1
|
Asghar S, Hayat F, Zhao Z, Zheng Z, Ghori N, Lu Z, Li Y, Chen C. De novo root regeneration from leaf explant: a mechanistic review of key factors behind cell fate transition. PLANTA 2025; 261:33. [PMID: 39808280 DOI: 10.1007/s00425-025-04616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
MAIN CONCLUSION De novo root regeneration (DNRR) involves activation of special cells after wounding, along with the converter cells, reactive oxygen species, ethylene, and jasmonic acid, also playing key roles. An updated DNRR model is presented here with gene regulatory networks. Root formation after tissue injury is a type of plant regeneration known as de novo root regeneration (DNRR). DNRR system has wide applications in agriculture and tissue culture biotechnology. This review summarizes the recent advancements in the DNRR model for the cellular and molecular framework, targeting leaf explant of Arabidopsis and highlighting differences among direct and indirect pathways. Key findings highlight the presence of special cells in leaf explants after wounding, under different time lapses, through single-cell sequencing of the transcriptional landscape. The possible roles of reactive oxygen species (ROS), ethylene, and jasmonic acid are explored in the early establishment of wounding signals (short/long) for auxin biosynthesis, ultimately leading to adventitious root formation. The synergistic manner of 3rd type of special cells along converter and regeneration-competent cells automatically leads towards cell fate transition for auxin flux in regeneration-competent cells. The signaling mechanisms of these suggested special cells need to be further investigated to understand the DNRR mechanistic story entirely, in addition to root-to-root regeneration and stem-to-root regeneration. Meta-analysis of DNRR is also presented for past and future reference.
Collapse
Affiliation(s)
- Sumeera Asghar
- The Key Laboratory of Plant Resources Conservation Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences Institute of Agro-Bioengineering, Guizhou University, Guiyang, 5505, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Faisal Hayat
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, United Arab Emirates
| | - Zimo Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhu Zheng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nida Ghori
- USADA Central Small Grain Genotyping Lab, Kansas State University, Manhattan, USA
- Rothamsted Research, Harpenden, UK
| | - Zhang Lu
- Department of Horticulture & Landscape Architecture 338 Agricultural Hall, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences Institute of Agro-Bioengineering, Guizhou University, Guiyang, 5505, China.
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Kaji M, Katano K, Anee TI, Nitta H, Yamaji R, Shimizu R, Shigaki S, Suzuki H, Suzuki N. Response of Arabidopsis thaliana to Flooding with Physical Flow. PLANTS (BASEL, SWITZERLAND) 2024; 13:3508. [PMID: 39771206 PMCID: PMC11678080 DOI: 10.3390/plants13243508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/05/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Flooding causes severe yield losses worldwide, making it urgent to enhance crop tolerance to this stress. Since natural flooding often involves physical flow, we hypothesized that the effects of submergence on plants could change when combined with physical flow. In this study, we analyzed the growth and transcriptome of Arabidopsis thaliana exposed to submergence or flooding with physical flow. Plants exposed to flooding with physical flow had smaller rosette diameters, especially at faster flow rates. Transcriptome analysis revealed that "defense response" transcripts were highly up-regulated in response to flooding with physical flow. In addition, up-regulation of transcripts encoding ROS-producing enzymes, SA synthesis, JA synthesis, and ethylene signaling was more pronounced under flooding with physical flow when compared to submergence. Although H2O2 accumulation changed in response to submergence or flooding with physical flow, it did not lead to lipid peroxidation, suggesting a role for ROS as signaling molecules under these conditions. Multiple regression analysis indicated possible links between rosette diameter under flooding with physical flow and the expression of Rbohs and SA synthesis transcripts. These findings suggest that pathogen defense responses, regulated by SA and ROS signaling, play crucial roles in plant responses to flooding with physical flow.
Collapse
Affiliation(s)
- Momoko Kaji
- National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan; (M.K.); (H.N.); (R.Y.)
- Division of Environmental Design, Graduate School of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | - Kazuma Katano
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan;
| | - Taufika Islam Anee
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan;
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Hiroshi Nitta
- National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan; (M.K.); (H.N.); (R.Y.)
| | - Ryotaro Yamaji
- National Institute of Technology, Ishikawa College, Tsubata 929-0392, Ishikawa, Japan; (M.K.); (H.N.); (R.Y.)
