1
|
Roychowdhury R, Ghatak A, Kumar M, Samantara K, Weckwerth W, Chaturvedi P. Accelerating wheat improvement through trait characterization: advances and perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14544. [PMID: 39360330 DOI: 10.1111/ppl.14544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Wheat (Triticum spp.) is a primary dietary staple food for humanity. Many wheat genetic resources with variable genomes have a record of domestication history and are widespread throughout the world. To develop elite wheat varieties, agronomical and stress-responsive trait characterization is foremost for evaluating existing germplasm to promote breeding. However, genomic complexity is one of the primary impediments to trait mining and characterization. Multiple reference genomes and cutting-edge technologies like haplotype mapping, genomic selection, precise gene editing tools, high-throughput phenotyping platforms, high-efficiency genetic transformation systems, and speed-breeding facilities are transforming wheat functional genomics research to understand the genomic diversity of polyploidy. This review focuses on the research achievements in wheat genomics, the available omics approaches, and bioinformatic resources developed in the past decades. Advances in genomics and system biology approaches are highlighted to circumvent bottlenecks in genomic and phenotypic selection, as well as gene transfer. In addition, we propose conducting precise functional genomic studies and developing sustainable breeding strategies for wheat. These developments in understanding wheat traits have speed up the creation of high-yielding, stress-resistant, and nutritionally enhanced wheat varieties, which will help in addressing global food security and agricultural sustainability in the era of climate change.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Manoj Kumar
- Department of Ornamental Biotechnology, Institute of Plant Sciences, Agricultural Research, Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Shi J, Zhao Y, Zhao P, Yang H, Wang C, Xia J, Zhao Z, Wang Z, Yang Z, Wang Z, Xu S, Zhang Y. Preferentially expressed endosperm genes reveal unique activities in wheat endosperm during grain filling. BMC Genomics 2024; 25:795. [PMID: 39174916 PMCID: PMC11340063 DOI: 10.1186/s12864-024-10713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Bread wheat (Triticum aestivum L.) endosperm contains starch and proteins, which determine the final yield, quality, and nutritional value of wheat grain. The preferentially expressed endosperm genes can precisely provide targets in the endosperm for improving wheat grain quality and nutrition using modern bioengineering technologies. However, the genes specifically expressed in developing endosperms remain largely unknown. RESULTS In this study, 315 preferentially expressed endosperm genes (PEEGs) in the spring wheat landrace, Chinese Spring, were screened using data obtained from an open bioinformatics database, which reveals a unique grain reserve deposition process and special signal transduction in a developing wheat endosperm. Furthermore, transcription and accumulation of storage proteins in the wheat cultivar, XC26 were evaluated. The results revealed that 315 PEEG plays a critical role in storage protein fragment deposition and is a potential candidate for modifying grain quality and nutrition. CONCLUSION These results provide new insights into endosperm development and candidate genes and promoters for improving wheat grain quality through genetic engineering and plant breeding techniques.
Collapse
Affiliation(s)
- Jia Shi
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yuqian Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Peng Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongmei Yang
- Institute of Applied Microbiology/Xinjiang Laboratory of Special Environmental Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, PR China
| | - Chunsheng Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Jianqiang Xia
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhun Zhao
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhenlong Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhenyu Yang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Zhong Wang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Shengbao Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yueqiang Zhang
- Institute of Nuclear and Biological Technologies/Xinjiang Key Laboratory of Crop Biotechnology/Key Laboratory of Oasis-Desert Crop Physiology Ecology and Cultivation of Ministry of Agricultural and Rural Affairs/Crop Chemical Regulation Engineering Technology Research Center in Xinjiang, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
3
|
Yuan H, Cheng M, Wang R, Wang Z, Fan F, Wang W, Si F, Gao F, Li S. miR396b/GRF6 module contributes to salt tolerance in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2079-2092. [PMID: 38454780 PMCID: PMC11258987 DOI: 10.1111/pbi.14326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Salinity, as one of the most challenging environmental factors restraining crop growth and yield, poses a severe threat to global food security. To address the rising food demand, it is urgent to develop crop varieties with enhanced yield and greater salt tolerance by delving into genes associated with salt tolerance and high-yield traits. MiR396b/GRF6 module has previously been demonstrated to increase rice yield by shaping the inflorescence architecture. In this study, we revealed that miR396b/GRF6 module can significantly improve salt tolerance of rice. In comparison with the wild type, the survival rate of MIM396 and OE-GRF6 transgenic lines increased by 48.0% and 74.4%, respectively. Concurrent with the increased salt tolerance, the transgenic plants exhibited reduced H2O2 accumulation and elevated activities of ROS-scavenging enzymes (CAT, SOD and POD). Furthermore, we identified ZNF9, a negative regulator of rice salt tolerance, as directly binding to the promoter of miR396b to modulate the expression of miR396b/GRF6. Combined transcriptome and ChIP-seq analysis showed that MYB3R serves as the downstream target of miR396b/GRF6 in response to salt tolerance, and overexpression of MYB3R significantly enhanced salt tolerance. In conclusion, this study elucidated the potential mechanism underlying the response of the miR396b/GRF6 network to salt stress in rice. These findings offer a valuable genetic resource for the molecular breeding of high-yield rice varieties endowed with stronger salt tolerance.
