1
|
Huang J, Qiao Z, Yu H, Lu Z, Chen W, Lu J, Wu J, Bao Y, Shahid MQ, Liu X. OsRH52A, a DEAD-box protein, regulates functional megaspore specification and is required for embryo sac development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4802-4821. [PMID: 38642102 PMCID: PMC11350083 DOI: 10.1093/jxb/erae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The development of the embryo sac is an important factor that affects seed setting in rice. Numerous genes associated with embryo sac (ES) development have been identified in plants; however, the function of the DEAD-box RNA helicase family genes is poorly known in rice. Here, we characterized a rice DEAD-box protein, RH52A, which is localized in the nucleus and cytoplasm and highly expressed in the floral organs. The knockout mutant rh52a displayed partial ES sterility, including degeneration of the ES (21%) and the presence of a double-female-gametophyte (DFG) structure (11.8%). The DFG developed from two functional megaspores near the chalazal end in one ovule, and 3.4% of DFGs were able to fertilize via the sac near the micropylar pole in rh52a. RH52A was found to interact with MFS1 and ZIP4, both of which play a role in homologous recombination in rice meiosis. RNA-sequencing identified 234 down-regulated differentially expressed genes associated with reproductive development, including two, MSP1 and HSA1b, required for female germline cell specification. Taken together, our study demonstrates that RH52A is essential for the development of the rice embryo sac and provides cytological details regarding the formation of DFGs.
Collapse
Affiliation(s)
- Jinghua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhengping Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weibin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junming Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Wu T, Yang S, Fang J, Ye Y, Zhang Y, Gao J, Leng J, Zhang Z, Tang K, Bhat JA, Feng X. MutL homolog 1 participates in interference-sensitive meiotic crossover formation in soybean. PLANT PHYSIOLOGY 2024; 195:2579-2595. [PMID: 38492234 PMCID: PMC11288737 DOI: 10.1093/plphys/kiae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
MutL homolog 1 (MLH1), a member of the MutL homolog family, is required for normal recombination in most organisms. However, its role in soybean (Glycine max) remains unclear to date. Here, we characterized the Glycine max female and male sterility 1 (Gmfms1) mutation that reduces pollen grain viability and increases embryo sac abortion in soybean. Map-based cloning revealed that the causal gene of Gmfms1 is Glycine max MutL homolog 1 (GmMLH1), and CRISPR/Cas9 knockout approach further validated that disruption of GmMLH1 confers the female-male sterility phenotype in soybean. Loss of GmMLH1 function disrupted bivalent formation, leading to univalent mis-segregation during meiosis and ultimately to female-male sterility. The Gmmlh1 mutant showed about a 78.16% decrease in meiotic crossover frequency compared to the wild type. The residual chiasmata followed a Poisson distribution, suggesting that interference-sensitive crossover formation was affected in the Gmmlh1 mutant. Furthermore, GmMLH1 could interact with GmMLH3A and GmMLH3B both in vivo and in vitro. Overall, our work demonstrates that GmMLH1 participates in interference-sensitive crossover formation in soybean, and provides additional information about the conserved functions of MLH1 across plant species.
Collapse
Affiliation(s)
- Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junling Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
| | - Yongheng Ye
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaohua Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jinshan Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jiantian Leng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhirui Zhang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | | | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Zhejiang Lab, Hangzhou 311121, China
| |
Collapse
|
3
|
Liu X, Gu D, Zhang Y, Jiang Y, Xiao Z, Xu R, Qin R, Li J, Wei P. Conditional knockdown of OsMLH1 to improve plant prime editing systems without disturbing fertility in rice. Genome Biol 2024; 25:131. [PMID: 38773623 PMCID: PMC11110357 DOI: 10.1186/s13059-024-03282-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/16/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND High-efficiency prime editing (PE) is desirable for precise genome manipulation. The activity of mammalian PE systems can be largely improved by inhibiting DNA mismatch repair by coexpressing a dominant-negative variant of MLH1. However, this strategy has not been widely used for PE optimization in plants, possibly because of its less conspicuous effects and inconsistent performance at different sites. RESULTS We show that direct RNAi knockdown of OsMLH1 in an ePE5c system increases the efficiency of our most recently updated PE tool by 1.30- to 2.11-fold in stably transformed rice cells, resulting in as many as 85.42% homozygous mutants in the T0 generation. The high specificity of ePE5c is revealed by whole-genome sequencing. To overcome the partial sterility induced by OsMLH1 knockdown of ePE5c, a conditional excision system is introduced to remove the RNAi module by Cre-mediated site-specific recombination. Using a simple approach of enriching excision events, we generate 100% RNAi module-free plants in the T0 generation. The increase in efficiency due to OsMLH1 knockdown is maintained in the excised plants, whose fertility is not impaired. CONCLUSIONS This study provides a safe and reliable plant PE optimization strategy for improving editing efficiency without disturbing plant development via transient MMR inhibition with an excisable RNAi module of MLH1.
