1
|
Adler L, Lau CS, Shaikh KM, van Maldegem KA, Payne-Dwyer AL, Lefoulon C, Girr P, Atkinson N, Barrett J, Emrich-Mills TZ, Dukic E, Blatt MR, Leake MC, Peltier G, Spetea C, Burlacot A, McCormick AJ, Mackinder LCM, Walker CE. Bestrophin-like protein 4 is involved in photosynthetic acclimation to light fluctuations in Chlamydomonas. PLANT PHYSIOLOGY 2024; 196:2374-2394. [PMID: 39240724 PMCID: PMC11638005 DOI: 10.1093/plphys/kiae450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/22/2024] [Accepted: 07/01/2024] [Indexed: 09/08/2024]
Abstract
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid membranes called pyrenoid tubules, which are proposed to deliver CO2. In the model alga Chlamydomonas (Chlamydomonas reinhardtii), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules, and heterologous expression of BST4 in Arabidopsis (Arabidopsis thaliana) did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutants did not show impaired growth under continuous light at air level CO2 but were impaired in their growth under fluctuating light. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we propose that bst4 has a transiently lower thylakoid lumenal pH during dark-to-light transition compared to control strains. We conclude that BST4 is not a tethering protein but is most likely a pyrenoid tubule ion channel involved in the ion homeostasis of the lumen with particular importance during light fluctuations.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Department of Plant Biology, Division of Biosphere Science and Engineering, Carnegie Science, Stanford, CA 94305, USA
| | - Chun Sing Lau
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Kashif M Shaikh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kim A van Maldegem
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alex L Payne-Dwyer
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philipp Girr
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - James Barrett
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Tom Z Emrich-Mills
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mark C Leake
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Saint-Paul-lez-Durance 13108, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Adrien Burlacot
- Department of Plant Biology, Division of Biosphere Science and Engineering, Carnegie Science, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, York YO10 5DD, UK
| |
Collapse
|
2
|
Hemker F, Ammelburger N, Jahns P. Intervening dark periods negatively affect the photosynthetic performance of Chlamydomonas reinhardtii during growth under fluctuating high light. PLANT, CELL & ENVIRONMENT 2024; 47:4246-4258. [PMID: 38946377 DOI: 10.1111/pce.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicolas Ammelburger
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
4
|
Fuente D, Orlando M, Bailleul B, Jullien L, Lazár D, Nedbal L. A mathematical model to simulate the dynamics of photosynthetic light reactions under harmonically oscillating light. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109138. [PMID: 39481198 DOI: 10.1016/j.plaphy.2024.109138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/12/2024] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Alternating electric current and alternating electromagnetic fields revolutionized physics and engineering and led to many technologies that shape modern life. Despite these undisputable achievements that have been reached using stimulation by harmonic oscillations over centuries, applications in biology remain rare. Photosynthesis research is uniquely suited to unleash this potential because light can be modulated as a harmonic function, here sinus. Understanding the response of photosynthetic organisms to sinusoidal light is hindered by the complexity of dynamics that such light elicits, and by the mathematical apparatus required for understanding the signals in the frequency domain which, although well-established and simple, is outside typical curricula in biology. Here, we approach these challenges by presenting a mathematical model that was designed specifically to simulate the response of photosynthetic light reactions to light which oscillates with periods that often occur in nature. The independent variables of the model are the plastoquinone pool, the photosystem I donors, lumen pH, ATP, and the chlorophyll fluorescence (ChlF) quencher that is responsible for the qE non-photochemical quenching. Dynamics of ChlF emission, rate of oxygen evolution, and non-photochemical quenching are approximated by dependent model variables. The model is used to explain the essentials of the frequency-domain approaches up to the level of presenting Bode plots of frequency-dependence of ChlF. The model simulations were found satisfactory when compared with the Bode plots of ChlF response of the green alga Chlamydomonas reinhardtii to light that was oscillating with a small amplitude and frequencies between 7.8 mHz and 64 Hz.
