1
|
Sun M, Qiao HX, Yang T, Zhao P, Zhao JH, Luo JM, Luan HY, Li X, Wu SC, Xiong AS. Hydrogen sulfide alleviates cadmium stress in germinating carrot seeds by promoting the accumulation of proline. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154357. [PMID: 39316927 DOI: 10.1016/j.jplph.2024.154357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Carrot (Daucus carota L.), a widely cultivated economically vegetable from the Apiaceae family, is grown globally. However, carrots can be adversely impacted by cadmium (Cd) pollution in the soil due to its propensity to accumulate in the fleshy root, thus impeding carrot growth and posing health hazards to consumers. Given the potential of hydrogen sulfide (H2S) to improve plant resistance against Cd stress, we treated germinating carrot seeds with varying concentrations of sodium hydrosulfide (NaHS), aiming to alleviate the toxic impacts of Cd stress on carrot seed germination. The results revealed that carrot seeds treated with a concentration of 0.25 mM NaHS displayed better seed germination-associated characteristics compared to seeds treated with NaHS concentrations of 0.1 mM and 0.5 mM. Further investigation revealed a rise in the expression levels of L-cysteine desulfhydrase and D-cysteine desulfhydrase, along with enhanced activity of L-cysteine desulfhydrase and D-cysteine desulfhydrase among the NaHS treatment group, thereby leading to H2S accumulation. Moreover, NaHS treatment triggered the expression of pyrroline-5-carboxylate synthase and pyrroline-5-carboxylate reductase and promoted the accumulation of endogenous proline, while the contents of soluble sugar and soluble protein increased correspondingly. Interestingly, since the application of exogenous proline did not influence the accumulation of endogenous H2S, suggesting that H2S served as the upstream regulator of proline. Histochemical staining and biochemical indices revealed that NaHS treatment led to elevated antioxidant enzyme activity, alongside a suppression of superoxide anion and hydrogen peroxide generation. Furthermore, high performance liquid chromatography analysis revealed that NaHS treatment reduced Cd2+ uptake, thereby promoting germination rate, seed vitality, and hypocotyl length of carrot seeds under Cd stress. Overall, our findings shed light on the application of NaHS to enhance carrot resistance against Cd stress and lay a foundation for exploring the regulatory role of H2S in plants responding to Cd stress.
Collapse
Affiliation(s)
- Miao Sun
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China; State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huan-Xuan Qiao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Tao Yang
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Peng Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jun-Hao Zhao
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Jia-Ming Luo
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Hai-Ye Luan
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Xiang Li
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Sheng-Cai Wu
- College of Marine and Biological Engineering, Yancheng Teachers University, Yancheng, Jiangsu, 224002, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
2
|
Zboińska M, Janeczko A, Kabała K. Involvement of NO in V-ATPase Regulation in Cucumber Roots under Control and Cadmium Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:2884. [PMID: 37571036 PMCID: PMC10420687 DOI: 10.3390/plants12152884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023]
Abstract
Nitric oxide (NO) is a signaling molecule that participates in plant adaptation to adverse environmental factors. This study aimed to clarify the role of NO in the regulation of vacuolar H+-ATPase (V-ATPase) in the roots of cucumber seedlings grown under control and Cd stress conditions. In addition, the relationship between NO and salicylic acid (SA), as well as their interrelations with hydrogen sulfide (H2S) and hydrogen peroxide (H2O2), have been verified. The effect of NO on V-ATPase was studied by analyzing two enzyme activities, the expression level of selected VHA genes and the protein level of selected VHA subunits in plants treated with a NO donor (sodium nitroprusside, SNP) and NO biosynthesis inhibitors (tungstate, WO42- and N-nitro-L-arginine methyl ester, L-NAME). Our results indicate that NO functions as a positive regulator of V-ATPase and that this regulation depends on NO generated by nitrate reductase and NOS-like activity. It was found that the mechanism of NO action is not related to changes in the gene expression or protein level of the V-ATPase subunits. The results suggest that in cucumber roots, NO signaling interacts with the SA pathway and, to a lesser extent, with two other known V-ATPase regulators, H2O2 and H2S.
