1
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
2
|
Moreira JDR, Quiñones A, Lira BS, Robledo JM, Curtin SJ, Vicente MH, Ribeiro DM, Ryngajllo M, Jiménez-Gómez JM, Peres LEP, Rossi M, Zsögön A. SELF PRUNING 3C is a flowering repressor that modulates seed germination, root architecture, and drought responses. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6226-6240. [PMID: 35710302 DOI: 10.1093/jxb/erac265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Allelic variation in the CETS (CENTRORADIALIS, TERMINAL FLOWER 1, SELF PRUNING) gene family controls agronomically important traits in many crops. CETS genes encode phosphatidylethanolamine-binding proteins that have a central role in the timing of flowering as florigenic and anti-florigenic signals. The great expansion of CETS genes in many species suggests that the functions of this family go beyond flowering induction and repression. Here, we characterized the tomato SELF PRUNING 3C (SP3C) gene, and show that besides acting as a flowering repressor it also regulates seed germination and modulates root architecture. We show that loss of SP3C function in CRISPR/Cas9-generated mutant lines increases root length and reduces root side branching relative to the wild type. Higher SP3C expression in transgenic lines promotes the opposite effects in roots, represses seed germination, and also improves tolerance to water stress in seedlings. These discoveries provide new insights into the role of SP paralogs in agronomically relevant traits, and support future exploration of the involvement of CETS genes in abiotic stress responses.
Collapse
Affiliation(s)
| | - Alejandra Quiñones
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Jessenia M Robledo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Shaun J Curtin
- United States Department of Agriculture, Plant Science Research Unit, St Paul, MN, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, USA
| | - Mateus H Vicente
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Dimas M Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | - Lázaro Eustáquio Pereira Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
3
|
Li K, Zhang S, Tang S, Zhang J, Dong H, Yang S, Qu H, Xuan W, Gu M, Xu G. The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters. PLANT PHYSIOLOGY 2022; 189:1608-1624. [PMID: 35512346 PMCID: PMC9237666 DOI: 10.1093/plphys/kiac178] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Plants adjust root architecture and nitrogen (N) transporter activity to meet the variable N demand, but their integrated regulatory mechanism remains unclear. We have previously reported that a floral factor in rice (Oryza sativa), N-mediated heading date-1 (Nhd1), regulates flowering time. Here, we show that Nhd1 can directly activate the transcription of the high-affinity ammonium (NH4+) transporter 1;3 (OsAMT1;3) and the dual affinity nitrate (NO3-) transporter 2.4 (OsNRT2.4). Knockout of Nhd1 inhibited root growth in the presence of NO3- or a low concentration of NH4+. Compared to the wild-type (WT), nhd1 and osamt1;3 mutants showed a similar decrease in root growth and N uptake under low NH4+ supply, while nhd1 and osnrt2.4 mutants showed comparable root inhibition and altered NO3- translocation in shoots. The defects of nhd1 mutants in NH4+ uptake and root growth response to various N supplies were restored by overexpression of OsAMT1;3 or OsNRT2.4. However, when grown in a paddy field with low N availability, nhd1 mutants accumulated more N and achieved a higher N uptake efficiency (NUpE) due to the delayed flowering time and prolonged growth period. Our findings reveal a molecular mechanism underlying the growth duration-dependent NUpE.
Collapse
Affiliation(s)
- Kangning Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | | | - Shuo Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongzhang Dong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shihan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- Authors for correspondence: (S.Z.); (G.X.)