Collapse
Affiliation(s)
- David Fuente
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Marcelo Orlando
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Benjamin Bailleul
- Laboratory of Chloroplast Biology and Light Sensing in Microalgae, UMR7141, Institut de Biologie Physico-Chimique, Centre National de la Recherche Scientifique (CNRS), Sorbonne Université, Paris, France
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 24, rue Lhomond, 75005, Paris, France
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic
| | - Ladislav Nedbal
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 241/27, 77900, Olomouc, Czech Republic.
| |
Collapse
|
5
|
Zheng M, Pang X, Chen M, Tian L. Ultrafast energy quenching mechanism of LHCSR3-dependent photoprotection in Chlamydomonas. Nat Commun 2024; 15:4437. [PMID: 38789432 PMCID: PMC11126702 DOI: 10.1038/s41467-024-48789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Photosynthetic organisms have evolved an essential energy-dependent quenching (qE) mechanism to avoid any lethal damages caused by high light. While the triggering mechanism of qE has been well addressed, candidates for quenchers are often debated. This lack of understanding is because of the tremendous difficulty in measuring intact cells using transient absorption techniques. Here, we have conducted femtosecond pump-probe measurements to characterize this photophysical reaction using micro-sized cell fractions of the green alga Chlamydomonas reinhardtii that retain physiological qE function. Combined with kinetic modeling, we have demonstrated the presence of an ultrafast excitation energy transfer (EET) pathway from Chlorophyll a (Chl a) Qy to a carotenoid (car) S1 state, therefore proposing that this carotenoid, likely lutein1, is the quencher. This work has provided an easy-to-prepare qE active thylakoid membrane system for advanced spectroscopic studies and demonstrated that the energy dissipation pathway of qE is evolutionarily conserved from green algae to land plants.
Collapse
Affiliation(s)
- Mengyuan Zheng
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojie Pang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Chen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Lijin Tian
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Kim M, Cazzaniga S, Jang J, Pivato M, Kim G, Ballottari M, Jin E. Photoautotrophic cultivation of a Chlamydomonas reinhardtii mutant with zeaxanthin as the sole xanthophyll. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:41. [PMID: 38486329 PMCID: PMC10941483 DOI: 10.1186/s13068-024-02483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Photosynthetic microalgae are known for their sustainable and eco-friendly potential to convert carbon dioxide into valuable products. Nevertheless, the challenge of self-shading due to high cell density has been identified as a drawback, hampering productivity in sustainable photoautotrophic mass cultivation. To address this issue, mutants with altered pigment composition have been proposed to allow a more efficient light diffusion but further study on the role of the different pigments is still needed to correctly engineer this process. RESULTS We here investigated the Chlamydomonas reinhardtii Δzl mutant with zeaxanthin as the sole xanthophyll. The Δzl mutant displayed altered pigment composition, characterized by lower chlorophyll content, higher chlorophyll a/b ratio, and lower chlorophyll/carotenoid ratio compared to the wild type (Wt). The Δzl mutant also exhibited a significant decrease in the light-harvesting complex II/Photosystem II ratio (LHCII/PSII) and the absence of trimeric LHCIIs. This significantly affects the organization and stability of PSII supercomplexes. Consequently, the estimated functional antenna size of PSII in the Δzl mutant was approximately 60% smaller compared to that of Wt, and reduced PSII activity was evident in this mutant. Notably, the Δzl mutant showed impaired non-photochemical quenching. However, the Δzl mutant compensated by exhibiting enhanced cyclic electron flow compared to Wt, seemingly offsetting the impaired PSII functionality. Consequently, the Δzl mutant achieved significantly higher cell densities than Wt under high-light conditions. CONCLUSIONS Our findings highlight significant changes in pigment content and pigment-protein complexes in the Δzl mutant compared to Wt, resulting in an advantage for high-density photoautotrophic cultivation. This advantage is attributed to the decreased chlorophyll content of the Δzl mutant, allowing better light penetration. In addition, the accumulated zeaxanthin in the mutant could serve as an antioxidant, offering protection against reactive oxygen species generated by chlorophylls.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | | | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | - Matteo Pivato
- Dipartimento di Biotecnologie, Università di Verona, Verona, Italy
| | - Gueeda Kim
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea
| | | | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Korea.