Collapse
Affiliation(s)
- Huanran Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Mingxing Cheng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Zhikai Wang
- College of Life Science, Yangtze UniversityJingzhouChina
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Wei Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Fengfeng Si
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of EducationCollege of Life Sciences, Wuhan UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| |
Collapse
|
4
|
Prasad K, Gadeela H, Bommineni PR, Reddy PS, Tyagi W, Yogendra K. CRISPR/Cas9-mediated mutagenesis of phytoene desaturase in pigeonpea and groundnut. Funct Integr Genomics 2024; 24:57. [PMID: 38478115 DOI: 10.1007/s10142-024-01336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 05/01/2024]
Abstract
The CRISPR/Cas9 technology, renowned for its ability to induce precise genetic alterations in various crop species, has encountered challenges in its application to grain legume crops such as pigeonpea and groundnut. Despite attempts at gene editing in groundnut, the low rates of transformation and editing have impeded its widespread adoption in producing genetically modified plants. This study seeks to establish an effective CRISPR/Cas9 system in pigeonpea and groundnut through Agrobacterium-mediated transformation, with a focus on targeting the phytoene desaturase (PDS) gene. The PDS gene is pivotal in carotenoid biosynthesis, and its disruption leads to albino phenotypes and dwarfism. Two constructs (one each for pigeonpea and groundnut) were developed for the PDS gene, and transformation was carried out using different explants (leaf petiolar tissue for pigeonpea and cotyledonary nodes for groundnut). By adjusting the composition of the growth media and refining Agrobacterium infection techniques, transformation efficiencies of 15.2% in pigeonpea and 20% in groundnut were achieved. Mutation in PDS resulted in albino phenotype, with editing efficiencies ranging from 4 to 6%. Sequence analysis uncovered a nucleotide deletion (A) in pigeonpea and an A insertion in groundnut, leading to a premature stop codon and, thereby, an albino phenotype. This research offers a significant foundation for the swift assessment and enhancement of CRISPR/Cas9-based genome editing technologies in legume crops.
Collapse
Affiliation(s)
- Kalyani Prasad
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Harika Gadeela
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pradeep Reddy Bommineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Wricha Tyagi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
5
|
Hwarari D, Radani Y, Ke Y, Chen J, Yang L. CRISPR/Cas genome editing in plants: mechanisms, applications, and overcoming bottlenecks. Funct Integr Genomics 2024; 24:50. [PMID: 38441816 DOI: 10.1007/s10142-024-01314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
The CRISPR/Cas systems have emerged as transformative tools for precisely manipulating plant genomes and enhancement. It has provided unparalleled applications from modifying the plant genomes to resistant enhancement. This review manuscript summarises the mechanism, application, and current challenges in the CRISPR/Cas genome editing technology. It addresses the molecular mechanisms of different Cas genes, elucidating their applications in various plants through crop improvement, disease resistance, and trait improvement. The advent of the CRISPR/Cas systems has enabled researchers to precisely modify plant genomes through gene knockouts, knock-ins, and gene expression modulation. Despite these successes, the CRISPR/Cas technology faces challenges, including off-target effects, Cas toxicity, and efficiency. In this manuscript, we also discuss these challenges and outline ongoing strategies employed to overcome these challenges, including the development of novel CRISPR/Cas variants with improved specificity and specific delivery methods for different plant species. The manuscript will conclude by addressing the future perspectives of the CRISPR/Cas technology in plants. Although this review manuscript is not conclusive, it aims to provide immense insights into the current state and future potential of CRISPR/Cas in sustainable and secure plant production.
Collapse
Affiliation(s)
- Delight Hwarari
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongchao Ke
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, School of Life Sciences, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
6
|
Lu C, Du J, Chen H, Gong S, Jin Y, Meng X, Zhang T, Fu B, Molnár I, Holušová K, Said M, Xing L, Kong L, Doležel J, Li G, Wu J, Chen P, Cao A, Zhang R. Wheat Pm55 alleles exhibit distinct interactions with an inhibitor to cause different powdery mildew resistance. Nat Commun 2024; 15:503. [PMID: 38218848 PMCID: PMC10787760 DOI: 10.1038/s41467-024-44796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024] Open
Abstract
Powdery mildew poses a significant threat to wheat crops worldwide, emphasizing the need for durable disease control strategies. The wheat-Dasypyrum villosum T5AL·5 V#4 S and T5DL·5 V#4 S translocation lines carrying powdery mildew resistant gene Pm55 shows developmental-stage and tissue-specific resistance, whereas T5DL·5 V#5 S line carrying Pm5V confers resistance at all stages. Here, we clone Pm55 and Pm5V, and reveal that they are allelic and renamed as Pm55a and Pm55b, respectively. The two Pm55 alleles encode coiled-coil, nucleotide-binding site-leucine-rich repeat (CNL) proteins, conferring broad-spectrum resistance to powdery mildew. However, they interact differently with a linked inhibitor gene, SuPm55 to cause different resistance to wheat powdery mildew. Notably, Pm55 and SuPm55 encode unrelated CNL proteins, and the inactivation of SuPm55 significantly reduces plant fitness. Combining SuPm55/Pm55a and Pm55b in wheat does not result in allele suppression or yield penalty. Our results provide not only insights into the suppression of resistance in wheat, but also a strategy for breeding durable resistance.
