1
|
Niu Y, Tang S, Li J, Huang C, Yang Y, Zhou L, Liu Y, Zeng X. Induction of ferroptosis of iridium(III) complexes localizing at the mitochondria and lysosome by photodynamic therapy. J Inorg Biochem 2025; 264:112808. [PMID: 39671743 DOI: 10.1016/j.jinorgbio.2024.112808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
In this study, [Ir(ppy)2(DMHBT)](PF6) (ppy = deprotonated 1-phenylpyridine, DMHBT = 10,12-dimethylpteridino[6,7-f][1,10]phenanthroline-11,13-(10,12H)-dione, 8a), [Ir(bzq)2(DMHBT)](PF6) (bzq = deprotonated benzo[h]quinoline, 8b) and [Ir(piq)2(DMHBT)](PF6) (piq = deprotonated 1-phenylisoquinoline, 8c) were synthesized and characterized by HRMS, 13C NMR and 1H NMR. In vitro cytotoxicity experiments showed that 8a, 8b, 8c show moderate cytotoxicity against B16 cells, while the cytotoxicity of the complexes 8a, 8b and 8c toward B16 cells was greatly improved upon light irradiation, which can be used as photosensitizers to exert anticancer efficacy in photodynamic therapy (PDT). After being taken up by cells, 8a, 8b, 8c were localized in the mitochondria, resulting in a large amount of Ca2+ in-flux, a burst release of ROS, a sustained opening of mitochondrial permeability transition pore, and a decrease of the mitochondrial membrane potential, which led to mitochondrial dysfunction and further activation of caspase 3 and Bcl-2 family proteins to induce apoptosis. Overloaded ROS reacted with polyunsaturated fatty acids on the cell membrane, and initiated lipid peroxidation, inhibited the xc--system-glutathione (GSH)-glutathione peroxidase 4 (GPX4) antioxidant defense system, and upregulated the expression of the damage-associated molecules, HMGB1, CRT, and HSP70. The presence of Fer-1 was effective on increasing the cell survival, which demonstrates that the complexes possess the potential to induce ferroptosis and immunogenic cell death. In addition, 8a, 8b and 8c induced autophagy by inhibiting the AKT/PI3K/mTOR signaling pathway, downregulating p62 and promoting Beclin-1 expression upon light irradiation.
Collapse
Affiliation(s)
- Yajie Niu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shuanghui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiongbang Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yan Yang
- Department of Pharmacy, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China.
| | - Lin Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xiandong Zeng
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Hanrahan AJ, Chen Z, Rosen N, Solit DB. BRAF - a tumour-agnostic drug target with lineage-specific dependencies. Nat Rev Clin Oncol 2024; 21:224-247. [PMID: 38278874 PMCID: PMC11857949 DOI: 10.1038/s41571-023-00852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/28/2024]
Abstract
In June 2022, the FDA granted Accelerated Approval to the BRAF inhibitor dabrafenib in combination with the MEK inhibitor trametinib for the treatment of adult and paediatric patients (≥6 years of age) with unresectable or metastatic BRAFV600E-mutant solid tumours, except for BRAFV600E-mutant colorectal cancers. The histology-agnostic approval of dabrafenib plus trametinib marks the culmination of two decades of research into the landscape of BRAF mutations in human cancers, the biochemical mechanisms underlying BRAF-mediated tumorigenesis, and the clinical development of selective RAF and MEK inhibitors. Although the majority of patients with BRAFV600E-mutant tumours derive clinical benefit from BRAF inhibitor-based combinations, resistance to treatment develops in most. In this Review, we describe the biochemical basis for oncogenic BRAF-induced activation of MAPK signalling and pan-cancer and lineage-specific mechanisms of intrinsic, adaptive and acquired resistance to BRAF inhibitors. We also discuss novel RAF inhibitors and drug combinations designed to delay the emergence of treatment resistance and/or expand the population of patients with BRAF-mutant cancers who benefit from molecularly targeted therapies.
Collapse
Affiliation(s)
- Aphrothiti J Hanrahan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ziyu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics & Systems Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Ruffini F, Ceci C, Atzori MG, Caporali S, Levati L, Bonmassar L, Cappellini GCA, D'Atri S, Graziani G, Lacal PM. TARGETING OF PDGF-C/NRP-1 AUTOCRINE LOOP AS A NEW STRATEGY FOR COUNTERACTING THE INVASIVENESS OF MELANOMA RESISTANT TO BRAF INHIBITORS. Pharmacol Res 2023; 192:106782. [PMID: 37127213 DOI: 10.1016/j.phrs.2023.106782] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Melanoma resistance to BRAF inhibitors (BRAFi) is often accompanied by a switch from a proliferative to an invasive phenotype. Therefore, the identification of signaling molecules involved in the development of metastatic properties by resistant melanoma cells is of primary importance. We have previously demonstrated that activation of neuropilin-1 (NRP-1) by platelet-derived growth factor (PDGF)-C confers melanoma cells with an invasive behavior similar to that of BRAFi resistant tumors. Aims of the present study were to evaluate the role of PDGF-C/NRP-1 autocrine loop in the acquisition of an invasive and BRAFi-resistant phenotype by melanoma cells and the effect of its inhibition on drug resistance and extracellular matrix (ECM) invasion. Furthermore, we investigated whether PDGF-C serum levels were differentially modulated by drug treatment in metastatic melanoma patients responsive or refractory to BRAFi as a single agent or in combination with MEK inhibitors (MEKi). The results indicated that human melanoma cells resistant to BRAFi express higher levels of PDGF-C and NRP-1 as compared to their susceptible counterparts. Overexpression occurs early during development of drug resistance and contributes to the invasive properties of resistant cells. Accordingly, silencing of NRP-1 or PDGF-C reduces tumor cell invasiveness. Analysis of PDGF-C in the serum collected from patients treated with BRAFi or BRAFi+MEKi, showed that in responders PDGF-C levels decrease after treatment and raise again at tumor progression. Conversely, in non-responders treatment does not affect PDGF-C serum levels. Thus, blockade of NRP-1 activation by PDGF-C might represent a new therapeutic approach to counteract the invasiveness of BRAFi-resistant melanoma.