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
7
|
Songserm R, Nishiyama Y, Sanevas N. Light Influences the Growth, Pigment Synthesis, Photosynthesis Capacity, and Antioxidant Activities in Scenedesmus falcatus. SCIENTIFICA 2024; 2024:1898624. [PMID: 38293704 PMCID: PMC10827371 DOI: 10.1155/2024/1898624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Light plays a significant role in microalgae cultivation, significantly influencing critical parameters, including biomass production, pigment content, and the accumulation of metabolic compounds. This study was intricately designed to optimize light intensities, explicitly targeting enhancing growth, pigmentation, and antioxidative properties in the green microalga, Scenedesmus falcatus (KU.B1). Additionally, the study delved into the photosynthetic efficiency in light responses of S. falcatus. The cultivation of S. falcatus was conducted in TRIS-acetate-phosphate medium (TAP medium) under different light intensities of 100, 500, and 1000 μmol photons m-2·s-1 within a photoperiodic cycle of 12 h of light and 12 h of dark. Results indicated a gradual increase in the growth of S. falcatus under high light conditions at 1000 μmol photons m-2·s-1, reaching a maximum optical density of 1.33 ± 0.03 and a total chlorophyll content of 22.67 ± 0.2 μg/ml at 120 h. Conversely, a slower growth rate was observed under low light at 100 μmol photons m-2·s-1. However, noteworthy reductions in the maximum quantum yield (Fv/Fm) and actual quantum yield (Y(II)) were observed under 1000 μmol photons m-2·s-1, reflecting a decline in algal photosynthetic efficiency. Interestingly, these changes under 1000 μmol photons m-2·s-1 were concurrent with a significant accumulation of a high amount of beta-carotene (919.83 ± 26.33 mg/g sample), lutein (34.56 ± 0.19 mg/g sample), and canthaxanthin (24.00 ± 0.38 mg/g sample) within algal cells. Nevertheless, it was noted that antioxidant activities and levels of total phenolic compounds (TPCs) decreased under high light at 1000 μmol photons m-2·s-1, with IC50 of DPPH assay recorded at 218.00 ± 4.24 and TPC at 230.83 ± 86.75 mg of GAE/g. The findings suggested that the elevated light intensity at 1000 μmol photons m-2·s-1 enhanced the growth and facilitated the accumulation of valuable carotenoid pigment in S. falcatus, presenting potential applications in the functional food and carotenoid industry.
Collapse
Affiliation(s)
- Rattanaporn Songserm
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nuttha Sanevas
- Department of Botany, Faculty of Science, Kasetsart University, Bangkean, Bangkok 10900, Thailand
| |
Collapse
|
8
|
Adler L, Lau CS, Shaikh KM, van Maldegem KA, Payne-Dwyer AL, Lefoulon C, Girr P, Atkinson N, Barrett J, Emrich-Mills TZ, Dukic E, Blatt MR, Leake MC, Peltier G, Spetea C, Burlacot A, McCormick AJ, Mackinder LCM, Walker CE. The role of BST4 in the pyrenoid of Chlamydomonas reinhardtii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545204. [PMID: 38014171 PMCID: PMC10680556 DOI: 10.1101/2023.06.15.545204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
In many eukaryotic algae, CO2 fixation by Rubisco is enhanced by a CO2-concentrating mechanism, which utilizes a Rubisco-rich organelle called the pyrenoid. The pyrenoid is traversed by a network of thylakoid-membranes called pyrenoid tubules, proposed to deliver CO2. In the model alga Chlamydomonas reinhardtii (Chlamydomonas), the pyrenoid tubules have been proposed to be tethered to the Rubisco matrix by a bestrophin-like transmembrane protein, BST4. Here, we show that BST4 forms a complex that localizes to the pyrenoid tubules. A Chlamydomonas mutant impaired in the accumulation of BST4 (bst4) formed normal pyrenoid tubules and heterologous expression of BST4 in Arabidopsis thaliana did not lead to the incorporation of thylakoids into a reconstituted Rubisco condensate. Chlamydomonas bst4 mutant did not show impaired growth at air level CO2. By quantifying the non-photochemical quenching (NPQ) of chlorophyll fluorescence, we show that bst4 displays a transiently lower thylakoid lumenal pH during dark to light transition compared to control strains. When acclimated to high light, bst4 had sustained higher NPQ and elevated levels of light-induced H2O2 production. We conclude that BST4 is not a tethering protein, but rather is an ion channel involved in lumenal pH regulation possibly by mediating bicarbonate transport across the pyrenoid tubules.