Collapse
Affiliation(s)
- Chuntian Lu
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Jie Du
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Heyu Chen
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Shuangjun Gong
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, 430064, P.R. China
| | - Yinyu Jin
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Xiangru Meng
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Ting Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Bisheng Fu
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
- Institute of Germplasm Resources and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - István Molnár
- Agricultural Institute, Centre for Agricultural Research, Eötvös Loránd Research Network (ELKH), 2462, Martonvásár, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, 12619, Giza, Cairo, Egypt
| | - Liping Xing
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Lingna Kong
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ, 77900, Olomouc, Czech Republic
| | - Genying Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, P.R. China
| | - Jizhong Wu
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
- Institute of Germplasm Resources and Biotechnology/Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, P.R. China
| | - Peidu Chen
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
| | - Aizhong Cao
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Ruiqi Zhang
- College of Agronomy of Nanjing Agricultural University/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Application /JCIC-MCP, Nanjing, 210095, P.R. China.
- Zhongshan Biological Breeding Laboratory, No.50 Zhongling Street, Nanjing, Jiangsu, 210014, China.
| |
Collapse
|
7
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
8
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
9
|
Zhang T, Zhang W, Ding C, Hu Z, Fan C, Zhang J, Li Z, Diao S, Shen L, Zhang B, Liu G, Su X. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2160-2162. [PMID: 37535444 PMCID: PMC10579702 DOI: 10.1111/pbi.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Affiliation(s)
- Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Zanmin Hu
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Chengming Fan
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Zhenghong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Le Shen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Bingyu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of ForestryChinese Academy of Forestry, Northeast Forestry UniversityHarbinChina
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of ForestryChinese Academy of ForestryBeijingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
10
|
Wold-McGimsey F, Krosch C, Alarcón-Reverte R, Ravet K, Katz A, Stromberger J, Mason RE, Pearce S. Multi-target genome editing reduces polyphenol oxidase activity in wheat ( Triticum aestivum L.) grains. FRONTIERS IN PLANT SCIENCE 2023; 14:1247680. [PMID: 37786514 PMCID: PMC10541959 DOI: 10.3389/fpls.2023.1247680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
Introduction Polyphenol oxidases (PPO) are dual activity metalloenzymes that catalyse the production of quinones. In plants, PPO activity may contribute to biotic stress resistance and secondary metabolism but is undesirable for food producers because it causes the discolouration and changes in flavour profiles of products during post-harvest processing. In wheat (Triticum aestivum L.), PPO released from the aleurone layer of the grain during milling results in the discolouration of flour, dough, and end-use products, reducing their value. Loss-of-function mutations in the PPO1 and PPO2 paralogous genes on homoeologous group 2 chromosomes confer reduced PPO activity in the wheat grain. However, limited natural variation and the proximity of these genes complicates the selection of extremely low-PPO wheat varieties by recombination. The goal of the current study was to edit all copies of PPO1 and PPO2 to drive extreme reductions in PPO grain activity in elite wheat varieties. Results A CRISPR/Cas9 construct with one single guide RNA (sgRNA) targeting a conserved copper binding domain was used to edit all seven PPO1 and PPO2 genes in the spring wheat cultivar 'Fielder'. Five of the seven edited T1 lines exhibited significant reductions in PPO activity, and T2 lines had PPO activity up to 86.7% lower than wild-type. The same construct was transformed into the elite winter wheat cultivars 'Guardian' and 'Steamboat', which have five PPO1 and PPO2 genes. In these varieties PPO activity was reduced by >90% in both T1 and T2 lines. In all three varieties, dough samples from edited lines exhibited reduced browning. Discussion This study demonstrates that multi-target editing at late stages of variety development could complement selection for beneficial alleles in crop breeding programs by inducing novel variation in loci inaccessible to recombination.
Collapse
Affiliation(s)
- Forrest Wold-McGimsey
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Caitlynd Krosch
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Rocío Alarcón-Reverte
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| | - Karl Ravet
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Andrew Katz
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - John Stromberger
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Richard Esten Mason
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Stephen Pearce
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom
| |
Collapse
|
11
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
12
|
Elsharawy H, Refat M. CRISPR/Cas9 genome editing in wheat: enhancing quality and productivity for global food security-a review. Funct Integr Genomics 2023; 23:265. [PMID: 37541970 DOI: 10.1007/s10142-023-01190-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Wheat (Triticum aestivum L.) is an important cereal crop that is grown all over the world for food and industrial purposes. Wheat is essential to the human diet due to its rich content of necessary amino acids, minerals, vitamins, and calories. Various wheat breeding techniques have been utilized to improve its quality, productivity, and resistance to biotic and abiotic stress impairing production. However, these techniques are expensive, demanding, and time-consuming. Additionally, these techniques need multiple generations to provide the desired results, and the improved traits could be lost over time. To overcome these challenges, researchers have developed various genome editing tools to improve the quality and quantity of cereal crops, including wheat. Genome editing technologies evolve quickly. Nowadays, single or multiple mutations can be enabled and targeted at specific loci in the plant genome, allowing controlled removal of undesirable features or insertion of advantageous ones. Clustered, regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) is a powerful genome editing tool that can be effectively used for precise genome editing of wheat and other crops. This review aims to provide a comprehensive understanding of this technology's potential applications to enhance wheat's quality and productivity. It will first explore the function of CRISPR/Cas9 in preserving the adaptive immunity of prokaryotic organisms, followed by a discussion of its current applications in wheat breeding.