Collapse
Affiliation(s)
- Federica Ruffini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy
| | | | | | | | | | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
4
|
Olbryt M. Potential Biomarkers of Skin Melanoma Resistance to Targeted Therapy—Present State and Perspectives. Cancers (Basel) 2022; 14:cancers14092315. [PMID: 35565444 PMCID: PMC9102921 DOI: 10.3390/cancers14092315] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Around 5–10% of advanced melanoma patients progress early on anti-BRAF targeted therapy and 20–30% respond only with the stabilization of the disease. Presumably, these patients could benefit more from first-line immunotherapy. Resistance to BRAF/MEK inhibitors is generated by genetic and non-genetic factors inherent to a tumor or acquired during therapy. Some of them are well documented as a cause of treatment failure. They are potential predictive markers that could improve patients’ selection for both standard and also alternative therapy as some of them have therapeutic potential. Here, a summary of the most promising predictive and therapeutic targets is presented. This up-to-date knowledge may be useful for further study on implementing more accurate genetic/molecular tests in melanoma treatment. Abstract Melanoma is the most aggressive skin cancer, the number of which is increasing worldwide every year. It is completely curable in its early stage and fatal when spread to distant organs. In addition to new therapeutic strategies, biomarkers are an important element in the successful fight against this cancer. At present, biomarkers are mainly used in diagnostics. Some biological indicators also allow the estimation of the patient’s prognosis. Still, predictive markers are underrepresented in clinics. Currently, the only such indicator is the presence of the V600E mutation in the BRAF gene in cancer cells, which qualifies the patient for therapy with inhibitors of the MAPK pathway. The identification of response markers is particularly important given primary and acquired resistance to targeted therapies. Reliable predictive tests would enable the selection of patients who would have the best chance of benefiting from treatment. Here, up-to-date knowledge about the most promising genetic and non-genetic resistance-related factors is described. These are alterations in MAPK, PI3K/AKT, and RB signaling pathways, e.g., due to mutations in NRAS, RAC1, MAP2K1, MAP2K2, and NF1, but also other changes activating these pathways, such as the overexpression of HGF or EGFR. Most of them are also potential therapeutic targets and this issue is also addressed here.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
5
|
Wu R, Yun Q, Zhang J, Wang Z, Zhang X, Bao J. Knockdown of circular RNA tousled-like kinase 1 relieves ischemic stroke in middle cerebral artery occlusion mice and oxygen-glucose deprivation and reoxygenation-induced N2a cell damage. Bioengineered 2022; 13:3434-3449. [PMID: 35067172 PMCID: PMC8973970 DOI: 10.1080/21655979.2021.2024684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ischemic stroke (IS) is an essential contributor to the neurological morbidity and mortality throughout the world. The significance of circular RNA tousled-like kinase 1 (circTLK1) in IS has been documented. This study set out to explore the mechanism of circTLK1 in IS. Middle cerebral artery occlusion (MCAO) mouse models in vivo and oxygen-glucose deprivation and reoxygenation (OGD/R) cell models in vitro were first established, followed by evaluation of infarct volume and neurological impairment, and cell viability and apoptosis. The expression patterns of circTLK1, miR-26a-5p, phosphatase and tensin homolog (PTEN), insulin-like growth factor type 1 receptor (IGF-1 R), and glucose transporter type 1 (GLUT1) were detected by RT-qPCR and Western blotting. Co-localization of circTLK1 and miR-26a-5p in N2a cells was tested by fluorescence in situ hybridization assay. The binding relationships among circTLK1, PTEN, and miR-26a-5p were verified by dual-luciferase assay and RNA pull-down. circTLK1 and PTEN were highly expressed while miR-26a-5p was under-expressed in IS models. circTLK1 knockdown decreased infarct volume and neurological impairment in MCAO mouse models and relieved OGD/R-induced neuronal injury in vitro. circTLK1 and miR-26a-5p were co-located in the N2a cell cytoplasm. circTLK1 regulated PTEN as a sponge of miR-26a-5p. PTEN positively regulated IGF-1 R and GLUT1 expressions. miR-26a-5p inhibitor annulled the repressive effects of circTLK1 silencing on OGD/R-induced neuronal injury. sh-PTEN partially annulled the effects of the miR-26a-5p inhibitor on OGD/R-induced neuronal injury. In conclusion, circTLK1 knockdown relieved IS via the miR-26a-5p/PTEN/IGF-1 R/GLUT1 axis. These results may provide a new direction to IS potential therapeutic targets.