| | - Rio Shimizu
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - Shunsuke Shigaki
- Principles of Informatics Research Division, National Institute of Informatics, Chiyoda, Tokyo 101-8430, Japan;
| | - Hiroyuki Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, Hokkai-Gakuen University, Sapporo 062-8605, Hokkaido, Japan;
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan;
| |
Collapse
|
3
|
Zhang G, Du Y, Wang X, Zhang Y, Zhang S, Li M, Li X, Zhang G. Functional Analysis of CLE26 in Controlling De Novo Root Regeneration from Detached Arabidopsis Leaves. Int J Mol Sci 2024; 25:13156. [PMID: 39684866 DOI: 10.3390/ijms252313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
De novo root regeneration is the process by which adventitious roots form around the wound site from wounded or detached plant organs. The de novo root regeneration process has been widely exploited in cutting technology used for vegetative propagation. Here, we employed detached leaf explants from Arabidopsis thaliana to form adventitious roots for studying the process of de novo root regeneration. GUS staining showed that the expression of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED26(CLE26) was gradually increased surrounding the wound site of leaf explants during adventitious root formation. Semi-thin sections further showed that the expression pattern of CLE26 was closely linked to the formation of adventitious roots. Next, genetic analyses confirmed that the CLE26 gene was involved in de novo root regeneration. Furthermore, RNA sequencing (RNA-seq) of the leaf explants revealed that stress-related genes might be involved in CLE26-mediated adventitious root formation. Specifically, genes associated with the hydrogen peroxide catabolic process and oxidative stress response were predominantly upregulated in the cle26 mutant. In contrast, genes involved in the response to salicylic acid were largely downregulated in the cle26 mutant. Overall, our study indicates that the mutation in CLE26 might upregulate the expression of genes involved in reactive oxygen species metabolism or suppress the expression of genes associated with salicylic acid synthesis, thus promoting the formation of adventitious roots. These findings suggest that CLE26 is a potential candidate for the genetic improvement of adventitious rooting in cuttings.
Collapse
Affiliation(s)
- Geng Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuxuan Du
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinying Wang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuge Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shili Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mingyang Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaojuan Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Guifang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Kevei Z, Larriba E, Romero-Bosquet MD, Nicolás-Albujer M, Kurowski TJ, Mohareb F, Rickett D, Pérez-Pérez JM, Thompson AJ. Genes involved in auxin biosynthesis, transport and signalling underlie the extreme adventitious root phenotype of the tomato aer mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:76. [PMID: 38459215 PMCID: PMC10923741 DOI: 10.1007/s00122-024-04570-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 03/10/2024]
Abstract
The use of tomato rootstocks has helped to alleviate the soaring abiotic stresses provoked by the adverse effects of climate change. Lateral and adventitious roots can improve topsoil exploration and nutrient uptake, shoot biomass and resulting overall yield. It is essential to understand the genetic basis of root structure development and how lateral and adventitious roots are produced. Existing mutant lines with specific root phenotypes are an excellent resource to analyse and comprehend the molecular basis of root developmental traits. The tomato aerial roots (aer) mutant exhibits an extreme adventitious rooting phenotype on the primary stem. It is known that this phenotype is associated with restricted polar auxin transport from the juvenile to the more mature stem, but prior to this study, the genetic loci responsible for the aer phenotype were unknown. We used genomic approaches to define the polygenic nature of the aer phenotype and provide evidence that increased expression of specific auxin biosynthesis, transport and signalling genes in different loci causes the initiation of adventitious root primordia in tomato stems. Our results allow the selection of different levels of adventitious rooting using molecular markers, potentially contributing to rootstock breeding strategies in grafted vegetable crops, especially in tomato. In crops vegetatively propagated as cuttings, such as fruit trees and cane fruits, orthologous genes may be useful for the selection of cultivars more amenable to propagation.
Collapse
Affiliation(s)
- Zoltan Kevei
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK.
| | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Spain
| | | | | | - Tomasz J Kurowski
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK
| | - Fady Mohareb
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK
| | - Daniel Rickett
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell Berkshire, RG42 6EY, UK
| | | | - Andrew J Thompson
- Centre for Soil, AgriFood and Biosciences, Cranfield University, College Road, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
5
|
Wang Y, Jin S, Liu Z, Chen G, Cheng P, Li L, Xu S, Shen W. H2 supplied via ammonia borane stimulates lateral root branching via phytomelatonin signaling. PLANT PHYSIOLOGY 2024; 194:884-901. [PMID: 37944026 DOI: 10.1093/plphys/kiad595] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
A reliable and stable hydrogen gas (H2) supply will benefit agricultural laboratory and field trials. Here, we assessed ammonia borane (AB), an efficient hydrogen storage material used in the energy industry, and determined its effect on plant physiology and the corresponding mechanism. Through hydroponics and pot experiments, we discovered that AB increases tomato (Solanum lycopersicum) lateral root (LR) branching and this function depended on the increased endogenous H2 level caused by the sustainable H2 supply. In particular, AB might trigger LR primordia initiation. Transgenic tomato and Arabidopsis (Arabidopsis thaliana) expressing hydrogenase1 (CrHYD1) from Chlamydomonas reinhardtii not only accumulated higher endogenous H2 and phytomelatonin levels but also displayed pronounced LR branching. These endogenous H2 responses achieved by AB or genetic manipulation were sensitive to the pharmacological removal of phytomelatonin, indicating the downstream role of phytomelatonin in endogenous H2 control of LR formation. Consistently, extra H2 supply failed to influence the LR defective phenotypes in phytomelatonin synthetic mutants. Molecular evidence showed that the phytomelatonin-regulated auxin signaling network and cell-cycle regulation were associated with the AB/H2 control of LR branching. Also, AB and melatonin had little effect on LR branching in the presence of auxin synthetic inhibitors. Collectively, our integrated approaches show that supplying H2 via AB increases LR branching via phytomelatonin signaling. This finding might open the way for applying hydrogen storage materials to horticultural production.