Collapse
Affiliation(s)
- Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Dongfang Gu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Yiru Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Yingli Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Zhi Xiao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China
| | - Rongfang Xu
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Ruiying Qin
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Juan Li
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China.
| | - Pengcheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
- Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, People's Republic of China.
| |
Collapse
|
4
|
Zhang Z, Guo YY, Wang YC, Zhou L, Fan J, Mao YC, Yang YM, Zhang YF, Huang XH, Zhu J, Zhang C, Yang ZN. A point mutation in the meiotic crossover formation gene HEI10/TFS2 leads to thermosensitive genic sterility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:506-518. [PMID: 38169508 DOI: 10.1111/tpj.16621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Thermosensitive genic female sterility (TGFS) is a promising property to be utilized for hybrid breeding. Here, we identified a rice TGFS line, tfs2, through an ethyl methyl sulfone (EMS) mutagenesis strategy. This line showed sterility under high temperature and became fertile under low temperature. Few seeds were produced when the tfs2 stigma was pollinated, indicating that tfs2 is female sterile. Gene cloning and genetic complementation showed that a point mutation from leucine to phenylalanine in HEI10 (HEI10tfs2), a crossover formation protein, caused the TGFS trait of tfs2. Under high temperature, abnormal univalents were formed, and the chromosomes were unequally segregated during meiosis, similar to the reported meiotic defects in oshei10. Under low temperature, the number of univalents was largely reduced, and the chromosomes segregated equally, suggesting that crossover formation was restored in tfs2. Yeast two-hybrid assays showed that HEI10 interacted with two putative protein degradation-related proteins, RPT4 and SRFP1. Through transient expression in tobacco leaves, HEI10 were found to spontaneously aggregate into dot-like foci in the nucleus under high temperature, but HEI10tfs2 failed to aggregate. In contrast, low temperature promoted HEI10tfs2 aggregation. This result suggests that protein aggregation at the crossover position contributes to the fertility restoration of tfs2 under low temperature. In addition, RPT4 and SRFP1 also aggregated into dot-like foci, and these aggregations depend on the presence of HEI10. These findings reveal a novel mechanism of fertility restoration and facilitate further understanding of HEI10 in meiotic crossover formation.
Collapse
Affiliation(s)
- Zheng Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yu-Yi Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lei Zhou
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jing Fan
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi-Chen Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Ming Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yan-Fei Zhang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Hui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Cheng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Collaborative Innovation Center of Plant Germplasm Resources Development, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
5
|
Rafiei N, Ronceret A. Crossover interference mechanism: New lessons from plants. Front Cell Dev Biol 2023; 11:1156766. [PMID: 37274744 PMCID: PMC10236007 DOI: 10.3389/fcell.2023.1156766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 06/06/2023] Open
Abstract
Plants are the source of our understanding of several fundamental biological principles. It is well known that Gregor Mendel discovered the laws of Genetics in peas and that maize was used for the discovery of transposons by Barbara McClintock. Plant models are still useful for the understanding of general key biological concepts. In this article, we will focus on discussing the recent plant studies that have shed new light on the mysterious mechanisms of meiotic crossover (CO) interference, heterochiasmy, obligatory CO, and CO homeostasis. Obligatory CO is necessary for the equilibrated segregation of homologous chromosomes during meiosis. The tight control of the different male and female CO rates (heterochiasmy) enables both the maximization and minimization of genome shuffling. An integrative model can now predict these observed aspects of CO patterning in plants. The mechanism proposed considers the Synaptonemal Complex as a canalizing structure that allows the diffusion of a class I CO limiting factor linearly on synapsed bivalents. The coarsening of this limiting factor along the SC explains the interfering spacing between COs. The model explains the observed coordinated processes between synapsis, CO interference, CO insurance, and CO homeostasis. It also easily explains heterochiasmy just considering the different male and female SC lengths. This mechanism is expected to be conserved in other species.