Collapse
Affiliation(s)
- Rile Wu
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Qiang Yun
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jianping Zhang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zhong Wang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Xiaojun Zhang
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People’s Hospital, Hohhot, China
| |
Collapse
|
6
|
Parkman GL, Foth M, Kircher DA, Holmen SL, McMahon M. The role of PI3'-lipid signalling in melanoma initiation, progression and maintenance. Exp Dermatol 2022; 31:43-56. [PMID: 34717019 PMCID: PMC8724390 DOI: 10.1111/exd.14489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023]
Abstract
Phosphatidylinositol-3'-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3' hydroxyl (OH) of the inositol ring of phosphatidylinositides (PI). Through their downstream effectors, PI3K generated lipids (PI3K-lipids hereafter) such as PI(3,4,5)P3 and PI(3,4)P2 regulate myriad biochemical and biological processes in both normal and cancer cells including responses to growth hormones and cytokines; the cell division cycle; cell death; cellular growth; angiogenesis; membrane dynamics; and autophagy and many aspects of cellular metabolism. Engagement of receptor tyrosine kinase by their cognate ligands leads to activation of members of the Class I family of PI3'-kinases (PI3Kα, β, δ & γ) leading to accumulation of PI3K-lipids. Importantly, PI3K-lipid accumulation is antagonized by the hydrolytic action of a number of PI3K-lipid phosphatases, most notably the melanoma suppressor PTEN (lipid phosphatase and tensin homologue). Downstream of PI3K-lipid production, the protein kinases AKT1-3 are believed to be key effectors of PI3'-kinase signalling in cells. Indeed, in preclinical models, activation of the PI3K→AKT signalling axis cooperates with alterations such as expression of the BRAFV600E oncoprotein kinase to promote melanoma progression and metastasis. In this review, we describe the different classes of PI3K-lipid effectors, and how they may promote melanomagenesis, influence the tumour microenvironment, melanoma maintenance and progression to metastatic disease. We also provide an update on both FDA-approved or experimental inhibitors of the PI3K→AKT pathway that are currently being evaluated for the treatment of melanoma either in preclinical models or in clinical trials.
Collapse
Affiliation(s)
- Gennie L. Parkman
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Mona Foth
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - David A. Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Sheri L. Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Martin McMahon
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Cabozantinib Is Effective in Melanoma Brain Metastasis Cell Lines and Affects Key Signaling Pathways. Int J Mol Sci 2021; 22:ijms222212296. [PMID: 34830178 PMCID: PMC8621572 DOI: 10.3390/ijms222212296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/16/2022] Open
Abstract
Melanomas have a high potential to metastasize to the brain. Recent advances in targeted therapies and immunotherapies have changed the therapeutical landscape of extracranial melanomas. However, few patients with melanoma brain metastasis (MBM) respond effectively to these treatments and new therapeutic strategies are needed. Cabozantinib is a receptor tyrosine kinase (RTK) inhibitor, already approved for the treatment of non-skin-related cancers. The drug targets several of the proteins that are known to be dysregulated in melanomas. The anti-tumor activity of cabozantinib was investigated using three human MBM cell lines. Cabozantinib treatment decreased the viability of all cell lines both when grown in monolayer cultures and as tumor spheroids. The in vitro cell migration was also inhibited and apoptosis was induced by cabozantinib. The phosphorylated RTKs p-PDGF-Rα, p-IGF-1R, p-MERTK and p-DDR1 were found to be downregulated in the p-RTK array of the MBM cells after cabozantinib treatment. Western blot validated these results and showed that cabozantinib treatment inhibited p-Akt and p-MEK 1/2. Further investigations are warranted to elucidate the therapeutic potential of cabozantinib for patients with MBM.
Collapse
|
8
|
Wang B, Zhang W, Zhang G, Kwong L, Lu H, Tan J, Sadek N, Xiao M, Zhang J, Labrie M, Randell S, Beroard A, Sugarman E, Rebecca VW, Wei Z, Lu Y, Mills GB, Field J, Villanueva J, Xu X, Herlyn M, Guo W. Targeting mTOR signaling overcomes acquired resistance to combined BRAF and MEK inhibition in BRAF-mutant melanoma. Oncogene 2021; 40:5590-5599. [PMID: 34304249 PMCID: PMC8445818 DOI: 10.1038/s41388-021-01911-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022]
Abstract
Targeting MAPK pathway using a combination of BRAF and MEK inhibitors is an efficient strategy to treat melanoma harboring BRAF-mutation. The development of acquired resistance is inevitable due to the signaling pathway rewiring. Combining western blotting, immunohistochemistry, and reverse phase protein array (RPPA), we aim to understanding the role of the mTORC1 signaling pathway, a center node of intracellular signaling network, in mediating drug resistance of BRAF-mutant melanoma to the combination of BRAF inhibitor (BRAFi) and MEK inhibitor (MEKi) therapy. The mTORC1 signaling pathway is initially suppressed by BRAFi and MEKi combination in melanoma but rebounds overtime after tumors acquire resistance to the combination therapy (CR) as assayed in cultured cells and PDX models. In vitro experiments showed that a subset of CR melanoma cells was sensitive to mTORC1 inhibition. The mTOR inhibitors, rapamycin and NVP-BEZ235, induced cell cycle arrest and apoptosis in CR cell lines. As a proof-of-principle, we demonstrated that rapamycin and NVP-BEZ235 treatment reduced tumor growth in CR xenograft models. Mechanistically, AKT or ERK contributes to the activation of mTORC1 in CR cells, depending on PTEN status of these cells. Our study reveals that mTOR activation is essential for drug resistance of melanoma to MAPK inhibitors, and provides insight into the rewiring of the signaling networks in CR melanoma.