Collapse
Affiliation(s)
- Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Shanshan Jin
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ziyu Liu
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Genmei Chen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Pengfei Cheng
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Longna Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Sheng Xu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
6
|
Xiao Y, Tuo W, Wang X, Feng B, Xu X, Ahmad S, Zhai J, Peng D, Wu S. Establishment of a Rapid and Effective Agrobacterium-Mediated Genetic Transformation System of Oxalis triangularis 'Purpurea'. PLANTS (BASEL, SWITZERLAND) 2023; 12:4130. [PMID: 38140457 PMCID: PMC10747433 DOI: 10.3390/plants12244130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
Oxalis triangularis 'Purpurea' has significant ornamental value in landscaping. There is a critical necessity to elucidate the gene functions of O. triangularis 'Purpurea' and dissect the molecular mechanisms governing key ornamental traits. However, a reliable genetic transformation method remains elusive. In this study, our investigation revealed that various transformation parameters, including recipient material (petioles), pre-culture time (2-5 days), acetosyringone (AS) concentration (100-400 μM), Agrobacterium concentrations (OD600 = 0.4-1.0), infection time (5-20 min), and co-culture time (2-5 days), significantly impacted the stable genetic transformation in O. triangular 'Purpurea'. Notably, the highest genetic transformation rate was achieved from the leaf discs pre-cultured for 3 days, treated with 200 μM AS infected with Agrobacterium for 11 min at OD600 of 0.6, and subsequently co-cultured for 3 days. This treatment resulted in a genetic transformation efficiency of 9.88%, and it only took 79 days to produce transgenic plants. Our transformation protocol offers advantages of speed, efficiency, and simplicity, which will greatly facilitate genetic transformation for O. triangular 'Purpurea' and gene function studies.
Collapse
Affiliation(s)
- Yun Xiao
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| | - Wanli Tuo
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| | - Xuexuan Wang
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| | - Baomin Feng
- Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Xinyu Xu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| | - Sagheer Ahmad
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| | - Junwen Zhai
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| | - Donghui Peng
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| | - Shasha Wu
- College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.X.); (W.T.); (X.W.); (X.X.); (S.A.); (J.Z.); (D.P.)
| |
Collapse
|
7
|
Zeng Y, Verstraeten I, Trinh HK, Lardon R, Schotte S, Olatunji D, Heugebaert T, Stevens C, Quareshy M, Napier R, Nastasi SP, Costa A, De Rybel B, Bellini C, Beeckman T, Vanneste S, Geelen D. Chemical induction of hypocotyl rooting reveals extensive conservation of auxin signalling controlling lateral and adventitious root formation. THE NEW PHYTOLOGIST 2023; 240:1883-1899. [PMID: 37787103 DOI: 10.1111/nph.19292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/19/2023] [Indexed: 10/04/2023]
Abstract
Upon exposure to light, etiolated Arabidopsis seedlings form adventitious roots (AR) along the hypocotyl. While processes underlying lateral root formation are studied intensively, comparatively little is known about the molecular processes involved in the initiation of hypocotyl AR. AR and LR formation were studied using a small molecule named Hypocotyl Specific Adventitious Root INducer (HYSPARIN) that strongly induces AR but not LR formation. HYSPARIN does not trigger rapid DR5-reporter activation, DII-Venus degradation or Ca2+ signalling. Transcriptome analysis, auxin signalling reporter lines and mutants show that HYSPARIN AR induction involves nuclear TIR1/AFB and plasma membrane TMK auxin signalling, as well as multiple downstream LR development genes (SHY2/IAA3, PUCHI, MAKR4 and GATA23). Comparison of the AR and LR induction transcriptome identified SAURs, AGC kinases and OFP transcription factors as specifically upregulated by HYSPARIN. Members of the SAUR19 subfamily, OFP4 and AGC2 suppress HYS-induced AR formation. While SAUR19 and OFP subfamily members also mildly modulate LR formation, AGC2 regulates only AR induction. Analysis of HYSPARIN-induced AR formation uncovers an evolutionary conservation of auxin signalling controlling LR and AR induction in Arabidopsis seedlings and identifies SAUR19, OFP4 and AGC2 kinase as novel regulators of AR formation.