Collapse
Affiliation(s)
- Hany Elsharawy
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt.
| | - Moath Refat
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Environment and Genes Related to Disease of Ministry of Education, Health Science Center, Xi'an Jiaotong, University, Xi'an, 710061, China
| |
Collapse
|
13
|
Yigider E, Taspinar MS, Agar G. Advances in bread wheat production through CRISPR/Cas9 technology: a comprehensive review of quality and other aspects. PLANTA 2023; 258:55. [PMID: 37522927 DOI: 10.1007/s00425-023-04199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
MAIN CONCLUSION This review provides a comprehensive overview of the CRISPR/Cas9 technique and the research areas of this gene editing tool in improving wheat quality. Wheat (Triticum aestivum L.), the basic nutrition for most of the human population, contributes 20% of the daily energy needed because of its, carbohydrate, essential amino acids, minerals, protein, and vitamin content. Wheat varieties that produce high yields and have enhanced nutritional quality will be required to fulfill future demands. Hexaploid wheat has A, B, and D genomes and includes three like but not identical copies of genes that influence important yield and quality. CRISPR/Cas9, which allows multiplex genome editing provides major opportunities in genome editing studies of plants, especially complicated genomes such as wheat. In this overview, we discuss the CRISPR/Cas9 technique, which is credited with bringing about a paradigm shift in genome editing studies. We also provide a summary of recent research utilizing CRISPR/Cas9 to investigate yield, quality, resistance to biotic/abiotic stress, and hybrid seed production. In addition, we provide a synopsis of the laboratory experience-based solution alternatives as well as the potential obstacles for wheat CRISPR studies. Although wheat's extensive genome and complicated polyploid structure previously slowed wheat genetic engineering and breeding progress, effective CRISPR/Cas9 systems are now successfully used to boost wheat development.
Collapse
Affiliation(s)
- Esma Yigider
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey
| | - Mahmut Sinan Taspinar
- Faculty of Agriculture, Department of Agricultural Biotechnology, Atatürk University, 25240, Erzurum, Turkey.
| | - Guleray Agar
- Faculty of Science, Department of Biology, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
14
|
Szabała BM. A bifunctional selectable marker for wheat transformation contributes to the characterization of male-sterile phenotype induced by a synthetic Ms2 gene. PLANT CELL REPORTS 2023; 42:895-907. [PMID: 36867203 DOI: 10.1007/s00299-023-02998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/17/2023] [Indexed: 05/06/2023]
Abstract
KEY MESSAGE An engineered selectable marker combining herbicide resistance and yellow fluorescence contributes to the characterization of male-sterile phenotype in wheat, the severity of which correlates with expression levels of a synthetic Ms2 gene. Genetic transformation of wheat is conducted using selectable markers, such as herbicide and antibiotic resistance genes. Despite their proven effectiveness, they do not provide visual control of the transformation process and transgene status in progeny, which creates uncertainty and prolongs screening procedures. To overcome this limitation, this study developed a fusion protein by combining gene sequences encoding phosphinothricin acetyltransferase and mCitrine fluorescent protein. The fusion gene, introduced into wheat cells by particle bombardment, enabled herbicide selection, and visual identification of primary transformants along with their progeny. This marker was then used to select transgenic plants containing a synthetic Ms2 gene. Ms2 is a dominant gene whose activation in wheat anthers leads to male sterility, but the relationship between the expression levels and the male-sterile phenotype is unknown. The Ms2 gene was driven either by a truncated Ms2 promoter containing a TRIM element or a rice promoter OsLTP6. The expression of these synthetic genes resulted in complete male sterility or partial fertility, respectively. The low-fertility phenotype was characterized by smaller anthers than the wild type, many defective pollen grains, and low seed sets. The reduction in the size of anthers was observed at earlier and later stages of their development. Consistently, Ms2 transcripts were detected in these organs, but their levels were significantly lower than those in completely sterile Ms2TRIM::Ms2 plants. These results suggested that the severity of the male-sterile phenotype was modulated by Ms2 expression levels and that higher levels may be key to activating total male sterility.