Collapse
Affiliation(s)
- Beike Wang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zhang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Gao Zhang
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Lawrence Kwong
- Department of Translation Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hezhe Lu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Jiufeng Tan
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Norah Sadek
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Jie Zhang
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Marilyne Labrie
- Department of Cell, Developmental and Cancer Biology, School of Medicine, and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Sergio Randell
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Aurelie Beroard
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Eric Sugarman
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Vito W Rebecca
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Yiling Lu
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gordon B Mills
- Department of Cell, Developmental and Cancer Biology, School of Medicine, and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey Field
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
9
|
PERK mediates resistance to BRAF inhibition in melanoma with impaired PTEN. NPJ Precis Oncol 2021; 5:68. [PMID: 34282258 PMCID: PMC8289936 DOI: 10.1038/s41698-021-00207-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/22/2021] [Indexed: 12/02/2022] Open
Abstract
Targeting mutant BRAF in patients with melanomas harboring this oncogene has been highly successful as a first-line treatment, but other mutations may affect its efficacy and alter the route of acquired resistance resulting in recurrence and poor prognosis. As an evolving strategy, melanoma treatment needs to be expanded to include targets based on newly discovered emerging molecules and pathways. We here show that PERK plays a critical role in BRAF inhibitor-acquired resistance in melanoma with impaired PTEN. Inhibition of PERK by either shRNA or a pharmacological inhibitor blocked the growth of BRAF inhibitor-resistant melanoma with impaired PTEN in vitro and in vivo, suggesting an effective approach against melanomas with mutant BRAF and PTEN deficiency. Our current findings, along with our previous discovery that the AXL/AKT axis mediates resistance to BRAF inhibition in melanoma with wild-type PTEN, provide new insights toward a strategy for combating BRAF inhibition-acquired resistance in BRAF mutant melanoma with different PTEN statuses.
Collapse
|
10
|
Sabbah M, Najem A, Krayem M, Awada A, Journe F, Ghanem GE. RTK Inhibitors in Melanoma: From Bench to Bedside. Cancers (Basel) 2021; 13:1685. [PMID: 33918490 PMCID: PMC8038208 DOI: 10.3390/cancers13071685] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression. In this review, we discuss in details the activation mechanism of several key RTKs: type III: c-KIT (mast/stem cell growth factor receptor); type I: EGFR (Epidermal growth factor receptor); type VIII: HGFR (hepatocyte growth factor receptor); type V: VEGFR (Vascular endothelial growth factor), structure variants, the function of their structural domains, and their alteration and its association with melanoma initiation and progression. Furthermore, several RTK inhibitors targeting the same receptor were tested alone or in combination with other therapies, yielding variable responses among different melanoma groups. Here, we classified RTK inhibitors by families and summarized all tested drugs in melanoma indicating the rationale behind the use of these drugs in each melanoma subgroups from preclinical studies to clinical trials with a specific focus on their purpose of treatment, resulted effect, and outcomes.
Collapse
Affiliation(s)
- Malak Sabbah
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Najem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Mohammad Krayem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ahmad Awada
- Medical Oncolgy Clinic, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium;
| | - Fabrice Journe
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| | - Ghanem E. Ghanem
- Laboratory of Oncology and Experimental Surgery, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium; (M.S.); (A.N.); (M.K.); (F.J.)
| |
Collapse
|
11
|
Development of novel parameter for monitoring of malignant melanoma progression. Pract Lab Med 2020; 22:e00182. [PMID: 33134468 PMCID: PMC7586240 DOI: 10.1016/j.plabm.2020.e00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Objective Increasing HIFs in malignant melanoma, the highly aggressive skin tumour, results in the stimulation of invasiveness. Increased HIF-1α fallouts in inhibition of the activity of some mitochondrial enzymes and leads to preference of cytosol energetic metabolism. Increase of aerobic glycolysis is reflected in an increase of free NADH (Warburg effect) and develops the malignant melanoma. Our goal was to find a link between hypoxia, or hypoxia mimicking factors and the stage of malignant melanoma. Furthermore, we focused on the finding of the experimental parameter which could monitor melanoma patients. Patients and methods We targeted HIF-1α gene expression and VDR rs2107301 gene polymorphism by PCR analysis. We detected the level of NADH in blood plasma by fluorescence spectroscopy (excitation and emission spectra). Results Analysis of the obtained data from patient samples has shown an increase in HIF-1α which correlates with the disease stage. Investigation VDR rs2107301 polymorphism of patient samples does not show any significant changes in single nucleotide polymorphism, and the low vitamin D level in blood is not a result of VDR mutation in mitochondria. NADH levels vary under hypoxic and pseudohypoxic conditions and refer to the cancer stage. Conclusions The apparent mismatch between HIF-1α expression and NADH fluorescence has become the basis for the design of an algorithm for monitoring malignant melanoma based on the sensing of NADH fluorescence and the determination of HIF-1α.