Collapse
Affiliation(s)
- Yinwei Zeng
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Inge Verstraeten
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Hoang Khai Trinh
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
- Institute of Food and Biotechnology, Can Tho University, 900000, Can Tho City, Vietnam
| | - Robin Lardon
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Sebastien Schotte
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Damilola Olatunji
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Thomas Heugebaert
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Christian Stevens
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Mussa Quareshy
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Sara Paola Nastasi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133, Milan, Italy
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Catherine Bellini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90736, Umeå, Sweden
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Steffen Vanneste
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Danny Geelen
- Horticell, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Aslam A, Mahmood A, Ur-Rehman H, Li C, Liang X, Shao J, Negm S, Moustafa M, Aamer M, Hassan MU. Plant Adaptation to Flooding Stress under Changing Climate Conditions: Ongoing Breakthroughs and Future Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:3824. [PMID: 38005721 PMCID: PMC10675391 DOI: 10.3390/plants12223824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Climate-change-induced variations in temperature and rainfall patterns are a serious threat across the globe. Flooding is the foremost challenge to agricultural productivity, and it is believed to become more intense under a changing climate. Flooding is a serious form of stress that significantly reduces crop yields, and future climatic anomalies are predicted to make the problem even worse in many areas of the world. To cope with the prevailing flooding stress, plants have developed different morphological and anatomical adaptations in their roots, aerenchyma cells, and leaves. Therefore, researchers are paying more attention to identifying developed and adopted molecular-based plant mechanisms with the objective of obtaining flooding-resistant cultivars. In this review, we discuss the various physiological, anatomical, and morphological adaptations (aerenchyma cells, ROL barriers (redial O2 loss), and adventitious roots) and the phytohormonal regulation in plants under flooding stress. This review comprises ongoing innovations and strategies to mitigate flooding stress, and it also provides new insights into how this knowledge can be used to improve productivity in the scenario of a rapidly changing climate and increasing flood intensity.
Collapse
Affiliation(s)
- Amna Aslam
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.A.); (H.U.-R.)
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Hafeez Ur-Rehman
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (A.A.); (H.U.-R.)
| | - Cunwu Li
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Xuewen Liang
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Jinhua Shao
- Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Institute of Water Resources Research, Nanning 530023, China; (C.L.); (J.S.)
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mahmoud Moustafa
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.)
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (M.A.); (M.U.H.)
| |
Collapse
|
9
|
Ricci A, Polverini E, Bruno S, Dramis L, Ceresini D, Scarano A, Diaz-Sala C. New Insights into the Enhancement of Adventitious Root Formation Using N,N'-Bis(2,3-methylenedioxyphenyl)urea. PLANTS (BASEL, SWITZERLAND) 2023; 12:3610. [PMID: 37896073 PMCID: PMC10610038 DOI: 10.3390/plants12203610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Adventitious rooting is a process of postembryonic organogenesis strongly affected by endogenous and exogenous factors. Although adventitious rooting has been exploited in vegetative propagation programs for many plant species, it is a bottleneck for vegetative multiplication of difficult-to-root species, such as many woody species. The purpose of this research was to understand how N,N'-bis-(2,3-methylenedioxyphenyl)urea could exert its already reported adventitious rooting adjuvant activity, starting from the widely accepted knowledge that adventitious rooting is a hormonally tuned progressive process. Here, by using specific in vitro bioassays, histological analyses, molecular docking simulations and in vitro enzymatic bioassays, we have demonstrated that this urea derivative does not interfere with polar auxin transport; it inhibits cytokinin oxidase/dehydrogenase (CKX); and, possibly, it interacts with the apoplastic portion of the auxin receptor ABP1. As a consequence of this dual binding capacity, the lifespan of endogenous cytokinins could be locally increased and, at the same time, auxin signaling could be favored. This combination of effects could lead to a cell fate transition, which, in turn, could result in increased adventitious rooting.