Collapse
Affiliation(s)
- Liat Adler
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305 USA
| | - Chun Sing Lau
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Kashif M Shaikh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Kim A van Maldegem
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Alex L Payne-Dwyer
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Cecile Lefoulon
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Philipp Girr
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
| | - James Barrett
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Tom Z Emrich-Mills
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Emilija Dukic
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, Bower Building, University of Glasgow, Glasgow, United Kingdom
| | - Mark C Leake
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
- School of Physics, Engineering and Technology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
| | - Adrien Burlacot
- Department of Plant Biology, The Carnegie Institution for Science, Stanford, CA, 94305 USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EH9 3BF, United Kingdom
- Centre for Engineering Biology, University of Edinburgh, EH9 3BF, United Kingdom
| | - Luke C M Mackinder
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Charlotte E Walker
- Centre for Novel Agricultural Products (CNAP), Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
9
|
Vetoshkina D, Borisova-Mubarakshina M. Reversible protein phosphorylation in higher plants: focus on state transitions. Biophys Rev 2023; 15:1079-1093. [PMID: 37974979 PMCID: PMC10643769 DOI: 10.1007/s12551-023-01116-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Reversible protein phosphorylation is one of the comprehensive mechanisms of cell metabolism regulation in eukaryotic organisms. The review describes the impact of the reversible protein phosphorylation on the regulation of growth and development as well as in adaptation pathways and signaling network in higher plant cells. The main part of the review is devoted to the role of the reversible phosphorylation of light-harvesting proteins of photosystem II and the state transition process in fine-tuning the photosynthetic activity of chloroplasts. A separate section of the review is dedicated to comparing the mechanisms and functional significance of state transitions in higher plants, algae, and cyanobacteria that allows the evolution aspects of state transitions meaning in various organisms to be discussed. Environmental factors affecting the state transitions are also considered. Additionally, we gain insight into the possible influence of STN7-dependent phosphorylation of the target proteins on the global network of reversible protein phosphorylation in plant cells as well as into the probable effect of the STN7 kinase inhibition on long-term acclimation pathways in higher plants.
Collapse
Affiliation(s)
- D.V. Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| | - M.M. Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institutskaya st., 2, Pushchino, Russia
| |
Collapse
|
10
|
Burlacot A, Peltier G. Energy crosstalk between photosynthesis and the algal CO 2-concentrating mechanisms. TRENDS IN PLANT SCIENCE 2023; 28:795-807. [PMID: 37087359 DOI: 10.1016/j.tplants.2023.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal photosynthesis is responsible for nearly half of the CO2 annually captured by Earth's ecosystems. In aquatic environments where the CO2 availability is low, the CO2-fixing efficiency of microalgae greatly relies on mechanisms - called CO2-concentrating mechanisms (CCMs) - for concentrating CO2 at the catalytic site of the CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). While the transport of inorganic carbon (Ci) across membrane bilayers against a concentration gradient consumes part of the chemical energy generated by photosynthesis, the bioenergetics and cellular mechanisms involved are only beginning to be elucidated. Here, we review the current knowledge relating to the energy requirement of CCMs in the light of recent advances in photosynthesis regulatory mechanisms and the spatial organization of CCM components.