Collapse
|
12
|
Samani AA, Nalbantoglu J, Brodt P. Glioma Cells With Genetically Engineered IGF-I Receptor Downregulation Can Persist in the Brain in a Dormant State. Front Oncol 2020; 10:555945. [PMID: 33072581 PMCID: PMC7539665 DOI: 10.3389/fonc.2020.555945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma multiforme is an aggressive malignancy, resistant to standard treatment modalities and associated with poor prognosis. We analyzed the role of the IGF system in intracerebral glioma growth using human and rat glioma cells. The glioma cells C6 and U87MG were transduced with a genetically engineered retrovirus expressing type 1 insulin-like growth factor (IGF-IR) antisense RNA, either before or after intra-cerebral implantation of the cells into Sprague Dawley rats or nude mice, respectively and tumor growth and animal survival were monitored. Rat glioma cells transduced prior to orthotopic, intra-cerebral implantation had a significantly increased apoptotic rate in vivo and a significantly reduced tumor volume as seen 24 days post implantation (p < 0.0015). This resulted in increased survival, as greater than 70% of the rats were still alive 182 days after tumor implantation (p < 0.01), as compared to 80% mortality by day 24 in the control group. Histomorphology and histochemical studies performed on brain tissue that was obtained from rats that survived for 182 days revealed numerous single cells that were widely disseminated throughout the brain. These cells expressed the β-galactosidase marker protein, but were Ki67negative, suggesting that they acquired a dormant phenotype. Direct targeting of the C6 cells with retroviral particles in vivo was effective and reduced tumor volumes by 22% relative to controls. A significant effect on tumor growth was also seen with human glioma U87MG cells that were virally transduced and implanted intra-cerebrally in nude mice. We observed in these mice a significant reduction in tumor volumes and 70% of the animals were still alive 6 months after tumor implantation, as compared to 100% mortality in the control group by day 63. Our results show that IGF-IR targeting can inhibit the intracerebral growth of glioma cells. They also suggest that IGF-IR expression levels may determine a delicate balance between glioma cell growth, death and the acquisition of a dormant state in the brain.
Collapse
Affiliation(s)
- Amir A Samani
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Josephine Nalbantoglu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pnina Brodt
- Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Surgery, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
13
|
DiVincenzo MJ, Latchana N, Abrams Z, Moufawad M, Regan-Fendt K, Courtney NB, Howard JH, Gru AA, Zhang X, Fadda P, Carson WE. Tissue microRNA expression profiling in hepatic and pulmonary metastatic melanoma. Melanoma Res 2020; 30:455-464. [PMID: 32804708 PMCID: PMC7484309 DOI: 10.1097/cmr.0000000000000692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Malignant melanoma has a propensity for the development of hepatic and pulmonary metastases. MicroRNAs (miRs) are small, noncoding RNA molecules containing about 22 nucleotides that mediate protein expression and can contribute to cancer progression. We aim to identify clinically useful differences in miR expression in metastatic melanoma tissue. RNA was extracted from formalin-fixed, paraffin-embedded samples of hepatic and pulmonary metastatic melanoma, benign, nevi, and primary cutaneous melanoma. Assessment of miR expression was performed on purified RNA using the NanoString nCounter miRNA assay. miRs with greater than twofold change in expression when compared to other tumor sites (P value ≤ 0.05, modified t-test) were identified as dysregulated. Common gene targets were then identified among dysregulated miRs unique to each metastatic site. Melanoma metastatic to the liver had differential expression of 26 miRs compared to benign nevi and 16 miRs compared to primary melanoma (P < 0.048). Melanoma metastatic to the lung had differential expression of 19 miRs compared to benign nevi and 10 miRs compared to primary melanoma (P < 0.024). Compared to lung metastases, liver metastases had greater than twofold upregulation of four miRs, and 4.2-fold downregulation of miR-200c-3p (P < 0.0081). These findings indicate that sites of metastatic melanoma have unique miR profiles that may contribute to their development and localization. Further investigation of the utility of these miRs as diagnostic and prognostic biomarkers and their impact on the development of metastatic melanoma is warranted.