Collapse
Affiliation(s)
- Ada Ricci
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Eugenia Polverini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Lucia Dramis
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Daniela Ceresini
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Antonio Scarano
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy
| | - Carmen Diaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| |
Collapse
|
10
|
Yaroshko O, Pasternak T, Larriba E, Pérez-Pérez JM. Optimization of Callus Induction and Shoot Regeneration from Tomato Cotyledon Explants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2942. [PMID: 37631154 PMCID: PMC10459365 DOI: 10.3390/plants12162942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023]
Abstract
Cultivated tomato (Solanum lycopersicum L.) is one of the most important horticultural crops in the world. The optimization of culture media for callus formation and tissue regeneration of different tomato genotypes presents numerous biotechnological applications. In this work, we have analyzed the effect of different concentrations of zeatin and indole-3-acetic acid on the regeneration of cotyledon explants in tomato cultivars M82 and Micro-Tom. We evaluated regeneration parameters such as the percentage of callus formation and the area of callus formed, as well as the initiation percentage and the number of adventitious shoots. The best hormone combination produced shoot-like structures after 2-3 weeks. We observed the formation of leaf primordia from these structures after about 3-4 weeks. Upon transferring the regenerating micro-stems to a defined growth medium, it was possible to obtain whole plantlets between 4 and 6 weeks. This hormone combination was applied to other genotypes of S. lycopersicum, including commercial varieties and ancestral tomato varieties. Our method is suitable for obtaining many plantlets of different tomato genotypes from cotyledon explants in a very short time, with direct applications for plant transformation, use of gene editing techniques, and vegetative propagation of elite cultivars.
Collapse
Affiliation(s)
| | | | - Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (O.Y.)
| | | |
Collapse
|
11
|
Modrego A, Pasternak T, Omary M, Albacete A, Cano A, Pérez-Pérez JM, Efroni I. Mapping of the Classical Mutation rosette Highlights a Role for Calcium in Wound-Induced Rooting. PLANT & CELL PHYSIOLOGY 2023; 64:152-164. [PMID: 36398993 DOI: 10.1093/pcp/pcac163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Removal of the root system induces the formation of new roots from the remaining shoot. This process is primarily controlled by the phytohormone auxin, which interacts with other signals in a yet unresolved manner. Here, we study the classical tomato mutation rosette (ro), which lacks shoot-borne roots. ro mutants were severely inhibited in formation of wound-induced roots (WiRs) and had reduced auxin transport rates. We mapped ro to the tomato ortholog of the Arabidopsis thaliana BIG and the mammalians UBR4/p600. RO/BIG is a large protein of unknown biochemical function. In A. thaliana, BIG was implicated in regulating auxin transport and calcium homeostasis. We show that exogenous calcium inhibits WiR formation in tomato and A. thaliana ro/big mutants. Exogenous calcium antagonized the root-promoting effects of the auxin indole-3-acetic-acid but not of 2,4-dichlorophenoxyacetic acid, an auxin analog that is not recognized by the polar transport machinery, and accumulation of the auxin transporter PIN-FORMED1 (PIN1) was sensitive to calcium levels in the ro/big mutants. Consistent with a role for calcium in mediating auxin transport, both ro/big mutants and calcium-treated wild-type plants were hypersensitive to treatment with polar auxin transport inhibitors. Subcellular localization of BIG suggests that, like its mammalian ortholog, it is associated with the endoplasmic reticulum. Analysis of subcellular morphology revealed that ro/big mutants exhibited disruption in cytoplasmic streaming. We suggest that RO/BIG maintains auxin flow by stabilizing PIN membrane localization, possibly by attenuating the inhibitory effect of Ca2+ on cytoplasmic streaming.
Collapse
Affiliation(s)
- Abelardo Modrego
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Taras Pasternak
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche 03202, Spain
| | - Moutasem Omary
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| | - Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Murcia 30100, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal (Fisiología Vegetal), Universidad de Murcia, Murcia 30100, Spain
| | | | - Idan Efroni
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University, Rehovot 7610001, Israel
| |
Collapse
|
12
|
Chiocchio I, Andrés NP, Anaia RA, van Dam NM, Vergara F. Steroidal glycoside profile differences among primary roots system and adventitious roots in Solanum dulcamara. PLANTA 2023; 257:37. [PMID: 36645517 PMCID: PMC9842586 DOI: 10.1007/s00425-023-04072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Solanum dulcamara primary and adventitious roots showed qualitative and quantitative differences in their steroidal glycosides profile. This opened new venues to evaluate the bioactivity of these molecules in belowground ecosystems. The Solanum genus is characterized by the presence of steroidal glycosides (SGs) that confer herbivore resistance and serve as drug precursors in the pharmaceutical industry. Solanum dulcamara is a self-compatible, sexually reproducing species that produces seeds after buzz-pollination. In addition, primordia on the stem facilitate clonal propagation via adventitious root (AR) formation. ARs contain aerenchyma being developmentally and morphologically different from primary roots (PRs). Therefore, we hypothesized that ARs and PRs have different SG profiles. Aiming to assess differences in SGs profiles in S. dulcamara roots in relation to their origins and morphologies, we used liquid chromatography coupled to electron spray ionization quadruple time of flight mass spectrometry (LC-ESI-qToF-MS) to profile SGs from PRs and ARs of seven S. dulcamara individuals. Mass fragmentation pattern analysis indicated the presence of 31 SG-type structures, including those with spirostans and furostans moieties. We assigned the 31 structures to 9 classes of steroidal aglycons (SAgls) that differ in hydroxylation and degree of unsaturation. We found that SAgls were conjugated with di-, tri- and tetra saccharides whereby one compound contained a malonylated sugar. Principle component analysis showed that SG profiles of PRs and ARs separated on the first principal component, supporting our hypothesis. Specifically, PRs contain higher number of SGs than ARs with some compounds exclusively present in PRs. Our results reveal a high level of novel chemodiversity in PRs and ARs of Solanum dulcamara. The knowledge gained will deepen our understanding of SGs biosynthesis and their functional role in plant-environment interactions.
Collapse
Affiliation(s)
- Ilaria Chiocchio
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany.
- Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| | - Nerea Pérez Andrés
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Redouan Adam Anaia
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| | - Nicole M van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Fredd Vergara
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University, Dornburger-Str. 159, 07743, Jena, Germany
| |
Collapse
|
13
|
Omary M, Matosevich R, Efroni I. Systemic control of plant regeneration and wound repair. THE NEW PHYTOLOGIST 2023; 237:408-413. [PMID: 36101501 PMCID: PMC10092612 DOI: 10.1111/nph.18487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Plants have a broad capacity to regenerate damaged organs. The study of wounding in multiple developmental systems has uncovered many of the molecular properties underlying plants' competence for regeneration at the local cellular level. However, in nature, wounding is rarely localized to one place, and plants need to coordinate regeneration responses at multiple tissues with environmental conditions and their physiological state. Here, we review the evidence for systemic signals that regulate regeneration on a plant-wide level. We focus on the role of auxin and sugars as short- and long-range signals in natural wounding contexts and discuss the varied origin of these signals in different regeneration scenarios. Together, this evidence calls for a broader, system-wide view of plant regeneration competence.
Collapse
Affiliation(s)
- Moutasem Omary
- The Institute of Plant Sciences, Faculty of AgricultureThe Hebrew UniversityRehovot761000Israel
| | - Rotem Matosevich
- The Institute of Plant Sciences, Faculty of AgricultureThe Hebrew UniversityRehovot761000Israel
| | - Idan Efroni
- The Institute of Plant Sciences, Faculty of AgricultureThe Hebrew UniversityRehovot761000Israel
| |
Collapse
|
14
|
Larriba E, Nicolás-Albujer M, Sánchez-García AB, Pérez-Pérez JM. Identification of Transcriptional Networks Involved in De Novo Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2022; 23:16112. [PMID: 36555756 PMCID: PMC9788163 DOI: 10.3390/ijms232416112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Some of the hormone crosstalk and transcription factors (TFs) involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. In previous work, we established Solanum lycopersicum "Micro-Tom" explants without the addition of exogenous hormones as a model to investigate wound-induced de novo organ formation. The current working model indicates that cell reprogramming and founder cell activation requires spatial and temporal regulation of auxin-to-cytokinin (CK) gradients in the apical and basal regions of the hypocotyl combined with extensive metabolic reprogramming of some cells in the apical region. In this work, we extended our transcriptomic analysis to identify some of the gene regulatory networks involved in wound-induced organ regeneration in tomato. Our results highlight a functional conservation of key TF modules whose function is conserved during de novo organ formation in plants, which will serve as a valuable resource for future studies.
Collapse
|
15
|
Sheng X, Yu H, Wang J, Shen Y, Gu H. Establishment of a stable, effective and universal genetic transformation technique in the diverse species of Brassica oleracea. FRONTIERS IN PLANT SCIENCE 2022; 13:1021669. [PMID: 36311069 PMCID: PMC9597678 DOI: 10.3389/fpls.2022.1021669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Brassica oleracea is an economically important species, including seven cultivated variants. Agrobacterium-mediated transformation of B. oleracea crops, mainly via hypocotyl and cotyledon, has been achieved in the past. However, previously established transformation methods showed low efficiency, severe genotype limitation and a prolonged period for transformants acquisition, greatly restricting its application in functional genomic studies and crop improvement. In this study, we have compared the shoot regeneration and genetic transformation efficiency of hypocotyl, cotyledon petiole and curd peduncle explants from twelve genotypes of cauliflower and broccoli. Finally, an Agrobacterium-mediated transformation method using curd peduncle as explant was established, which is rapid, efficient, and amenable to high-throughput transformation and genome editing. The average genetic transformation efficiency of this method is stable up to 11.87% and was successfully implemented in twelve different genotypes of cauliflower and broccoli and other B. oleracea crops with low genotype dependence. Peduncle explants were found to contain abundant cambial cells with a strong cell division and shoot regeneration ability, which might be why this method achieved stable and high genetic transformation efficiency with almost no genotype dependence.