Collapse
|
6
|
Qiao D, Wang J, Lu MH, Xin C, Chai Y, Jiang Y, Sun W, Cao Z, Guo S, Wang XC, Chen QJ. Optimized prime editing efficiently generates heritable mutations in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:900-906. [PMID: 36478403 DOI: 10.1111/jipb.13428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Low efficiency is the main obstacle to using prime editing in maize (Zea mays). Recently, prime-editing efficiency was greatly improved in mammalian cells and rice (Oryza sativa) plants by engineering prime-editing guide RNAs (pegRNAs), optimizing the prime editor (PE) protein, and manipulating cellular determinants of prime editing. In this study, we tested PEs optimized via these three strategies in maize. We demonstrated that the ePE5max system, composed of PEmax, epegRNAs (pegRNA-evopreQ. 1), nicking single guide RNAs (sgRNAs), and MLH1dn, efficiently generated heritable mutations that conferred resistance to herbicides that inhibit 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), acetolactate synthase (ALS), or acetyl CoA carboxylase (ACCase) activity. Collectively, we demonstrate that the ePE5max system has sufficient efficiency to generate heritable (homozygous or heterozygous) mutations in maize target genes and that the main obstacle to using PEs in maize has thus been removed.
Collapse
Affiliation(s)
- Dexin Qiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Junya Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Min-Hui Lu
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Cuiping Xin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiping Chai
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuanyuan Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhenghong Cao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Siyi Guo
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, School of Life Science, Henan University, Kaifeng, 475004, China
| | - Xue-Chen Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Hu X, Yu P, Zhang Y, Gao Z, Sun B, Wu W, Deng C, Abbas A, Hong Y, Sun L, Liu Q, Xue P, Wang B, Zhan X, Cao L, Cheng S. Mutation of DEFECTIVE EMBRYO SAC1 results in a low seed-setting rate in rice by regulating embryo sac development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1501-1516. [PMID: 36651501 PMCID: PMC10010608 DOI: 10.1093/jxb/erac506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The seed-setting rate has a significant effect on grain yield in rice (Oryza sativa L.). Embryo sac development is essential for seed setting; however, the molecular mechanism underlying this process remains unclear. Here, we isolated defective embryo sac1 (des1), a rice mutant with a low seed-setting rate. Cytological examination showed degenerated embryo sacs and reduced fertilization capacity in des1. Map-based cloning revealed a nonsense mutation in OsDES1, a gene that encodes a putative nuclear envelope membrane protein (NEMP)-domain-containing protein that is preferentially expressed in pistils. The OsDES1 mutation disrupts the normal formation of functional megaspores, which ultimately results in a degenerated embryo sac in des1. Reciprocal crosses showed that fertilization is abnormal and that the female reproductive organ is defective in des1. OsDES1 interacts with LONELY GUY (LOG), a cytokinin-activating enzyme that acts in the final step of cytokinin synthesis; mutation of LOG led to defective female reproductive organ development. These results demonstrate that OsDES1 functions in determining the rice seed-setting rate by regulating embryo sac development and fertilization. Our study sheds light on the function of NEMP-type proteins in rice reproductive development.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Gao
- Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Bin Sun
- Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Weixun Wu
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Chenwei Deng
- Zhoukou Academy of Agricultural Sciences, Zhoukou, Henan, 466001, China
| | - Adil Abbas
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Yongbo Hong
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Lianping Sun
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Qunen Liu
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Pao Xue
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Beifang Wang
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | - Xiaodeng Zhan
- China National Rice Research Institute, Hangzhou, Zhejiang, 311400, China
| | | | | |
Collapse
|
8
|
Liu K, Chen E, Gu Z, Dai B, Wang A, Zhu Z, Feng Q, Zhou C, Zhu J, Shangguan Y, Wang Y, Li Z, Hou Q, Lv D, Wang C, Huang T, Wang Z, Huang X, Han B. A retrotransposon insertion in MUTL-HOMOLOG 1 affects wild rice seed set and cultivated rice crossover rate. PLANT PHYSIOLOGY 2022; 190:1747-1762. [PMID: 35976143 PMCID: PMC9614510 DOI: 10.1093/plphys/kiac378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 06/06/2023]
Abstract
Wild rice (Oryza rufipogon) has a lower panicle seed setting rate (PSSR) and gamete fertility than domesticated rice (Oryza sativa), but the genetic mechanisms of this phenomenon remain unknown. Here, we cloned a null allele of OsMLH1, an ortholog of MutL-homolog 1 to yeast and mammals, from wild rice O. rufipogon W1943 and revealed a 5.4-kb retrotransposon insertion in OsMLH1 is responsible for the low PSSR in wild rice. In contrast to the wild-type, a near isogenic line NIL-mlh1 exhibits defective crossover (CO) formation during meiosis, resulting in reduced pollen viability, partial embryo lethality, and low PSSR. Except for the mutant of mismatch repair gene postmeiotic segregation 1 (Ospms1), all other MutL mutants from O. sativa indica subspecies displayed male and female semi-sterility similar to NIL-mlh1, but less severe than those from O. sativa japonica subspecies. MLH1 and MLH3 did not contribute in an additive fashion to fertility. Two types of MutL heterodimers, MLH1-PMS1 and MLH1-MLH3, were identified in rice, but only the latter functions in promoting meiotic CO formation. Compared to japonica varieties, indica cultivars had greater numbers of CO events per meiosis. Our results suggest that low fertility in wild rice may be caused by different gene defects, and indica and japonica subspecies have substantially different CO rates responsible for the discrepancy between the fertility of mlh1 and mlh3 mutants.
Collapse
Affiliation(s)
- Kun Liu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Erwang Chen
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhoulin Gu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Bingxin Dai
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Ahong Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhou Zhu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qi Feng
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Congcong Zhou
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Jingjie Zhu
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yingying Shangguan
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongchun Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zhen Li
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Qingqing Hou
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Danfeng Lv
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Changsheng Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Tao Huang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Zixuan Wang
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Xuehui Huang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bin Han
- National Center for Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
9
|
Li W, Guo X, Wu W, Yu W, Li S, Luo D, Wang T, Zhu Q, Chen L, Lee D. Construction of a Novel Female Sterility System for Hybrid Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:815401. [PMID: 35185963 PMCID: PMC8850283 DOI: 10.3389/fpls.2021.815401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The main constraints of current hybrid rice technology using male sterility (MS) are the low yield and high labor costs of hybrid rice seed (HRS) production. Therefore, there is an urgent need for innovative new hybrid rice technology. Fortunately, we discovered a unique spontaneous sporophytic female-sterile rice mutant controlled by a single recessive locus in the nucleus. Because female-sterile mutant lines cannot produce any selfed-seeds but their pollen has totally normal functions, female sterility (FS) lines may be considered ideal pollen donors to replace the female-fertile pollen donor parent lines currently used in the HRS production. In this study, a genetically engineered FS-based system was constructed to propagate a pure transgene-free FS line using a bentazon herbicide screening. Additionally, the ability of the FS + MS (FM)-line system, with mixed plantings of FS and MS lines, to produce HRS was tested. The pilot field experiment results showed that HRS of the FM-line system was more efficient compared with the conventional FS to MS strip planting control mode. Thus, this study provides new insights into genetic engineering technology and a promising strategy for the utilization of FS in hybrid rice.
Collapse
Affiliation(s)
- Wei Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Xiaoqiong Guo
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Wenbin Wu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Weilin Yu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Shichuan Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Di Luo
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Tianjie Wang
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Qian Zhu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Dongsun Lee
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Wang Y, van Rengs WMJ, Zaidan MWAM, Underwood CJ. Meiosis in crops: from genes to genomes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6091-6109. [PMID: 34009331 PMCID: PMC8483783 DOI: 10.1093/jxb/erab217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/06/2023]
Abstract
Meiosis is a key feature of sexual reproduction. During meiosis homologous chromosomes replicate, recombine, and randomly segregate, followed by the segregation of sister chromatids to produce haploid cells. The unique genotypes of recombinant gametes are an essential substrate for the selection of superior genotypes in natural populations and in plant breeding. In this review we summarize current knowledge on meiosis in diverse monocot and dicot crop species and provide a comprehensive resource of cloned meiotic mutants in six crop species (rice, maize, wheat, barley, tomato, and Brassica species). Generally, the functional roles of meiotic proteins are conserved between plant species, but we highlight notable differences in mutant phenotypes. The physical lengths of plant chromosomes vary greatly; for instance, wheat chromosomes are roughly one order of magnitude longer than those of rice. We explore how chromosomal distribution for crossover recombination can vary between species. We conclude that research on meiosis in crops will continue to complement that in Arabidopsis, and alongside possible applications in plant breeding will facilitate a better understanding of how the different stages of meiosis are controlled in plant species.
Collapse
Affiliation(s)
- Yazhong Wang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Willem M J van Rengs
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Mohd Waznul Adly Mohd Zaidan
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| | - Charles J Underwood
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg, Cologne, Germany
| |
Collapse
|
11
|
OsMLH1 interacts with OsMLH3 to regulate synapsis and interference-sensitive crossover formation during meiosis in rice. J Genet Genomics 2021; 48:485-496. [PMID: 34257043 DOI: 10.1016/j.jgg.2021.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/20/2022]
Abstract
Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the MutL-homolog family, which are required for normal level of crossovers (COs) in some eukaryotes. However, their functions in plants need to be further elucidated. Here, we report the identification of OsMLH1 and reveal its functions during meiosis in rice. Using CRISPR-Cas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, OsMLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution, indicating that OsMLH1 is essential for the formation of interference-sensitive COs (class I COs). OsMLH1 interacts with OsMLH3 through their C-terminal domains. Mutation in OsMLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer MutLγ (OsMLH1-OsMLH3) is essential for the formation of class I COs in rice.
Collapse
|