Collapse
Affiliation(s)
| | | | - Zachary Abrams
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Maribelle Moufawad
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - Kelly Regan-Fendt
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Nicholas B. Courtney
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | | | - Alejandro A. Gru
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH
| | - Paolo Fadda
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
| | - William E. Carson
- The Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University, Columbus, OH
- Department of Surgery, The Ohio State University, Columbus, OH
| |
Collapse
|
14
|
Proietti I, Skroza N, Bernardini N, Tolino E, Balduzzi V, Marchesiello A, Michelini S, Volpe S, Mambrin A, Mangino G, Romeo G, Maddalena P, Rees C, Potenza C. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers (Basel) 2020; 12:E2801. [PMID: 33003483 PMCID: PMC7600801 DOI: 10.3390/cancers12102801] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022] Open
Abstract
This systematic review investigated the literature on acquired v-raf murine sarcoma viral oncogene homolog B1 (BRAF) inhibitor resistance in patients with melanoma. We searched MEDLINE for articles on BRAF inhibitor resistance in patients with melanoma published since January 2010 in the following areas: (1) genetic basis of resistance; (2) epigenetic and transcriptomic mechanisms; (3) influence of the immune system on resistance development; and (4) combination therapy to overcome resistance. Common resistance mutations in melanoma are BRAF splice variants, BRAF amplification, neuroblastoma RAS viral oncogene homolog (NRAS) mutations and mitogen-activated protein kinase kinase 1/2 (MEK1/2) mutations. Genetic and epigenetic changes reactivate previously blocked mitogen-activated protein kinase (MAPK) pathways, activate alternative signaling pathways, and cause epithelial-to-mesenchymal transition. Once BRAF inhibitor resistance develops, the tumor microenvironment reverts to a low immunogenic state secondary to the induction of programmed cell death ligand-1. Combining a BRAF inhibitor with a MEK inhibitor delays resistance development and increases duration of response. Multiple other combinations based on known mechanisms of resistance are being investigated. BRAF inhibitor-resistant cells develop a range of 'escape routes', so multiple different treatment targets will probably be required to overcome resistance. In the future, it may be possible to personalize combination therapy towards the specific resistance pathway in individual patients.
Collapse
Affiliation(s)
- Ilaria Proietti
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nevena Skroza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Nicoletta Bernardini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Ersilia Tolino
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Veronica Balduzzi
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Anna Marchesiello
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Simone Michelini
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Salvatore Volpe
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Alessandra Mambrin
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | - Giorgio Mangino
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
| | - Giovanna Romeo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 00185 Rome, Italy; (G.M.); (G.R.)
- Department of Infectious, Parasitic and Immune-Mediated Diseases, Istituto Superiore di Sanità, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy
| | - Patrizia Maddalena
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| | | | - Concetta Potenza
- Dermatology Unit “Daniele Innocenzi”, Department of Medical-Surgical Sciences and Bio-Technologies, Sapienza University of Rome, Fiorini Hospital, Polo Pontino, 04019 Terracina, Italy; (N.S.); (N.B.); (E.T.); (V.B.); (A.M.); (S.M.); (S.V.); (A.M.); (P.M.); (C.P.)
| |
Collapse
|
15
|
Atzori MG, Ceci C, Ruffini F, Trapani M, Barbaccia ML, Tentori L, D'Atri S, Lacal PM, Graziani G. Role of VEGFR-1 in melanoma acquired resistance to the BRAF inhibitor vemurafenib. J Cell Mol Med 2019; 24:465-475. [PMID: 31758648 PMCID: PMC6933379 DOI: 10.1111/jcmm.14755] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/30/2022] Open
Abstract
The vascular endothelial growth factor receptor‐1 (VEGFR‐1) is a tyrosine kinase receptor frequently expressed in melanoma. Its activation by VEGF‐A or placental growth factor (PlGF) promotes tumour cell survival, migration and invasiveness. Moreover, VEGFR‐1 stimulation contributes to pathological angiogenesis and induces recruitment of tumour‐associated macrophages. Since melanoma acquired resistance to BRAF inhibitors (BRAFi) has been associated with activation of pro‐angiogenic pathways, we have investigated VEGFR‐1 involvement in vemurafenib resistance. Results indicate that human melanoma cells rendered resistant to vemurafenib secrete greater amounts of VEGF‐A and express higher VEGFR‐1 levels compared with their BRAFi‐sensitive counterparts. Transient VEGFR‐1 silencing in susceptible melanoma cells delays resistance development, whereas in resistant cells it increases sensitivity to the BRAFi. Consistently, enforced VEGFR‐1 expression, by stable gene transfection in receptor‐negative melanoma cells, markedly reduces sensitivity to vemurafenib. Moreover, melanoma cells expressing VEGFR‐1 are more invasive than VEGFR‐1 deficient cells and receptor blockade by a specific monoclonal antibody (D16F7 mAb) reduces extracellular matrix invasion triggered by VEGF‐A and PlGF. These data suggest that VEGFR‐1 up‐regulation might contribute to melanoma progression and spreading after acquisition of a drug‐resistant phenotype. Thus, VEGFR‐1 inhibition with D16F7 mAb might be a suitable adjunct therapy for VEGFR‐1 positive tumours with acquired resistance to vemurafenib.