Collapse
Affiliation(s)
- Adrien Burlacot
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Gilles Peltier
- Aix-Marseille Université, CEA, CNRS, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, 13108 Saint-Paul-lez-Durance, France.
| |
Collapse
|
11
|
Virtanen O, Tyystjärvi E. Plastoquinone pool redox state and control of state transitions in Chlamydomonas reinhardtii in darkness and under illumination. PHOTOSYNTHESIS RESEARCH 2023; 155:59-76. [PMID: 36282464 PMCID: PMC9792418 DOI: 10.1007/s11120-022-00970-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Movement of LHCII between two photosystems has been assumed to be similarly controlled by the redox state of the plastoquinone pool (PQ-pool) in plants and green algae. Here we show that the redox state of the PQ-pool of Chlamydomonas reinhardtii can be determined with HPLC and use this method to compare the light state in C. reinhardtii with the PQ-pool redox state in a number of conditions. The PQ-pool was at least moderately reduced under illumination with all tested types of visible light and oxidation was achieved only with aerobic dark treatment or with far-red light. Although dark incubations and white light forms with spectral distribution favoring one photosystem affected the redox state of PQ-pool differently, they induced similar Stt7-dependent state transitions. Thus, under illumination the dynamics of the PQ-pool and its connection with light state appears more complicated in C. reinhardtii than in plants. We suggest this to stem from the larger number of LHC-units and from less different absorption profiles of the photosystems in C. reinhardtii than in plants. The data demonstrate that the two different control mechanisms required to fulfill the dual function of state transitions in C. reinhardtii in photoprotection and in balancing light utilization are activated via different means.
Collapse
Affiliation(s)
- Olli Virtanen
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Esa Tyystjärvi
- Department of Life Technologies/Molecular Plant Biology, University of Turku, 20014, Turku, Finland.
| |
Collapse
|
12
|
Zhang Z, Yuan L, Ma Y, Kang Z, Zhou F, Gao Y, Yang S, Li T, Hu X. Exogenous 5-aminolevulinic acid alleviates low-temperature damage by modulating the xanthophyll cycle and nutrient uptake in tomato seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:83-93. [PMID: 36058015 DOI: 10.1016/j.plaphy.2022.08.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
5-Aminolevulinic acid (ALA), an antioxidant existing in plants, has been widely reported to participate in the process of coping with cold stress of plants. In this study, exogenous ALA promoted the growth of tomato plants and alleviated the appearance of purple tomato leaves under low-temperature stress. At the same time, exogenous ALA improved antioxidant enzyme activities, SlSOD gene expression, Fv/Fm, and proline contents and reduced H2O2 contents, SlRBOH gene expression, relative electrical conductivity, and malondialdehyde contents to alleviate the damage caused by low temperature to tomato seedlings. Compared with low-temperature stress, spraying exogenous ALA before low-temperature stress could restore the indicators of photochemical quenching, actual photochemical efficiency, electron transport rate, and nonphotochemical quenching to normal. Exogenous ALA could increase the total contents of the xanthophyll cycle pool, the positive de-epoxidation rate of the xanthophyll cycle and improved the expression levels of key genes in the xanthophyll cycle under low-temperature stress. In addition, we found that exogenous ALA significantly enhanced the absorption of mineral nutrients, promoted the transfer and distribution of mineral nutrients to the leaves, and improved the expression levels of mineral nutrient absorption-related genes, which were all conducive to the improved adaptation of tomato seedlings under low-temperature stress. In summary, the application of exogenous ALA can increase tomato seedlings' tolerance to low-temperature stress by improving the xanthophyll cycle and the ability of the absorption of mineral nutrients in tomato seedlings.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Zhen Kang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Fan Zhou
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yi Gao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shichun Yang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China.
| |
Collapse
|