Collapse
Affiliation(s)
- Bartosz M Szabała
- Institute of Biology, Department of Genetics, Breeding and Plant Biotechnology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 166 St., 02-787, Warsaw, Poland.
| |
Collapse
|
15
|
Ravikiran KT, Thribhuvan R, Sheoran S, Kumar S, Kushwaha AK, Vineeth TV, Saini M. Tailoring crops with superior product quality through genome editing: an update. PLANTA 2023; 257:86. [PMID: 36949234 DOI: 10.1007/s00425-023-04112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In this review, using genome editing, the quality trait alterations in important crops have been discussed, along with the challenges encountered to maintain the crop products' quality. The delivery of economic produce with superior quality is as important as high yield since it dictates consumer's acceptance and end use. Improving product quality of various agricultural and horticultural crops is one of the important targets of plant breeders across the globe. Significant achievements have been made in various crops using conventional plant breeding approaches, albeit, at a slower rate. To keep pace with ever-changing consumer tastes and preferences and industry demands, such efforts must be supplemented with biotechnological tools. Fortunately, many of the quality attributes are resultant of well-understood biochemical pathways with characterized genes encoding enzymes at each step. Targeted mutagenesis and transgene transfer have been instrumental in bringing out desired qualitative changes in crops but have suffered from various pitfalls. Genome editing, a technique for methodical and site-specific modification of genes, has revolutionized trait manipulation. With the evolution of versatile and cost effective CRISPR/Cas9 system, genome editing has gained significant traction and is being applied in several crops. The availability of whole genome sequences with the advent of next generation sequencing (NGS) technologies further enhanced the precision of these techniques. CRISPR/Cas9 system has also been utilized for desirable modifications in quality attributes of various crops such as rice, wheat, maize, barley, potato, tomato, etc. The present review summarizes salient findings and achievements of application of genome editing for improving product quality in various crops coupled with pointers for future research endeavors.
Collapse
Affiliation(s)
- K T Ravikiran
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | - Seema Sheoran
- ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, Haryana, India.
| | - Sandeep Kumar
- ICAR-Indian Institute of Natural Resins and Gums, Ranchi, Jharkhand, India
| | - Amar Kant Kushwaha
- ICAR-Central Institute for Subtropical Horticulture, Lucknow, Uttar Pradesh, India
| | - T V Vineeth
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, India
- Department of Plant Physiology, College of Agriculture, Kerala Agricultural University, Vellanikkara, Thrissur, Kerala, India
| | - Manisha Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
16
|
Lv G, Zhang Y, Ma L, Yan X, Yuan M, Chen J, Cheng Y, Yang X, Qiao Q, Zhang L, Niaz M, Sun X, Zhang Q, Zhong S, Chen F. A cell wall invertase modulates resistance to fusarium crown rot and sharp eyespot in common wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36912577 DOI: 10.1111/jipb.13478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/09/2023] [Indexed: 05/09/2023]
Abstract
Fusarium crown rot (FCR) and sharp eyespot (SE) are serious soil-borne diseases in wheat and its relatives that have been reported to cause wheat yield losses in many areas. In this study, the expression of a cell wall invertase gene, TaCWI-B1, was identified to be associated with FCR resistance through a combination of bulk segregant RNA sequencing and genome resequencing in a recombinant inbred line population. Two bi-parental populations were developed to further verify TaCWI-B1 association with FCR resistance. Overexpression lines and ethyl methanesulfonate (EMS) mutants revealed TaCWI-B1 positively regulating FCR resistance. Determination of cell wall thickness and components showed that the TaCWI-B1-overexpression lines exhibited considerably increased thickness and pectin and cellulose contents. Furthermore, we found that TaCWI-B1 directly interacted with an alpha-galactosidase (TaGAL). EMS mutants showed that TaGAL negatively modulated FCR resistance. The expression of TaGAL is negatively correlated with TaCWI-B1 levels, thus may reduce mannan degradation in the cell wall, consequently leading to thickening of the cell wall. Additionally, TaCWI-B1-overexpression lines and TaGAL mutants showed higher resistance to SE; however, TaCWI-B1 mutants were more susceptible to SE than controls. This study provides insights into a FCR and SE resistance gene to combat soil-borne diseases in common wheat.
Collapse
Affiliation(s)
- Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Lin Ma
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Mingjie Yuan
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Jianhui Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yongzhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xi Yang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Qi Qiao
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Leilei Zhang
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| | - Qijun Zhang
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Shaobin Zhong
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, USA
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/CIMMYT-China Wheat and Maize Joint Research Center/Agronomy College, Henan Agricultural University, Zhengzhou, 450000, China
| |
Collapse
|
17
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
18
|
May D, Paldi K, Altpeter F. Targeted mutagenesis with sequence-specific nucleases for accelerated improvement of polyploid crops: Progress, challenges, and prospects. THE PLANT GENOME 2023:e20298. [PMID: 36692095 DOI: 10.1002/tpg2.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Many of the world's most important crops are polyploid. The presence of more than two sets of chromosomes within their nuclei and frequently aberrant reproductive biology in polyploids present obstacles to conventional breeding. The presence of a larger number of homoeologous copies of each gene makes random mutation breeding a daunting task for polyploids. Genome editing has revolutionized improvement of polyploid crops as multiple gene copies and/or alleles can be edited simultaneously while preserving the key attributes of elite cultivars. Most genome-editing platforms employ sequence-specific nucleases (SSNs) to generate DNA double-stranded breaks at their target gene. Such DNA breaks are typically repaired via the error-prone nonhomologous end-joining process, which often leads to frame shift mutations, causing loss of gene function. Genome editing has enhanced the disease resistance, yield components, and end-use quality of polyploid crops. However, identification of candidate targets, genotyping, and requirement of high mutagenesis efficiency remain bottlenecks for targeted mutagenesis in polyploids. In this review, we will survey the tremendous progress of SSN-mediated targeted mutagenesis in polyploid crop improvement, discuss its challenges, and identify optimizations needed to sustain further progress.
Collapse
Affiliation(s)
- David May
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Katalin Paldi
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
| | - Fredy Altpeter
- Agronomy Department, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, Gainesville, FL, USA
- Plant Cellular and Molecular Biology Program, Genetics Institute, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL, USA
| |
Collapse
|
19
|
Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023; 15:nu15020373. [PMID: 36678244 PMCID: PMC9865409 DOI: 10.3390/nu15020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.
Collapse
|
20
|
Jiang Y, Li J, Liu B, Cao D, Zong Y, Chang Y, Li Y. Novel Hina alleles created by genome editing increase grain hardness and reduce grain width in barley. Transgenic Res 2022; 31:637-645. [PMID: 35982368 DOI: 10.1007/s11248-022-00324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023]
Abstract
The hordoindolina genes (Hina and Hinb) are believed to play critical roles in barley (Hordeum vulgare L.) grain texture. In this study, we created novel alleles of the Hina gene using CRISPR/Cas9 (Clustered regularly inter spaced short palindromic repeat-associated protein, CRISPR-Cas) genome editing. Mutagenesis of single bases in these novel alleles led to loss of Hina protein function in edited lines. The grain hardness index of hina mutants was 95.5 on average, while that of the wild type was only 53.7, indicating successful conversion of soft barley into hard barley. Observation of cross-sectional grain structure using scanning electron microscopy revealed different adhesion levels between starch granules and protein matrix. Starch granules were loose and separated from the protein matrix in the wild type, but deeply trapped and tightly integrated with the protein matrix in hina02 mutants. In addition, the grain width and thousand-grain weight of the hina02 mutant were significantly lower than those of the wild type.
Collapse
Affiliation(s)
- Yanyan Jiang
- Qinghai Normal University, Xining, 810008, China
| | - Jianmin Li
- Qinghai Normal University, Xining, 810008, China
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yanzi Chang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Yun Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China. .,Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China.
| |
Collapse
|
21
|
Li B, Fu C, Zhou J, Hui F, Wang Q, Wang F, Wang G, Xu Z, Che L, Yuan D, Wang Y, Zhang X, Jin S. Highly Efficient Genome Editing Using Geminivirus-Based CRISPR/Cas9 System in Cotton Plant. Cells 2022; 11:cells11182902. [PMID: 36139477 PMCID: PMC9496795 DOI: 10.3390/cells11182902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Upland cotton (Gossypium hirsutum), an allotetraploid, contains At- and Dt- subgenome and most genes have multiple homologous copies, which pose a huge challenge to investigate genes’ function due to the functional redundancy. Therefore, it is of great significance to establish effective techniques for the functional genomics in cotton. In this study, we tested two novel genome editing vectors and compared them with the CRISPR/Cas9 system (pRGEB32-GhU6.7) developed in our laboratory previously. In the first new vector, the sgRNA transcription unite was constructed into the replicon (LIR-Donor-SIR-Rep-LIR) of the bean yellow dwarf virus (BeYDV) and named as pBeYDV-Cas9-KO and in the second vector, the ubiquitin promoter that drives Cas9 protein was replaced with a constitutive CaMV 35S promoter and defined as pRGEB32-35S. The results from transgenic cotton calli/plants revealed that pBeYDV-Cas9-KO vector showed the highest editing efficiency of GhCLA1 in At and Dt subgenomes edited simultaneously up to 73.3% compared to the 44.6% of pRGEB32-GhU6.7 and 51.2% of pRGEB32-35S. The editing efficiency of GhCLA1 in At and Dt subgenome by pBeYDV-Cas9-KO was 85.7% and 97.2%, respectively, whereas the efficiency by pRGEB32-GhU6.7 and pRGEB32-35S vectors was 67.7%, 86.5%, 84%, and 87.2%, respectively. The editing profile of pBeYDV-Cas9-KO was mainly composed of fragment deletion, accounting for 84.0% and ranging 1–10 bp in length. The main editing sites are located at positions 11–17 upstream of PAM site. The off-target effects were not detected in all potential off-target sites. Taken together, the pBeYDV-Cas9-KO system has high editing efficiency and specificity with wide editing range than the traditional CRISPR/Cas9 system, which provides a powerful tool for cotton functional genomics research and molecular breeding.
Collapse
Affiliation(s)
- Bo Li
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Crop Biotechnology, Urumqi 830091, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawei Zhou
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fengjiao Hui
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianlian Che
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojun Yuan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer 843300, China
- Correspondence: (Y.W.); (S.J.)