Collapse
Affiliation(s)
| | - Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Mauro Trapani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Lucio Tentori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
16
|
Yang C, Xia Z, Zhu L, Li Y, Zheng Z, Liang J, Wu L. MicroRNA-139-5p modulates the growth and metastasis of malignant melanoma cells via the PI3K/AKT signaling pathway by binding to IGF1R. Cell Cycle 2019; 18:3513-3524. [PMID: 31724454 DOI: 10.1080/15384101.2019.1690881] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The relation between microRNAs (miRNAs) and malignant melanoma has been demonstrated in previous studies, while there was little research about miR-139-5p and malignant melanoma. The aim of this study is to investigate the ability of miR-139-5p in malignant melanoma cells via the modulation of the PI3K/AKT signaling pathway by targeting IGF1R. MiR-139-5p expression in malignant melanoma tissues and 5 malignant melanoma cell lines was detected. The melanoma cells were transfected with miR-139-5p mimic negative control (NC) sequence, miR-139-5p mimic, IGF1R overexpressed recombinant plasmid NC or IGF1R overexpressed sequence. The expression of Akt signaling pathway-related protein was evaluated. The biological functions in malignant melanoma cells were evaluated by a string of experiments. MiR-139-5p expressed a poor level in tissues and cell lines of malignant melanoma. Overexpressed miR-139-5p suppressed the cell proliferation, migration, and invasion, and contributed to the promoted apoptosis of malignant melanoma cells by decreasing IGF1R. MiR-139-5p down-regulated the IGF1R expression, and IGF1R accelerated the activation of the PI3K/AKT signaling pathway. miR-139-5p reversed the promotive impacts of IGF1R on the PI3K/AKT signaling pathway. The study validates that miR-139-5p could suppress malignant melanoma progression through the repression of the PI3K/AKT signaling pathway by down-regulating IGF1R. Therefore, miR-139-5p could pave a new way for the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Chaoying Yang
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, PR. China
| | - Zhaoxia Xia
- Department of Ophthalmology, The Sixth Affiliated Hospital of Sun Yat-senUniversity, PR. China
| | - Lifei Zhu
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, PR. China
| | - Yanchang Li
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, PR. China
| | - Zhixin Zheng
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, PR. China
| | - Jianying Liang
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR.China
| | - Liangcai Wu
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-senUniversity, Guangzhou, PR. China
| |
Collapse
|
17
|
Abstract
Supplemental Digital Content is available in the text. The molecular properties of benign melanocytic lesions are poorly understood. Only a few studies have been carried out on specific nevi subtypes, including common nevocellular nevi (NCN) or Spitz nevi (SN). Genomic alterations in melanoma-associated oncogenes are typically absent in SN. In the present study, mRNA expressions of 25 SN and 15 NCN were analyzed. Molecular profiling was performed using the RNA NanoString nCounter Gene Expression Platform (number of genes=770). Marker discovery was performed with a training set consisting of seven SN and seven NCN samples from the same patients, and validation was performed using a second set consisting of 18 SN and eight NCN samples. Using the training set, 197 differentially expressed genes were identified in SN versus NCN. Of these, 74 genes were validated in the validation set (false discovery rate q≤0.13). In addition, using random forest and least absolute shrinkage and selection operator feature selection, a molecular signature of SN versus NCN was identified including 15 top-ranked genes. The present study identified a distinct molecular expression profile in SN compared with NCN, even when lesions were obtained from the same patients. Gene set analysis showed upregulation of gene pathways with increased expression of transcripts related to immunomodulatory, inflammatory, and extracellular matrix interactions as well as angiogenesis-associated processes in SN. These findings strongly indicate that SN represent a distinct group of melanocytic neoplasms and evolve differentially and not sequentially from NCN.
Collapse
|
18
|
An Y, Zhou L, Huang Z, Nice EC, Zhang H, Huang C. Molecular insights into cancer drug resistance from a proteomics perspective. Expert Rev Proteomics 2019; 16:413-429. [PMID: 30925852 DOI: 10.1080/14789450.2019.1601561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Resistance to chemotherapy and development of specific and effective molecular targeted therapies are major obstacles facing current cancer treatment. Comparative proteomic approaches have been employed for the discovery of putative biomarkers associated with cancer drug resistance and have yielded a number of candidate proteins, showing great promise for both novel drug target identification and personalized medicine for the treatment of drug-resistant cancer. Areas covered: Herein, we review the recent advances and challenges in proteomics studies on cancer drug resistance with an emphasis on biomarker discovery, as well as understanding the interconnectivity of proteins in disease-related signaling pathways. In addition, we highlight the critical role that post-translational modifications (PTMs) play in the mechanisms of cancer drug resistance. Expert opinion: Revealing changes in proteome profiles and the role of PTMs in drug-resistant cancer is key to deciphering the mechanisms of treatment resistance. With the development of sensitive and specific mass spectrometry (MS)-based proteomics and related technologies, it is now possible to investigate in depth potential biomarkers and the molecular mechanisms of cancer drug resistance, assisting the development of individualized therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Yao An
