1
|
Blackman CJ, Halliwell B, Brodribb TJ. All together now: A mixed-planting experiment reveals adaptive drought tolerance in seedlings of 10 Eucalyptus species. PLANT PHYSIOLOGY 2024; 197:kiae632. [PMID: 39673329 DOI: 10.1093/plphys/kiae632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/04/2024] [Accepted: 11/10/2024] [Indexed: 12/16/2024]
Abstract
The negative impacts of drought on plant productivity and survival in natural and crop systems are increasing with global heating, yet our capacity to identify species capable of surviving drought remains limited. Here, we tested the use of a mixed-planting approach for assessing differences in seedling drought tolerance. To homogenize dehydration rates, we grew seedlings of 10 species of Eucalyptus together in trays where roots of all individuals were overlapping in a common loam soil. These seedling combinations were dried down under cool and warm temperature conditions, and seedling responses were quantified from measurements of chlorophyll fluorescence (Fv/Fm). The day of drought (T) associated with an 88% decline in Fv/Fm (TF88) varied significantly among species and was unrelated to seedling size. No significant differences in water potentials were detected among seedlings dehydrated under warm conditions prior to leaf wilt. The rank-order of species TF88 was consistent under both temperature treatments. Under cool conditions, seedling TF88 increased with decreasing cavitation vulnerability measured on adult foliage. Under both treatments, a quadratic function best fit the relationship between seedling TF88 and sampling site mean annual precipitation. These results provide evidence for adaptive selection of seedling drought tolerance. Our findings highlight the use of mixed-planting experiments for comparing seedling drought tolerance with applications for improving plant breeding and conservation outcomes.
Collapse
Affiliation(s)
- Chris J Blackman
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Ben Halliwell
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Tim J Brodribb
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia
| |
Collapse
|
2
|
Costa e Silva J, Potts BM, Wiehl G, Prober SM. Linking leaf economic and hydraulic traits with early-age growth performance and survival of Eucalyptus pauciflora. FRONTIERS IN PLANT SCIENCE 2022; 13:973087. [PMID: 36426150 PMCID: PMC9679299 DOI: 10.3389/fpls.2022.973087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Selection on plant functional traits may occur through their direct effects on fitness (or a fitness component), or may be mediated by attributes of plant performance which have a direct impact on fitness. Understanding this link is particularly challenging for long-lived organisms, such as forest trees, where lifetime fitness assessments are rarely achievable, and performance features and fitness components are usually quantified from early-life history stages. Accordingly, we studied a cohort of trees from multiple populations of Eucalyptus pauciflora grown in a common-garden field trial established at the hot and dry end of the species distribution on the island of Tasmania, Australia. We related the within-population variation in leaf economic (leaf thickness, leaf area and leaf density) and hydraulic (stomatal density, stomatal length and vein density) traits, measured from two-year-old plants, to two-year growth performance (height and stem diameter) and to a fitness component (seven-year survival). When performance-trait relationships were modelled for all traits simultaneously, statistical support for direct effects on growth performance was only observed for leaf thickness and leaf density. Performance-based estimators of directional selection indicated that individuals with reduced leaf thickness and increased leaf density were favoured. Survival-performance relationships were consistent with size-dependent mortality, with fitness-based selection gradients estimated for performance measures providing evidence for directional selection favouring individuals with faster growth. There was no statistical support for an effect associated with the fitness-based quadratic selection gradient estimated for growth performance. Conditional on a performance measure, fitness-based directional selection gradients estimated for the leaf traits did not provide statistical support for direct effects of the focal traits on tree survival. This suggested that, under the environmental conditions of the trial site and time period covered in the current study, early-stage selection on the studied leaf traits may be mediated by their effects on growth performance, which in turn has a positive direct influence on later-age survival. We discuss the potential mechanistic basis of the direct effects of the focal leaf traits on tree growth, and the relevance of a putative causal pathway of trait effects on fitness through mediation by growth performance in the studied hot and dry environment.