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (Y.W.); (S.J.)
| |
Collapse
|
22
|
Riaz A, Kanwal F, Ahmad I, Ahmad S, Farooq A, Madsen CK, Brinch-Pedersen H, Bekalu ZE, Dai F, Zhang G, Alqudah AM. New Hope for Genome Editing in Cultivated Grasses: CRISPR Variants and Application. Front Genet 2022; 13:866121. [PMID: 35923689 PMCID: PMC9340155 DOI: 10.3389/fgene.2022.866121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/23/2022] [Indexed: 12/24/2022] Open
Abstract
With the advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) mediated genome editing, crop improvement has progressed significantly in recent years. In this genome editing tool, CRISPR-associated Cas nucleases are restricted to their target of DNA by their preferred protospacer adjacent motifs (PAMs). A number of CRISPR-Cas variants have been developed e.g. CRISPR-Cas9, -Cas12a and -Cas12b, with different PAM requirements. In this mini-review, we briefly explain the components of the CRISPR-based genome editing tool for crop improvement. Moreover, we intend to highlight the information on the latest development and breakthrough in CRISPR technology, with a focus on a comparison of major variants (CRISPR-Cas9, -Cas12a, and -Cas12b) to the newly developed CRISPR-SpRY that have nearly PAM-less genome editing ability. Additionally, we briefly explain the application of CRISPR technology in the improvement of cultivated grasses with regard to biotic and abiotic stress tolerance as well as improving the quality and yield.
Collapse
Affiliation(s)
- Asad Riaz
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Farah Kanwal
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Iqrar Ahmad
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ayesha Farooq
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Claus Krogh Madsen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Henrik Brinch-Pedersen
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Zelalem Eshetu Bekalu
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| | - Fei Dai
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ahmad M. Alqudah
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, Slagelse, Denmark
| |
Collapse
|
23
|
Gupta OP, Singh AK, Singh A, Singh GP, Bansal KC, Datta SK. Wheat Biofortification: Utilizing Natural Genetic Diversity, Genome-Wide Association Mapping, Genomic Selection, and Genome Editing Technologies. Front Nutr 2022; 9:826131. [PMID: 35938135 PMCID: PMC9348810 DOI: 10.3389/fnut.2022.826131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/06/2022] [Indexed: 01/11/2023] Open
Abstract
Alleviating micronutrients associated problems in children below five years and women of childbearing age, remains a significant challenge, especially in resource-poor nations. One of the most important staple food crops, wheat attracts the highest global research priority for micronutrient (Fe, Zn, Se, and Ca) biofortification. Wild relatives and cultivated species of wheat possess significant natural genetic variability for these micronutrients, which has successfully been utilized for breeding micronutrient dense wheat varieties. This has enabled the release of 40 biofortified wheat cultivars for commercial cultivation in different countries, including India, Bangladesh, Pakistan, Bolivia, Mexico and Nepal. In this review, we have systematically analyzed the current understanding of availability and utilization of natural genetic variations for grain micronutrients among cultivated and wild relatives, QTLs/genes and different genomic regions regulating the accumulation of micronutrients, and the status of micronutrient biofortified wheat varieties released for commercial cultivation across the globe. In addition, we have also discussed the potential implications of emerging technologies such as genome editing to improve the micronutrient content and their bioavailability in wheat.
Collapse
Affiliation(s)
- Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, New Delhi, India
| | | | | | - Swapan K. Datta
- Department of Botany, University of Calcutta, Kolkata, India
| |
Collapse
|
24
|
Xu Y, Zhang L, Lu L, Liu J, Yi H, Wu J. An efficient CRISPR/Cas9 system for simultaneous editing two target sites in Fortunella hindsii. HORTICULTURE RESEARCH 2022; 9:uhac064. [PMID: 35673604 PMCID: PMC9166532 DOI: 10.1093/hr/uhac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
The CRISPR/Cas9 system is a revolutionary genome editing technique and has been widely used in numerous plants. For plants (e.g. citrus) with very low transformation efficiency, how to optimize gene editing efficiency and induce large-fragment deletion has been the focus of research. Here, we report that CRISPR/Cas9 induces efficient deletion of 16-673 bp fragments in the genome of Fortunella hindsii. The ability of two binary vectors, pK7WG2D and pMDC32, to introduce specific mutations into the genome of F. hindsii was evaluated. Double single guide RNAs (sgRNAs) were designed to achieve precise editing of two sites of a gene and deletion of fragments between the two sites. The construction of vectors based on Golden Gate assembly and Gateway recombination cloning is simple and efficient. pK7WG2D is more suitable for F. hindsii genome editing than the pMDC32 vector. Editing efficiency using the pK7WG2D vector reached 66.7%. Allele mutation frequency was 7.14-100%. Plants with 100% allele mutations accounted for 39.4% (13 100% allele mutation plants/33 mutants). The proportion of mutant plants with fragment deletion induced by this editing system was as high as 52.6% (10 fragment-deletion mutants/19 FhNZZ mutants). Altogether, these data suggest that our CRISPR/Cas9 platform is capable of targeted genome editing in citrus and has broad application in research on the citrus functional genome and citrus molecular breeding.