Collapse
|
16
|
Kevei Z, Ferreira SDS, Casenave CMP, Kurowski T, Mohareb F, Rickett D, Stain C, Thompson AJ. Missense mutation of a class B heat shock factor is responsible for the tomato bushy root-2 phenotype. MOLECULAR HORTICULTURE 2022; 2:4. [PMID: 37789386 PMCID: PMC10515254 DOI: 10.1186/s43897-022-00025-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/18/2022] [Indexed: 10/05/2023]
Abstract
The bushy root-2 (brt-2) tomato mutant has twisting roots, and slower plant development. Here we used whole genome resequencing and genetic mapping to show that brt-2 is caused by a serine to cysteine (S75C) substitution in the DNA binding domain (DBD) of a heat shock factor class B (HsfB) encoded by SolycHsfB4a. This gene is orthologous to the Arabidopsis SCHIZORIZA gene, also known as AtHsfB4. The brt-2 phenotype is very similar to Arabidopsis lines in which the function of AtHsfB4 is altered: a proliferation of lateral root cap and root meristematic tissues, and a tendency for lateral root cap cells to easily separate. The brt-2 S75C mutation is unusual because all other reported amino acid substitutions in the highly conserved DBD of eukaryotic heat shock factors are dominant negative mutations, but brt-2 is recessive. We further show through reciprocal grafting that brt-2 exerts its effects predominantly through the root genotype even through BRT-2 is expressed at similar levels in both root and shoot meristems. Since AtHsfB4 is induced by root knot nematodes (RKN), and loss-of-function mutants of this gene are resistant to RKNs, BRT-2 could be a target gene for RKN resistance, an important trait in tomato rootstock breeding.Gene & accession numbersSolycHsfB4a - Solyc04g078770.
Collapse
Affiliation(s)
- Zoltan Kevei
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK.
| | | | | | - Tomasz Kurowski
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK
| | - Daniel Rickett
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Chris Stain
- Syngenta Crop Protection, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, College Road, Cranfield University, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
17
|
Ishfaq M, Zhong Y, Wang Y, Li X. Magnesium Limitation Leads to Transcriptional Down-Tuning of Auxin Synthesis, Transport, and Signaling in the Tomato Root. FRONTIERS IN PLANT SCIENCE 2021; 12:802399. [PMID: 35003191 PMCID: PMC8733655 DOI: 10.3389/fpls.2021.802399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/06/2021] [Indexed: 05/08/2023]
Abstract
Magnesium (Mg) deficiency is becoming a widespread limiting factor for crop production. How crops adapt to Mg limitation remains largely unclear at the molecular level. Using hydroponic-cultured tomato seedlings, we found that total Mg2+ content significantly decreased by ∼80% under Mg limitation while K+ and Ca2+ concentrations increased. Phylogenetic analysis suggested that Mg transporters (MRS2/MGTs) constitute a previously uncharacterized 3-clade tree in planta with two rounds of asymmetric duplications, providing evolutionary evidence for further molecular investigation. In adaptation to internal Mg deficiency, the expression of six representative MGTs (two in the shoot and four in the root) was up-regulated in Mg-deficient plants. Contradictory to the transcriptional elevation of most of MGTs, Mg limitation resulted in the ∼50% smaller root system. Auxin concentrations particularly decreased by ∼23% in the Mg-deficient root, despite the enhanced accumulation of gibberellin, cytokinin, and ABA. In accordance with such auxin reduction was overall transcriptional down-regulation of thirteen genes controlling auxin biosynthesis (TAR/YUCs), transport (LAXs, PINs), and signaling (IAAs, ARFs). Together, systemic down-tuning of gene expression in the auxin signaling pathway under Mg limitation preconditions a smaller tomato root system, expectedly stimulating MGT transcription for Mg uptake or translocation.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yanting Zhong
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
- Department of Vegetable Sciences, China Agricultural University, Beijing, China
| | - Yongqi Wang
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
18
|
Chen W, Ye T, Sun Q, Niu T, Zhang J. Arbuscular Mycorrhizal Fungus Alters Root System Architecture in Camellia sinensis L. as Revealed by RNA-Seq Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:777357. [PMID: 34868178 PMCID: PMC8636117 DOI: 10.3389/fpls.2021.777357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Arbuscular mycorrhizal fungus (AMF), forming symbiosis with most terrestrial plants, strongly modulates root system architecture (RSA), which is the main characteristic of root in soil, to improve plant growth and development. So far, the studies of AMF on tea plant seedlings are few and the relevant molecular mechanism is not deciphered. In this study, the 6-month-old cutting seedlings of tea plant cultivar "Wancha No.4" were inoculated with an AMF isolate, Rhizophagus intraradices BGC JX04B and harvested after 6 months of growth. The indexes of RSA and sugar contents in root were determined. The transcriptome data in root tips of mycorrhizal and non-mycorrhizal cutting seedlings were obtained by