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Li Zhou
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Zhao Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China
| | - Edouard C Nice
- c Department of Biochemistry and Molecular Biology , Monash University , Clayton , Australia
| | - Haiyuan Zhang
- b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| | - Canhua Huang
- a West China School of Basic Medical Sciences & Forensic Medicine , Sichuan University , Chengdu , PR China.,b Department of Oncology , The Second Affiliated Hospital of Hainan Medical University , Haikou , P.R. China
| |
Collapse
|
19
|
Benito-Jardón L, Díaz-Martínez M, Arellano-Sánchez N, Vaquero-Morales P, Esparís-Ogando A, Teixidó J. Resistance to MAPK Inhibitors in Melanoma Involves Activation of the IGF1R-MEK5-Erk5 Pathway. Cancer Res 2019; 79:2244-2256. [PMID: 30833419 DOI: 10.1158/0008-5472.can-18-2762] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/14/2019] [Accepted: 02/27/2019] [Indexed: 11/16/2022]
Abstract
Combined treatment of metastatic melanoma with BRAF and MEK inhibitors has improved survival, but the emergence of resistance represents an important clinical challenge. Targeting ERK is a suitable strategy currently being investigated in melanoma and other cancers. To anticipate possible resistance to ERK inhibitors (ERKi), we used SCH772984 (SCH) as a model ERKi to characterize resistance mechanisms in two BRAF V600E melanoma cell lines. The ERKi-resistant cells were also resistant to vemurafenib (VMF), trametinib (TMT), and combined treatment with either VMF and SCH or TMT and SCH. Resistance to SCH involved stimulation of the IGF1R-MEK5-Erk5 signaling pathway, which counteracted inhibition of Erk1/2 activation and cell growth. Inhibition of IGF1R with linsitinib blocked Erk5 activation in SCH-resistant cells and decreased their growth in 3D spheroid growth assays as well as in NOD scid gamma (NSG) mice. Cells doubly resistant to VMF and TMT or to VMF and SCH also exhibited downregulated Erk1/2 activation linked to stimulation of the IGF1R-MEK5-Erk5 pathway, which accounted for resistance. In addition, we found that the decreased Erk1/2 activation in SCH-resistant cells involved reduced expression and function of TGFα. These data reveal an escape signaling route that melanoma cells use to bypass Erk1/2 blockade during targeted melanoma treatment and offer several possible targets whose disruption may circumvent resistance. SIGNIFICANCE: Activation of the IGF1R-MEK5-Erk5 signaling pathway opposes pharmacologic inhibition of Erk1/2 in melanoma, leading to the reactivation of cell proliferation and acquired resistance.
Collapse
Affiliation(s)
- Lucía Benito-Jardón
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Marta Díaz-Martínez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Nohemi Arellano-Sánchez
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Paloma Vaquero-Morales
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, IBSAL, and CIBERONC, Salamanca, Spain
| | - Joaquin Teixidó
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
20
|
Suleymanova N, Crudden C, Worrall C, Dricu A, Girnita A, Girnita L. Enhanced response of melanoma cells to MEK inhibitors following unbiased IGF-1R down-regulation. Oncotarget 2017; 8:82256-82267. [PMID: 29137261 PMCID: PMC5669887 DOI: 10.18632/oncotarget.19286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/17/2017] [Indexed: 12/28/2022] Open
Abstract
Due to its ability to compensate for signals lost following therapeutic MAPK-inhibition, insulin-like growth factor type 1 receptor (IGF-1R) co-targeting is a rational approach for melanoma treatment. However IGF-1R conformational changes associated with its inhibition can preferentially activate MAPK-pathway in a kinase-independent manner, through a process known as biased signaling. We explored the impact of biased IGF-1R signaling, on response to MAPK inhibition in a panel of skin melanoma cell lines with differing MAPK and p53 mutation statuses. Specific siRNA towards IGF-1R down-regulates the receptor and all its signaling in a balanced manner, whilst IGF-1R targeting by small molecule Nutlin-3 parallels receptor degradation with a transient biased pERK1/2 activity, with both strategies synergizing with MEK1/2 inhibition. On the other hand, IGF-1R down-regulation by a targeted antibody (Figitumumab) induces a biased receptor conformation, preserved even when the receptor is exposed to the balanced natural ligand IGF-1. This process sustains MAPK activity and competes with the MEK1/2 inhibition. Our results indicate that IGF-1R down-regulation offers an approach to increase the sensitivity of melanoma cells to MAPK inhibition, and highlights that controlling biased signaling could provide greater specificity and precision required for multi-hit therapy.
Collapse
Affiliation(s)
- Naida Suleymanova
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Caitrin Crudden
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Claire Worrall
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anica Dricu
- Biochemistry Unit, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Ada Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Dermatology Department, Karolinska University Hospital, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Bis-anthracycline WP760 abrogates melanoma cell growth by transcription inhibition, p53 activation and IGF1R downregulation. Invest New Drugs 2017; 35:545-555. [PMID: 28417283 PMCID: PMC5613070 DOI: 10.1007/s10637-017-0465-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/29/2017] [Indexed: 11/01/2022]
Abstract
Anthracycline chemotherapeutics, e.g. doxorubicin and daunorubicin, are active against a broad spectrum of cancers. Their cytotoxicity is mainly attributed to DNA intercalation, interference with topoisomerase activity, and induction of double-stranded DNA breaks. