Nevertheless, the model needs to be experimentally validated and optimized with SSA-favorable conditions for practical applications.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Bac Tu Liem, Hanoi, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Cam Chau Nguyen
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jihae Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea.,Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
22
|
Vu TV, Das S, Tran MT, Hong JC, Kim JY. Precision Genome Engineering for the Breeding of Tomatoes: Recent Progress and Future Perspectives. Front Genome Ed 2021; 2:612137. [PMID: 34713235 PMCID: PMC8525411 DOI: 10.3389/fgeed.2020.612137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Currently, poor biodiversity has raised challenges in the breeding and cultivation of tomatoes, which originated from the Andean region of Central America, under global climate change. Meanwhile, the wild relatives of cultivated tomatoes possess a rich source of genetic diversity but have not been extensively used for the genetic improvement of cultivated tomatoes due to the possible linkage drag of unwanted traits from their genetic backgrounds. With the advent of new plant breeding techniques (NPBTs), especially CRISPR/Cas-based genome engineering tools, the high-precision molecular breeding of tomato has become possible. Further, accelerated introgression or de novo domestication of novel and elite traits from/to the wild tomato relatives to/from the cultivated tomatoes, respectively, has emerged and has been enhanced with high-precision tools. In this review, we summarize recent progress in tomato precision genome editing and its applications for breeding, with a special focus on CRISPR/Cas-based approaches. Future insights and precision tomato breeding scenarios in the CRISPR/Cas era are also discussed.
Collapse
Affiliation(s)
- Tien Van Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea.,National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Hanoi, Vietnam
| | - Swati Das
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Mil Thi Tran
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea.,Crop Science and Rural Development Division, College of Agriculture, Bac Lieu University, Bac Lieu, Vietnam
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea.,Division of Life Science, Gyeongsang National University, Jinju, South Korea
| |
Collapse
|
23
|
Čermák T. Sequence modification on demand: search and replace tools for precise gene editing in plants. Transgenic Res 2021; 30:353-379. [PMID: 34086167 DOI: 10.1007/s11248-021-00253-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/05/2021] [Indexed: 12/26/2022]
Abstract
Until recently, our ability to generate allelic diversity in plants was limited to introduction of variants from domesticated and wild species by breeding via uncontrolled recombination or the use of chemical and physical mutagens-processes that are lengthy and costly or lack specificity, respectively. Gene editing provides a faster and more precise way to create new variation, although its application in plants has been dominated by the creation of short insertion and deletion mutations leading to loss of gene function, mostly due to the dependence of editing outcomes on DNA repair pathway choices intrinsic to higher eukaryotes. Other types of edits such as point mutations and precise and pre-designed targeted sequence insertions have rarely been implemented, despite providing means to modulate the expression of target genes or to engineer the function and stability of their protein products. Several advancements have been developed in recent years to facilitate custom editing by regulation of repair pathway choices or by taking advantage of alternative types of DNA repair. We have seen the advent of novel gene editing tools that are independent of DNA double-strand break repair, and methods completely independent of host DNA repair processes are being increasingly explored. With the aim to provide a comprehensive review of the state-of-the-art methodology for allele replacement in plants, I discuss the adoption of these improvements for plant genome engineering.
Collapse
|