Collapse
Affiliation(s)
- Yanhui Xu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqing Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jihong Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Hualin Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
25
|
Nazir R, Mandal S, Mitra S, Ghorai M, Das N, Jha NK, Majumder M, Pandey DK, Dey A. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated genome-editing toolkit to enhance salt stress tolerance in rice and wheat. PHYSIOLOGIA PLANTARUM 2022; 174:e13642. [PMID: 35099818 DOI: 10.1111/ppl.13642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/02/2022] [Accepted: 01/27/2022] [Indexed: 05/14/2023]
Abstract
The rice and wheat agricultural system is the primary source of food for billions across the world. However, the productivity and long-term sustainability of rice and wheat are threatened by a large number of abiotic stresses, especially salinity stress. Salinity has a significant impact on plant development and productivity and is one of the leading causes of crop yield losses in agricultural soils worldwide. Over the last few decades, several attempts have been undertaken to enhance salinity stress tolerance, most of which have relied on traditional or molecular breeding approaches. These approaches have so far been insufficient in addressing the issues of abiotic stress. However, due to the availability of genome sequences for cereal crops like rice and wheat and the development of genome editing techniques like clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), it is now possible to "edit" genes and influence key traits. Here, we review the application of the CRISPR/Cas9 system in both rice (Oryza sativa L.) and wheat (Triticum aestivum L.) to develop salinity tolerant cultivars. The CRISPR/Cas genome editing toolkit holds great promise of producing cereal crops tolerant to salt stress to increase agriculture resilience with a strong impact on the environment and public health.
Collapse
Affiliation(s)
- Romaan Nazir
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Sayanti Mandal
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Sicon Mitra
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | - Neela Das
- Department of Botany, Rishi Bankim Chandra College, Naihati, West Bengal, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | | | - Devendra Kumar Pandey
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Gupta P, Hirschberg J. The Genetic Components of a Natural Color Palette: A Comprehensive List of Carotenoid Pathway Mutations in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:806184. [PMID: 35069664 PMCID: PMC8770946 DOI: 10.3389/fpls.2021.806184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 05/16/2023]
Abstract
Carotenoids comprise the most widely distributed natural pigments. In plants, they play indispensable roles in photosynthesis, furnish colors to flowers and fruit and serve as precursor molecules for the synthesis of apocarotenoids, including aroma and scent, phytohormones and other signaling molecules. Dietary carotenoids are vital to human health as a source of provitamin A and antioxidants. Hence, the enormous interest in carotenoids of crop plants. Over the past three decades, the carotenoid biosynthesis pathway has been mainly deciphered due to the characterization of natural and induced mutations that impair this process. Over the year, numerous mutations have been studied in dozens of plant species. Their phenotypes have significantly expanded our understanding of the biochemical and molecular processes underlying carotenoid accumulation in crops. Several of them were employed in the breeding of crops with higher nutritional value. This compendium of all known random and targeted mutants available in the carotenoid metabolic pathway in plants provides a valuable resource for future research on carotenoid biosynthesis in plant species.
Collapse
Affiliation(s)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
27
|
Song M, Linghu B, Huang S, Li F, An R, Xie C, Zhu Y, Hu S, Mu J, Zhang Y. Genome-Wide Survey of Leucine-Rich Repeat Receptor-Like Protein Kinase Genes and CRISPR/Cas9-Targeted Mutagenesis BnBRI1 in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:865132. [PMID: 35498707 PMCID: PMC9039726 DOI: 10.3389/fpls.2022.865132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 05/19/2023]
Abstract
The leucine-rich repeat receptor-like protein kinase (LRR-RLK) family represents the largest group of RLKs in plants and plays vital roles in plant growth, development and the responses to environmental stress. Although LRR-RLK families have been identified in many species, they have not yet been reported in B. napus. In this study, a total of 444 BnLRR-RLK genes were identified in the genome of Brassica napus cultivar "Zhongshuang 11" (ZS11), and classified into 22 subfamilies based on phylogenetic relationships and genome-wide analyses. Conserved motifs and gene structures were shared within but not between subfamilies. The 444 BnLRR-RLK genes were asymmetrically distributed on 19 chromosomes and exhibited specific expression profiles in different tissues and in response to stress. We identified six BnBRI1 homologs and obtained partial knockouts via CRISPR/Cas9 technology, generating semi-dwarf lines without decreased yield compared with controls. This study provides comprehensive insight of the LRR-RLK family in B. napus. Additionally, the semi-dwarf lines expand the "ideotype" germplasm resources and accelerate the breeding process for B. napus.
Collapse
Affiliation(s)
- Min Song
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Bin Linghu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Fang Li
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Changgen Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- *Correspondence: Jianxin Mu,
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, China
- Yanfeng Zhang,
| |
Collapse
|
28
|
Wheat improvement using genome editing technology. Biotechniques 2021; 71:577-579. [PMID: 34809487 DOI: 10.2144/btn-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|