Collapse
Affiliation(s)
- Magdalena Zboińska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| | - Anna Janeczko
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland;
| | - Katarzyna Kabała
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland;
| |
Collapse
|
3
|
Xiang ZX, Li W, Lu YT, Yuan TT. Hydrogen sulfide alleviates osmotic stress-induced root growth inhibition by promoting auxin homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1369-1384. [PMID: 36948886 DOI: 10.1111/tpj.16198] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 03/09/2023] [Indexed: 06/17/2023]
Abstract
Hydrogen sulfide (H2 S) promotes plant tolerance against various environmental cues, and d-cysteine desulfhydrase (DCD) is an enzymatic source of H2 S to enhance abiotic stress resistance. However, the role of DCD-mediated H2 S production in root growth under abiotic stress remains to be further elucidated. Here, we report that DCD-mediated H2 S production alleviates osmotic stress-mediated root growth inhibition by promoting auxin homeostasis. Osmotic stress up-regulated DCD gene transcript and DCD protein levels and thus H2 S production in roots. When subjected to osmotic stress, a dcd mutant showed more severe root growth inhibition, whereas the transgenic lines DCDox overexpressing DCD exhibited less sensitivity to osmotic stress in terms of longer root compared to the wild-type. Moreover, osmotic stress inhibited root growth through repressing auxin signaling, whereas H2 S treatment significantly alleviated osmotic stress-mediated inhibition of auxin. Under osmotic stress, auxin accumulation was increased in DCDox but decreased in dcd mutant. H2 S promoted auxin biosynthesis gene expression and auxin efflux carrier PIN-FORMED 1 (PIN1) protein level under osmotic stress. Taken together, our results reveal that mannitol-induced DCD and H2 S in roots promote auxin homeostasis, contributing to alleviating the inhibition of root growth under osmotic stress.
Collapse
Affiliation(s)
- Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
4
|
Xiao C, Fang Y, Wang S, He K. The alleviation of ammonium toxicity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36790049 DOI: 10.1111/jipb.13467] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants and profoundly affects crop yields and qualities. Ammonium (NH4 + ) and nitrate (NO3 - ) are major inorganic N forms absorbed by plants from the surrounding environments. Intriguingly, NH4 + is usually toxic to plants when it serves as the sole or dominant N source. It is thus important for plants to coordinate the utilization of NH4 + and the alleviation of NH4 + toxicity. To fully decipher the molecular mechanisms underlying how plants minimize NH4 + toxicity may broadly benefit agricultural practice. In the current minireview, we attempt to discuss recent discoveries in the strategies for mitigating NH4 + toxicity in plants, which may provide potential solutions for improving the nitrogen use efficiency (NUE) and stress adaptions in crops.
Collapse
Affiliation(s)
- Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suomin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
5
|
Hussein HAA, Alshammari SO. Cysteine mitigates the effect of NaCl salt toxicity in flax (Linum usitatissimum L) plants by modulating antioxidant systems. Sci Rep 2022; 12:11359. [PMID: 35790862 PMCID: PMC9256724 DOI: 10.1038/s41598-022-14689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
Agriculture, the main water-consuming factor, faces a global water scarcity crisis. Saline water is an alternative water source, while excess NaCl decreases plant growth and productivity of crops. L-cysteine (Cys) is a promising thiol amino acid in plant growth and development. Flax; Linum usitatissimum L. is an economical plant with low salt tolerance. NaCl salt stress at 50 and 100 mM inhibited the growth parameters, the photosynthetic pigments, total soluble sugars, total phenols, and amino nitrogen in flax plants. Salt stress led to a marked rise in proline and lipid peroxidation and altered the protein profile. Foliar application of cysteine at 0.8 and 1.6 mM mitigates the unfriendly effects of NaCl stress on flax plants. Cysteine enhanced the growth traits, photosynthetic pigments, amino nitrogen, total phenols, and new polypeptides in NaCl-stressed plants. However, cysteine declined the total sugars, proline, the activity of peroxidase, and ascorbate peroxidase. The results confirmed that cysteine had reductant properties. Furthermore, it decreased the NaCl oxidative stress and maintained the stability of membranes by lowering lipid peroxidation. Overall, the redox capacity of L-cysteine is the cause behind its potential counteracting of the adverse effects of NaCl toxicity on the growth of flax plants.
Collapse
Affiliation(s)
- Hebat-Allah A Hussein
- Botany and Microbiology Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo, 11754, Egypt. .,Biology Department, University College of Nairiyah, University of Hafr Al-Batin (UHB), Nairiyah, 31991, Saudi Arabia.
| | - Shifaa O Alshammari
- Biology Department, College of Science, University of Hafr Al-Batin (UHB), Hafr Al Batin, 31991, Saudi Arabia
| |
Collapse
|
6
|
Wang J, Xie H, Li H, Wang R, Zhang B, Ren T, Hua J, Chen N. NIR Fluorescent Probe for In Situ Bioimaging of Endogenous H 2S in Rice Roots under Al 3+ and Flooding Stresses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14330-14339. [PMID: 34802240 DOI: 10.1021/acs.jafc.1c05247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydrogen sulfide (H2S) is one of the typical reactive sulfur species, which exhibits an important role in regulating both physiological and pathological processes. Recent studies indicate that H2S also serves as a key signaling molecule in a broad range of regulatory processes in plants. However, in situ imaging and detection of the levels of H2S in plant tissues remains a challenge. In this work, a NIR fluorescent probe (HBTP-H2S) was synthesized to achieve H2S imaging in living plant tissues. HBTP-H2S exhibited high sensitivity toward H2S with a large Stokes shift (250 nm). HBTP-H2S could be applied to HeLa cells to detect the fluctuation of endogenous H2S levels in response to physiological stimulations. Importantly, HBTP-H2S was utilized for direct H2S imaging of rice roots and revealed the upregulation of H2S signaling in response to aluminum ions and flooding stresses. Our work thus provides a new tool to investigate H2S-involved signal interaction and protective resistance of crops under environmental stresses.
Collapse
Affiliation(s)
- Jian Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Hui Xie
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Haoyang Li
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Rong Wang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Bo Zhang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Tianrui Ren
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237 Shanghai, China
| | - Nan Chen
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, Key Laboratory of Resource Chemistry of Ministry of Education, College of Chemistry and Materials Science, Shanghai Normal University, 100 Guilin Rd., Shanghai 200234, PR China
| |
Collapse
|
7
|
Persulfidation of Nitrate Reductase 2 Is Involved in l-Cysteine Desulfhydrase-Regulated Rice Drought Tolerance. Int J Mol Sci 2021; 22:ijms222212119. [PMID: 34829996 PMCID: PMC8624084 DOI: 10.3390/ijms222212119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is an important signaling molecule that regulates diverse cellular signaling pathways through persulfidation. Our previous study revealed that H2S is involved in the improvement of rice drought tolerance. However, the corresponding enzymatic sources of H2S and its regulatory mechanism in response to drought stress are not clear. Here, we cloned and characterized a putative l-cysteine desulfhydrase (LCD) gene in rice, which encodes a protein possessing H2S-producing activity and was named OsLCD1. Overexpression of OsLCD1 results in enhanced H2S production, persulfidation of total soluble protein, and confers rice drought tolerance. Further, we found that nitrate reductase (NR) activity was decreased under drought stress, and the inhibition of NR activity was controlled by endogenous H2S production. Persulfidation of NIA2, an NR isoform responsible for the main NR activity, led to a decrease in total NR activity in rice. Furthermore, drought stress-triggered inhibition of NR activity and persulfidation of NIA2 was intensified in the OsLCD1 overexpression line. Phenotypical and molecular analysis revealed that mutation of NIA2 enhanced rice drought tolerance by activating the expression of genes encoding antioxidant enzymes and ABA-responsive genes. Taken together, our results showed the role of OsLCD1 in modulating H2S production and provided insight into H2S-regulated persulfidation of NIA2 in the control of rice drought stress.
Collapse
|
8
|
Zhou H, Zhou Y, Zhai F, Wu T, Xie Y, Xu G, Foyer CH. Rice seedlings grown under high ammonia do not show enhanced defence responses. Food Energy Secur 2021. [DOI: 10.1002/fes3.331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Heng Zhou
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Ying Zhou
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Fengchao Zhai
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Ting Wu
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Yanjie Xie
- College of Life Sciences Laboratory Center of Life Sciences Nanjing Agricultural University Nanjing210095China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low‐Middle Reaches of the Yangtze River, Ministry of Agriculture Nanjing Agricultural University Nanjing210095China
| | - Christine H. Foyer
- School of Biosciences College of Life and Environmental Sciences University of Birmingham Edgbaston UK
| |
Collapse
|
9
|
Abstract
Hydrogen sulfide (H2S) is predominantly considered as a gaseous transmitter or signaling molecule in plants. It has been known as a crucial player during various plant cellular and physiological processes and has been gaining unprecedented attention from researchers since decades. They regulate growth and plethora of plant developmental processes such as germination, senescence, defense, and maturation in plants. Owing to its gaseous state, they are effectively diffused towards different parts of the cell to counterbalance the antioxidant pools as well as providing sulfur to cells. H2S participates actively during abiotic stresses and enhances plant tolerance towards adverse conditions by regulation of the antioxidative defense system, oxidative stress signaling, metal transport, Na+/K+ homeostasis, etc. They also maintain H2S-Cys-cycle during abiotic stressed conditions followed by post-translational modifications of cysteine residues. Besides their role during abiotic stresses, crosstalk of H2S with other biomolecules such as NO and phytohormones (abscisic acid, salicylic acid, melatonin, ethylene, etc.) have also been explored in plant signaling. These processes also mediate protein post-translational modifications of cysteine residues. We have mainly highlighted all these biological functions along with proposing novel relevant issues that are required to be addressed further in the near future. Moreover, we have also proposed the possible mechanisms of H2S actions in mediating redox-dependent mechanisms in plant physiology.
Collapse
|
10
|
Zhou H, Chen Y, Zhai F, Zhang J, Zhang F, Yuan X, Xie Y. Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:213-220. [PMID: 32771932 DOI: 10.1016/j.plaphy.2020.07.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 05/01/2023]
Abstract
Hydrogen sulfide (H2S) has been explored as the third biologically gasotransmitter regulating plant adaptation response, however, its possible mechanisms on drought tolerance are not completely clear yet. Here, we discovered that during dehydration treatment, the activities of L-cysteine desulfhydrase (LCD), the important synthetic enzymes of H2S in rice, was enhanced in rice seedling leaves, further leading to continuous increasing of endogenous H2S production. Pretreatment with NaHS, a well-known H2S donor, significantly improved rice performance under drought stress. The beneficial roles of NaHS were confirmed by the alleviation of lipid peroxidation, and the activation of antioxidant defence system. Importantly, besides repressing its degradation pathway, NaHS pretreatment promoted ABA de-novo synthesis as well. This resulted in an increase of ABA accumulation and the expression of downstream ABA-responsive genes in rice seedling upon drought stress. Together, the present study illustrated that H2S improve drought tolerance via reestablishing redox homeostasis and triggering ABA signaling.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ying Chen
- Youlaigucheng Science Innovation Center, Kunshan, 215300, PR China
| | - Fengchao Zhai
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Feng Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
11
|
Zhang J, Zhou H, Zhou M, Ge Z, Zhang F, Foyer CH, Yuan X, Xie Y. The coordination of guard-cell autonomous ABA synthesis and DES1 function in situ regulates plant water deficit responses. J Adv Res 2020; 27:191-197. [PMID: 33318877 PMCID: PMC7728585 DOI: 10.1016/j.jare.2020.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022] Open
Abstract
Introduction Drought stress triggers the synthesis and accumulation of the phytohormone abscisic acid (ABA), which regulates stomatal aperture and hence reducing plant water loss. Hydrogen sulfide (H2S), which is produced by the enzyme L-cysteine desulfhydrase 1 (DES1) that catalyzes the desulfuration of L-cysteine in Arabidopsis, also plays a critical role in the regulation of drought-induced stomatal closure. However, little is known about the regulation of DES1 or the crosstalk between H2S and ABA signaling in response to dehydration. Objectives To demonstrate the potential crosstalk between DES1-dependent H2S and ABA signaling in response to dehydration and its regulation mechanism. Methods Firstly, by introducing guard cell-specific MYB60 promoter, to produce complementary lines of DES1 or ABA3 into guard cell of des1 or aba3 mutant. And the related genes expression and water loss under ABA, NaHS, or dehydration treatment in these mutant or transgenics lines were determinate. Results We found that dehydration-induced expression of DES1 is abolished in the abscisic acid deficient 3 (aba3) mutants that are deficient in ABA synthesis. Both the complementation of ABA3 expression in guard cells of the aba3 mutants and ABA treatment rescue the dehydration-induced expression of DES1, as well as the wilting phenotype observed in these mutants. Moreover, the drought-induced expression of ABA synthesis genes was suppressed in des1 mutants. While the addition of ABA or the expression of either ABA3 or DES1 in the guard cells of the aba3/des1 double mutant did not alter the wilting phenotype of these mutants, the wild type phenotype was fully restored by the expression of both ABA3 and DES1, or by the application of NaHS. Conclusion These results demonstrate that the coordinated synthesis of ABA and DES1 expression is required for drought-induced stomatal closure in Arabidopsis.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Feng Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
12
|
Kaya C, Murillo-Amador B, Ashraf M. Involvement of L-Cysteine Desulfhydrase and Hydrogen Sulfide in Glutathione-Induced Tolerance to Salinity by Accelerating Ascorbate-Glutathione Cycle and Glyoxalase System in Capsicum. Antioxidants (Basel) 2020; 9:antiox9070603. [PMID: 32664227 PMCID: PMC7402142 DOI: 10.3390/antiox9070603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The aim of this study is to assess the role of l-cysteine desulfhydrase (l-DES) and endogenous hydrogen sulfide (H2S) in glutathione (GSH)-induced tolerance to salinity stress (SS) in sweet pepper (Capsicum annuum L.). Two weeks after germination, before initiating SS, half of the pepper seedlings were retained for 12 h in a liquid solution containing H2S scavenger, hypotaurine (HT), or the l-DES inhibitor dl-propargylglycine (PAG). The seedlings were then exposed for three weeks to control or SS (100 mmol L−1 NaCl) and supplemented with or without GSH or GSH+NaHS (sodium hydrosulfide, H2S donor). Salinity suppressed dry biomass, leaf water potential, chlorophyll contents, maximum quantum efficiency, ascorbate, and the activities of dehydroascorbate reductase, monodehydroascorbate reductase, and glyoxalase II in plants. Contrarily, it enhanced the accumulation of hydrogen peroxide, malondialdehyde, methylglyoxal, electrolyte leakage, proline, GSH, the activities of glutathione reductase, peroxidase, catalase, superoxide dismutase, ascorbate peroxidase, glyoxalase I, and l-DES, as well as endogenous H2S content. Salinity enhanced leaf Na+ but reduced K+; however, the reverse was true with GSH application. Overall, the treatments, GSH and GSH+NaHS, effectively reversed the oxidative stress and upregulated salt tolerance in pepper plants by controlling the activities of the AsA-GSH and glyoxalase-system-related enzymes as well as the levels of osmolytes.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 6300, Turkey
- Correspondence: (C.K.); (B.M.-A.)
| | - Bernardo Murillo-Amador
- Centro de Investigaciones Biológicas del Noroeste, S.C. Avenida Instituto Politécnico Nacional No. 195, Colonia Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
- Correspondence: (C.K.); (B.M.-A.)
| | - Muhammad Ashraf
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| |
Collapse
|
13
|
Zhou H, Zhang J, Shen J, Zhou M, Yuan X, Xie Y. Redox-based protein persulfidation in guard cell ABA signaling. PLANT SIGNALING & BEHAVIOR 2020; 15:1741987. [PMID: 32178559 PMCID: PMC7238880 DOI: 10.1080/15592324.2020.1741987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen sulfide (H2S) is a versatile signaling molecule that regulates multiple physiological processes in plants, including growth and development, immunity, and stress response as well. Signaling triggered by H2S is proposed to occur via persulfidation, an oxidative post-translational modification (PTM) of cysteine residues (-SH) to persulfides (-SSH). Notwithstanding the growing body of information for the plant persulfidation proteome, the gap between the molecular mechanism of H2S and physiological functions of protein persulfidation remains large. In this mini-review, we discussed the specific regulatory mechanism of persulfidation on guard cell abscisic acid (ABA) signaling and the possible link of persulfidation, sulfenylation, and S-nitrosylation within the framework of redox-based regulation.
Collapse
Affiliation(s)
- Heng Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Xingxing Yuan Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
- CONTACT Yanjie Xie Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
14
|
Zhang J, Zhou M, Ge Z, Shen J, Zhou C, Gotor C, Romero LC, Duan X, Liu X, Wu D, Yin X, Xie Y. Abscisic acid-triggered guard cell l-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure. PLANT, CELL & ENVIRONMENT 2020; 43:624-636. [PMID: 31734942 DOI: 10.1111/pce.13685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 05/25/2023]
Abstract
Recent studies have demonstrated that hydrogen sulfide (H2 S) produced through the activity of l-cysteine desulfhydrase (DES1) is an important gaseous signaling molecule in plants that could participate in abscisic acid (ABA)-induced stomatal closure. However, the coupling of the DES1/H2 S signaling pathways to guard cell movement has not been thoroughly elucidated. The results presented here provide genetic evidence for a physiologically relevant signaling pathway that governs guard cell in situ DES1/H2 S function in stomatal closure. We discovered that ABA-activated DES1 produces H2 S in guard cells. The impaired guard cell ABA phenotype of the des1 mutant can be fully complemented when DES1/H2 S function has been specifically rescued in guard cells and epidermal cells, but not mesophyll cells. This research further characterized DES1/H2 S function in the regulation of LONG HYPOCOTYL1 (HY1, a member of the heme oxygenase family) signaling. ABA-induced DES1 expression and H2 S production are hyper-activated in the hy1 mutant, both of which can be fully abolished by the addition of H2 S scavenger. Impaired guard cell ABA phenotype of des1/hy1 can be restored by H2 S donors. Taken together, this research indicated that guard cell in situ DES1 function is involved in ABA-induced stomatal closure, which also acts as a pivotal hub in regulating HY1 signaling.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Can Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Xingliang Duan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xin Liu
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, Life Science College, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, People's Republic of China
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Xianchao Yin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, People's Republic of China
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
15
|
Gotor C, García I, Aroca Á, Laureano-Marín AM, Arenas-Alfonseca L, Jurado-Flores A, Moreno I, Romero LC. Signaling by hydrogen sulfide and cyanide through post-translational modification. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4251-4265. [PMID: 31087094 DOI: 10.1093/jxb/erz225] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/03/2019] [Indexed: 05/04/2023]
Abstract
Two cysteine metabolism-related molecules, hydrogen sulfide and hydrogen cyanide, which are considered toxic, have now been considered as signaling molecules. Hydrogen sulfide is produced in chloroplasts through the activity of sulfite reductase and in the cytosol and mitochondria by the action of sulfide-generating enzymes, and regulates/affects essential plant processes such as plant adaptation, development, photosynthesis, autophagy, and stomatal movement, where interplay with other signaling molecules occurs. The mechanism of action of sulfide, which modifies protein cysteine thiols to form persulfides, is related to its chemical features. This post-translational modification, called persulfidation, could play a protective role for thiols against oxidative damage. Hydrogen cyanide is produced during the biosynthesis of ethylene and camalexin in non-cyanogenic plants, and is detoxified by the action of sulfur-related enzymes. Cyanide functions include the breaking of seed dormancy, modifying the plant responses to biotic stress, and inhibition of root hair elongation. The mode of action of cyanide is under investigation, although it has recently been demonstrated to perform post-translational modification of protein cysteine thiols to form thiocyanate, a process called S-cyanylation. Therefore, the signaling roles of sulfide and most probably of cyanide are performed through the modification of specific cysteine residues, altering protein functions.
Collapse
Affiliation(s)
- Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ángeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ana M Laureano-Marín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Lucía Arenas-Alfonseca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| |
Collapse
|
16
|
Kaya C, Ashraf M. The mechanism of hydrogen sulfide mitigation of iron deficiency-induced chlorosis in strawberry (Fragaria × ananassa) plants. PROTOPLASMA 2019; 256:371-382. [PMID: 30159606 DOI: 10.1007/s00709-018-1298-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/10/2018] [Indexed: 05/26/2023]
Abstract
A study was carried out to assess the mitigation mechanism of exogenously applied sodium hydrosulfide (NaHS) as a donor of H2S on strawberry seedlings under iron deficiency. The ameliorative effects of NaHS on oxidative damage, ion hemostasis and uptake, and availability of Fe were investigated by spraying solution of 0.2 mM NaHS or 0.2 mM NaHS plus 0.2 mM hypotaurine (HT), a scavenger of H2S to plant leaves. Iron deficiency was created using 0.1 mM FeSO4 instead of 0.1 mM EDTA-Fe in Hoagland's nutrient solution. After a 28-day treatment, strawberry plants exhibited leaf interveinal chlorosis under Fe deficiency, but these apparent symptoms of iron deficiency were overcome by foliar application of NaHS. Exogenously applied NaHS enhanced chlorophyll contents and available iron and Fe accumulation in young leaves, but application of H2S scavenger hypotaurine with NaHS did not change those parameters under Fe deficiency. This clearly shows that NaHS improved iron availability in the strawberry plants. Furthermore, exogenously applied NaHS increased endogenous H2S and iron levels in the roots and leaves. Moreover, NaHS enhanced the levels of zinc (Zn2+), calcium (Ca2+), and magnesium (Mg2+) in both leaves and roots of the strawberry plants grown at Fe deficiency, except for Zn in roots which decreased significantly. This also suggests that NaHS maintains the levels of inorganic ions restricted by Fe deficiency. Fe deficiency increased electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in plant leaves. Exogenous NaHS reduced the accumulation of H2O2, MDA, and EL and upregulated the activities of key antioxidant enzymes. Overall, NaHS improved Fe uptake and activation by improving endogenous H2S, maintained balance of mineral nutrients and activities of the antioxidant enzymes, and reduced the generation of MDA and H2O2 as well as electrolyte leakage caused by Fe deficiency. So NaHS proved to be effective in ameliorating iron chlorosis caused by iron deficiency.
Collapse
Affiliation(s)
- Cengiz Kaya
- Agriculture Faculty, Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | | |
Collapse
|
17
|
Mei Y, Zhao Y, Jin X, Wang R, Xu N, Hu J, Huang L, Guan R, Shen W. L-Cysteine desulfhydrase-dependent hydrogen sulfide is required for methane-induced lateral root formation. PLANT MOLECULAR BIOLOGY 2019; 99:283-298. [PMID: 30623274 DOI: 10.1007/s11103-018-00817-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/20/2018] [Indexed: 05/21/2023]
Abstract
Methane-triggered lateral root formation is not only a universal event, but also dependent on L-cysteine desulfhydrase-dependent hydrogen sulfide signaling. Whether or how methane (CH4) triggers lateral root (LR) formation has not been elucidated. In this report, CH4 induction of lateral rooting and the role of hydrogen sulfide (H2S) were dissected in tomato and Arabidopsis by using physiological, anatomical, molecular, and genetic approaches. First, we discovered that CH4 induction of lateral rooting is a universal event. Exogenously applied CH4 not only triggered tomato lateral rooting, but also increased activities of L-cysteine desulfhydrase (DES; a major synthetic enzyme of H2S) and induced endogenous H2S production, and contrasting responses were observed in the presence of hypotaurine (HT; a scavenger of H2S) or DL-propargylglycine (PAG; an inhibitor of DES) alone. CH4-triggered lateral rooting were sensitive to the inhibition of endogenous H2S with HT or PAG. The changes in the transcripts of representative cell cycle regulatory genes, miRNA and its target genes were matched with above phenotypes. In the presence of CH4, Arabidopsis mutant Atdes1 exhibited defects in lateral rooting, compared with the wild-type. Molecular evidence showed that the transcriptional profiles of representative target genes modulated by CH4 in wild-type plants were impaired in Atdes1 mutant. Overall, our data demonstrate the main branch of the DES-dependent H2S signaling cascade in CH4-triggered LR formation.
Collapse
Affiliation(s)
- Yudong Mei
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingying Zhao
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinxin Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Na Xu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiawen Hu
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liqin Huang
- College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
18
|
Sui N, Wang Y, Liu S, Yang Z, Wang F, Wan S. Transcriptomic and Physiological Evidence for the Relationship between Unsaturated Fatty Acid and Salt Stress in Peanut. FRONTIERS IN PLANT SCIENCE 2018; 9:7. [PMID: 29403517 PMCID: PMC5786550 DOI: 10.3389/fpls.2018.00007] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 01/03/2018] [Indexed: 05/18/2023]
Abstract
Peanut (Arachis hypogaea L.) is one of the five major oilseed crops cultivated worldwide. Salt stress is a common adverse condition for the growth of this crop in many countries and regions. In this study, physiological parameters and transcriptome profiles of peanut seedlings exposed to salt stress (250 mM NaCl for 4 days, S4) and recovery for 3 days (when transferred to standard conditions for 3 days, R3) were analyzed to detect genes associated with salt stress and recovery in peanut. We observed that the quantum yield of PSII electron transport (ΦPSII) and the maximal photochemical efficiency of PSII (Fv/Fm) decreased in S4 compared with the control, and increased in R3 compared with those in S4. Seedling fresh weight, dry weight and PSI oxidoreductive activity (ΔI/Io) were inhibited in S4 and did not recover in R3. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities decreased in S4 and increased in R3, whereas superoxide anion ([Formula: see text]) and hydrogen peroxide (H2O2) contents increased in S4 and decreased in R3. Transcriptome analysis revealed 1,742 differentially expressed genes (DEGs) under salt stress and 390 DEGs under recovery. Among these DEGs, two DEGs encoding ω-3 fatty acid desaturase that synthesized linolenic acid (18:3) from linoleic acid (18:2) were down-regulated in S4 and up-regulated in R3. Furthermore, ω-3 fatty acid desaturase activity decreased under salt stress and increased under recovery. Consistent with this result, 18:3 content decreased under salt stress and increased under recovery compared with that under salt treatment. In conclusion, salt stress markedly changed the activity of ω-3 fatty acid desaturase and fatty acid composition. The findings provide novel insights for the improvement of salt tolerance in peanut.
Collapse
Affiliation(s)
- Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Yu Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Shanshan Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Zhen Yang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan, China
| | - Fang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
19
|
Jia H, Chen S, Liu D, Liesche J, Shi C, Wang J, Ren M, Wang X, Yang J, Shi W, Li J. Ethylene-Induced Hydrogen Sulfide Negatively Regulates Ethylene Biosynthesis by Persulfidation of ACO in Tomato Under Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1517. [PMID: 30386366 PMCID: PMC6199894 DOI: 10.3389/fpls.2018.01517] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/27/2018] [Indexed: 05/20/2023]
Abstract
A number of recent studies identified hydrogen sulfide (H2S) as an important signal in plant development and adaptation to environmental stress. H2S has been proven to participate in ethylene-induced stomatal closure, but how the signaling pathways of H2S and ethylene interact is still unclear. Here, we reveal how H2S controls the feedback-regulation of ethylene biosynthesis in tomato (Solanum lycopersicum) under osmotic stress. We found that ethylene induced the production of H2S in guard cells. The supply of hypotaurine (HT; a H2S scavenger) or DL-pro-pargylglycine (PAG; a synthetic inhibitor of H2S) removed the effect of ethylene or osmotic stress on stomatal closure. This suggests that ethylene-induced H2S is a downstream component of osmotic stress signaling, which is required for ethylene-induced stomatal closure under osmotic stress. We further found that H2S inhibited ethylene synthesis through inhibiting the activity of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidases (ACOs) by persulfidation. A modified biotin-switch method (MBST) showed that H2S can induce persulfidation of LeACO1 and LeACO2 in a dose-dependent manner, and that persulfidation inhibits the activity of LeACO1 and LeACO2. We also found that LeACO1 is persulfidated at cysteine 60. These data suggested that ethylene-induced H2S negatively regulates ethylene biosynthesis by persulfidation of LeACOs. In addition, H2S was also found to inhibit the expression of LeACO genes. The results provide insight on the general mode of action of H2S and contribute to a better understanding of a plant's response to osmotic stress.
Collapse
Affiliation(s)
- Honglei Jia
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Sisi Chen
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Dan Liu
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Cong Shi
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Juan Wang
- Northwest A&F University Life Science Research Core Services, Northwest A&F University, Yangling, China
| | - Meijuan Ren
- Northwest A&F University Life Science Research Core Services, Northwest A&F University, Yangling, China
| | - Xiaofeng Wang
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jun Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Wei Shi
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Jisheng Li
- Biomass Energy Center for Arid and Semi-Arid Lands, College of Life Sciences, Northwest A&F University, Yangling, China
- *Correspondence: Jisheng Li,
| |
Collapse
|