| |
Collapse
|
4
|
Molitor C, Kurowski TJ, Fidalgo de Almeida PM, Eerolla P, Spindlow DJ, Kashyap SP, Singh B, Prasanna HC, Thompson AJ, Mohareb FR. De Novo Genome Assembly Of Solanum Sitiens Reveals Structural Variation Associated With Drought And Salinity Tolerance. Bioinformatics 2021; 37:1941–1945. [PMID: 33515237 PMCID: PMC8496510 DOI: 10.1093/bioinformatics/btab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 11/23/2022] Open
Abstract
MOTIVATION Solanum sitiens is a self-incompatible wild relative of tomato, characterised by salt and drought resistance traits, with the potential to contribute through breeding programmes to crop improvement in cultivated tomato. This species has a distinct morphology, classification and ecotype compared to other stress resistant wild tomato relatives such as S. pennellii and S. chilense. Therefore, the availability of a reference genome for S. sitiens will facilitate the genetic and molecular understanding of salt and drought resistance. RESULTS A high-quality de novo genome and transcriptome assembly for S. sitiens (Accession LA1974) has been developed. A hybrid assembly strategy was followed using Illumina short reads (∼159X coverage) and PacBio long reads (∼44X coverage), generating a total of ∼262 Gbp of DNA sequence. A reference genome of 1,245 Mbp, arranged in 1,483 scaffolds with a N50 of 1.826 Mbp was generated. Genome completeness was estimated at 95% using the Benchmarking Universal Single-Copy Orthologs (BUSCO) and the K-mer Analysis Tool (KAT). In addition, ∼63 Gbp of RNA-Seq were generated to support the prediction of 31,164 genes from the assembly, and to perform a de novo transcriptome. Lastly, we identified three large inversions compared to S. lycopersicum, containing several drought resistance related genes, such as beta-amylase 1 and YUCCA7. AVAILABILITY S. sitiens (LA1974) raw sequencing, transcriptome and genome assembly have been deposited at the NCBI's Sequence Read Archive, under the BioProject number "PRJNA633104".All the commands and scripts necessary to generate the assembly are available at the following github repository: https://github.com/MCorentin/Solanum_sitiens_assembly. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Corentin Molitor
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Tomasz J Kurowski
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Pedro M Fidalgo de Almeida
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Pramod Eerolla
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Daniel J Spindlow
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Sarvesh P Kashyap
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Bijendra Singh
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - H C Prasanna
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
- Division of Vegetable Crops, ICAR-Indian Institute of Horticultural Research, Bangalore, India
| | - Andrew J Thompson
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| | - Fady R Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Bedford MK43 0AL, UK
| |
Collapse
|
5
|
Down Regulation and Loss of Auxin Response Factor 4 Function Using CRISPR/Cas9 Alters Plant Growth, Stomatal Function and Improves Tomato Tolerance to Salinity and Osmotic Stress. Genes (Basel) 2020; 11:genes11030272. [PMID: 32138192 PMCID: PMC7140898 DOI: 10.3390/genes11030272] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/25/2022] Open
Abstract
Auxin controls multiple aspects of plant growth and development. However, its role in stress responses remains poorly understood. Auxin acts on the transcriptional regulation of target genes, mainly through Auxin Response Factors (ARF). This study focuses on the involvement of SlARF4 in tomato tolerance to salinity and osmotic stress. Using a reverse genetic approach, we found that the antisense down-regulation of SlARF4 promotes root development and density, increases soluble sugars content and maintains chlorophyll content at high levels under stress conditions. Furthermore, ARF4-as displayed higher tolerance to salt and osmotic stress through reduced stomatal conductance coupled with increased leaf relative water content and Abscisic acid (ABA) content under normal and stressful conditions. This increase in ABA content was correlated with the activation of ABA biosynthesis genes and the repression of ABA catabolism genes. Cu/ZnSOD and mdhar genes were up-regulated in ARF4-as plants which can result in a better tolerance to salt and osmotic stress. A CRISPR/Cas9 induced SlARF4 mutant showed similar growth and stomatal responses as ARF4-as plants, which suggest that arf4-cr can tolerate salt and osmotic stresses. Our data support the involvement of ARF4 as a key factor in tomato tolerance to salt and osmotic stresses and confirm the use of CRISPR technology as an efficient tool for functional reverse genetics studies.
Collapse
|