RNA-sequence (Seq) analysis. The results showed that AMF significantly decreased plant growth, but increased the sucrose content in root and the higher classes of lateral root (LR) formation (third and fourth LR). We identified 2047 differentially expressed genes (DEGs) based on the transcriptome data, and DEGs involved in metabolisms of phosphorus (42 DEGs), sugar (39), lipid (67), and plant hormones (39) were excavated out. Variation partitioning analysis showed all these four categories modulated the RSA. In phosphorus (P) metabolism, the phosphate transport and release (DEGs related to purple acid phosphatase) were promoted by AMF inoculation, while DEGs of sugar transport protein in sugar metabolism were downregulated. Lipid metabolism might not be responsible for root branching but for AMF propagation. With respect to phytohormones, DEGs of auxin (13), ethylene (14), and abscisic acid (5) were extensively affected by AMF inoculation, especially for auxin and ethylene. The further partial least squares structural equation modeling analysis indicated that pathways of P metabolism and auxin, as well as the direct way of AMF inoculation, were of the most important in AMF promoting root branching, while ethylene performed a negative role. Overall, our data revealed the alterations of genome-wide gene expression in tea plant roots after inoculation with AMF and provided a molecular basis for the regulatory mechanism of RSA (mainly root branching) changes induced by AMF.
Collapse
|
19
|
Larriba E, Sánchez-García AB, Justamante MS, Martínez-Andújar C, Albacete A, Pérez-Pérez JM. Dynamic Hormone Gradients Regulate Wound-Induced de novo Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2021; 22:11843. [PMID: 34769274 PMCID: PMC8584571 DOI: 10.3390/ijms222111843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 01/24/2023] Open
Abstract
Plants have a remarkable regenerative capacity, which allows them to survive tissue damage after biotic and abiotic stresses. In this study, we use Solanum lycopersicum 'Micro-Tom' explants as a model to investigate wound-induced de novo organ formation, as these explants can regenerate the missing structures without the exogenous application of plant hormones. Here, we performed simultaneous targeted profiling of 22 phytohormone-related metabolites during de novo organ formation and found that endogenous hormone levels dynamically changed after root and shoot excision, according to region-specific patterns. Our results indicate that a defined temporal window of high auxin-to-cytokinin accumulation in the basal region of the explants was required for adventitious root formation and that was dependent on a concerted regulation of polar auxin transport through the hypocotyl, of local induction of auxin biosynthesis, and of local inhibition of auxin degradation. In the apical region, though, a minimum of auxin-to-cytokinin ratio is established shortly after wounding both by decreasing active auxin levels and by draining auxin via its basipetal transport and internalization. Cross-validation with transcriptomic data highlighted the main hormonal gradients involved in wound-induced de novo organ formation in tomato hypocotyl explants.
Collapse
Affiliation(s)
- Eduardo Larriba
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - Ana Belén Sánchez-García
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - María Salud Justamante
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| | - Cristina Martínez-Andújar
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, 30100 Murcia, Spain; (C.M.-A.); (A.A.)
| | - Alfonso Albacete
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, 30100 Murcia, Spain; (C.M.-A.); (A.A.)
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain; (E.L.); (A.B.S.-G.); (M.S.J.)
| |
Collapse
|
20
|
Tissue-Specific Metabolic Reprogramming during Wound-Induced Organ Formation in Tomato Hypocotyl Explants. Int J Mol Sci 2021; 22:ijms221810112. [PMID: 34576275 PMCID: PMC8466849 DOI: 10.3390/ijms221810112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/17/2022] Open
Abstract
Plants have remarkable regenerative capacity, which allows them to survive tissue damage after exposure to biotic and abiotic stresses. Some of the key transcription factors and hormone crosstalk mechanisms involved in wound-induced organ regeneration have been extensively studied in the model plant Arabidopsis thaliana. However, little is known about the role of metabolism in wound-induced organ formation. Here, we performed detailed transcriptome analysis and used a targeted metabolomics approach to study de novo organ formation in tomato hypocotyl explants and found tissue-specific metabolic differences and divergent developmental pathways. Our results indicate that successful regeneration in the apical region of the hypocotyl depends on a specific metabolic switch involving the upregulation of photorespiratory pathway components and the differential regulation of photosynthesis-related gene expression and gluconeogenesis pathway activation. These findings provide a useful resource for further investigation of the molecular mechanisms involved in wound-induced organ formation in crop species such as tomato.
Collapse
|