Collapse
Affiliation(s)
- João Costa e Silva
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Brad M. Potts
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
- Australian Research Council (ARC) Training Centre for Forest Value, University of Tasmania, Hobart, TAS, Australia
| | - Georg Wiehl
- CSIRO Land and Water, Private Bag 5, Wembley, WA, Australia
| | | |
Collapse
|
3
|
Hernández MA, Butler JB, Ammitzboll H, Weller JL, Vaillancourt RE, Potts BM. Genetic control of the operculum and capsule morphology of Eucalyptus globulus. ANNALS OF BOTANY 2022; 130:97-108. [PMID: 35652517 PMCID: PMC9295918 DOI: 10.1093/aob/mcac072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS The petaline operculum that covers the inner whorls until anthesis and the woody capsule that develops after fertilization are reproductive structures of eucalypts that protect the flower and seeds. Although they are distinct organs, they both develop from flower buds and this common ontogeny suggests shared genetic control. In Eucalyptus globulus their morphology is variable and we aimed to identify the quantitative trait loci (QTL) underlying this variation and determine whether there is common genetic control of these ecologically and taxonomically important reproductive structures. METHODS Samples of opercula and capsules were collected from 206 trees that belong to a large outcrossed F2E. globulus mapping population. The morphological variation in these structures was characterized by measuring six operculum and five capsule traits. QTL analysis was performed using these data and a linkage map consisting of 480 markers. KEY RESULTS A total of 27 QTL were detected for operculum traits and 28 for capsule traits, with the logarithm of odds ranging from 2.8 to 11.8. There were many co-located QTL associated with operculum or capsule traits, generally reflecting allometric relationships. A key finding was five genomic regions where co-located QTL affected both operculum and capsule morphology, and the overall trend for these QTL was to affect elongation of both organs. Some of these QTL appear to have a significant effect on the phenotype, with the strongest QTL explaining 26.4 % of the variation in operculum shape and 16.4 % in capsule shape. Flower bud measurements suggest the expression of these QTL starts during bud development. Several candidate genes were found associated with the QTL and their putative function is discussed. CONCLUSIONS Variation in both operculum and capsule traits in E. globulus is under strong genetic control. Our results suggest that these reproductive structures share a common genetic pathway during flower bud development.
Collapse
Affiliation(s)
- Mariano A Hernández
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania 7001, Australia
- Instituto Nacional de Tecnología Agropecuaria (INTA), Route 27 - Km 38.3, Bella Vista, Corrientes 3432, Argentina
| | | | - Hans Ammitzboll
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture
| | - René E Vaillancourt
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Brad M Potts
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
- ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
4
|
Zhang M, Lu N, Jiang L, Liu B, Fei Y, Ma W, Shi C, Wang J. Multiple dynamic models reveal the genetic architecture for growth in height of Catalpa bungei in the field. TREE PHYSIOLOGY 2022; 42:1239-1255. [PMID: 34940852 DOI: 10.1093/treephys/tpab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Growth in height (GH) is a critical determinant for tree survival and development in forests and can be depicted using logistic growth curves. Our understanding of the genetic mechanism underlying dynamic GH, however, is limited, particularly under field conditions. We applied two mapping models (Funmap and FVTmap) to find quantitative trait loci responsible for dynamic GH and two epistatic models (2HiGWAS and 1HiGWAS) to detect epistasis in Catalpa bungei grown in the field. We identified 13 co-located quantitative trait loci influencing the growth curve by Funmap and three heterochronic parameters (the timing of the inflection point, maximum acceleration and maximum deceleration) by FVTmap. The combined use of FVTmap and Funmap reduced the number of candidate genes by >70%. We detected 76 significant epistatic interactions, amongst which a key gene, COMT14, co-located by three models (but not 1HiGWAS) interacted with three other genes, implying that a novel network of protein interaction centered on COMT14 may control the dynamic GH of C. bungei. These findings provide new insights into the genetic mechanisms underlying the dynamic growth in tree height in natural environments and emphasize the necessity of incorporating multiple dynamic models for screening more reliable candidate genes.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Libo Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
5
|
Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. FORESTS 2022. [DOI: 10.3390/f13040575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Understanding the capacity of forest tree species to adapt to climate change is of increasing importance for managing forest genetic resources. Through a genomics approach, we modelled spatial variation in climate adaptation within the Australian temperate forest tree Eucalyptus globulus, identified putative climate drivers of this genomic variation, and predicted locations of future climate refugia and populations at-risk of future maladaptation. Using 812,158 SNPs across 130 individuals from 30 populations (i.e., localities) spanning the species’ natural range, a gradientForest algorithm found 1177 SNPs associated with locality variation in home-site climate (climate-SNPs), putatively linking them to climate adaptation. Very few climate-SNPs were associated with population-level variation in drought susceptibility, signalling the multi-faceted nature and complexity of climate adaptation. Redundancy analysis (RDA) showed 24% of the climate-SNP variation could be explained by annual precipitation, isothermality, and maximum temperature of the warmest month. Spatial predictions of the RDA climate vectors associated with climate-SNPs allowed mapping of genomically informed climate selective surfaces across the species’ range under contemporary and projected future climates. These surfaces suggest over 50% of the current distribution of E. globulus will be outside the modelled adaptive range by 2070 and at risk of climate maladaptation. Such surfaces present a new integrated approach for natural resource managers to capture adaptive genetic variation and plan translocations in the face of climate change.
Collapse
|
6
|
Zhang M, Lu N, Zhu T, Yang G, Qu G, Shi C, Fei Y, Liu B, Ma W, Wang J. A Bivariate Mapping Model Identifies Major Covariation QTLs for Biomass Allocation Between Leaf and Stem Growth of Catalpa bungei. Front Genet 2021; 12:758209. [PMID: 34868235 PMCID: PMC8637733 DOI: 10.3389/fgene.2021.758209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Biomass allocation plays a critical role in plant morphological formation and phenotypic plasticity, which greatly impact plant adaptability and competitiveness. While empirical studies on plant biomass allocation have focused on molecular biology and ecology approaches, detailed insight into the genetic basis of biomass allocation between leaf and stem growth is still lacking. Herein, we constructed a bivariate mapping model to identify covariation QTLs governing carbon (C) allocation between the leaves and stem as well as the covariation of traits within and between organs in a full-sib mapping population of C. bungei. A total of 123 covQTLs were detected for 23 trait pairs, including six leaf traits (leaf length, width, area, perimeter, length/width ratio and petiole length) and five stem traits (height, diameter at breast height, wood density, stemwood volume and stemwood biomass). The candidate genes were further identified in tissue-specific gene expression data, which provided insights into the genetic architecture underlying C allocation for traits or organs. The key QTLs related to growth and biomass allocation, which included UVH1, CLPT2, GAD/SPL, COG1 and MTERF4, were characterised and verified via gene function annotation and expression profiling. The integration of a bivariate Quantitative trait locus mapping model and gene expression profiling will enable the elucidation of genetic architecture underlying biomass allocation and covariation growth, in turn providing a theoretical basis for forest molecular marker-assisted breeding with specific C allocation strategies for adaptation to heterogeneous environments.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
7
|
Costa e Silva J, Jordan R, Potts BM, Pinkard E, Prober SM. Directional Selection on Tree Seedling Traits Driven by Experimental Drought Differs Between Mesic and Dry Populations. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.722964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We evaluated population differences and drought-induced phenotypic selection on four seedling traits of the Australian forest tree Eucalyptus pauciflora using a glasshouse dry-down experiment. We compared dry and mesic populations and tested for directional selection on lamina length (reflecting leaf size), leaf shape, the node of ontogenetic transition to the petiolate leaf (reflecting the loss of vegetative juvenility), and lignotuber size (reflecting a recovery trait). On average, the dry population had smaller and broader leaves, greater retention of the juvenile leaf state and larger lignotubers than the mesic population, but the populations did not differ in seedling survival. While there was statistical support for directional selection acting on the focal traits in one or other population, and for differences between populations in selection gradient estimates for two traits, only one trait—lamina length—exhibited a pattern of directional selection consistent with the observed population differences being a result of past adaptation to reduce seedling susceptibility to acute drought. The observed directional selection for lamina length in the mesic population suggests that future increases in drought risk in the wild will shift the mean of the mesic population toward that of the dry population. Further, we provide evidence suggesting an early age trade-off between drought damage and recovery traits, with phenotypes which develop larger lignotubers early being more susceptible to drought death. Such trade-offs could have contributed to the absence of population mean differences in survival, despite marked differentiation in seedling traits.
Collapse
|
8
|
Temperature and Rainfall Are Separate Agents of Selection Shaping Population Differentiation in a Forest Tree. FORESTS 2019. [DOI: 10.3390/f10121145] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Research highlights: We present evidence indicating that covariation of functional traits among populations of a forest tree is not due to genetic constraints, but rather selective covariance arising from local adaptation to different facets of the climate, namely rainfall and temperature. Background and Aims: Traits frequently covary among natural populations. Such covariation can be caused by pleiotropy and/or linkage disequilibrium, but also may arise when the traits are genetically independent as a direct consequence of natural selection, drift, mutation and/or gene flow. Of particular interest are cases of selective covariance, where natural selection directly generates among-population covariance in a set of genetically independent traits. We here studied the causes of population-level covariation in two key traits in the Australian tree Eucalyptus pauciflora. Materials and Methods: We studied covariation in seedling lignotuber size and vegetative juvenility using 37 populations sampled from throughout the geographic and ecological ranges of E. pauciflora on the island of Tasmania. We integrated evidence from multiple sources: (i) comparison of patterns of trait covariation within and among populations; (ii) climate-trait modelling using machine-learning algorithms; and (iii) selection analysis linking trait variation to field growth in an arid environment. Results: We showed strong covariation among populations compared with the weak genetic correlation within populations for the focal traits. Population differentiation in these genetically independent traits was correlated with different home-site climate variables (lignotuber size with temperature; vegetative juvenility with rainfall), which spatially covaried. The role of selection in shaping the population differentiation in lignotuber size was supported by its relationship with fitness measured in the field. Conclusions: Our study highlights the multi-trait nature of adaptation likely to occur as tree species respond to spatial and temporal changes in climate.
Collapse
|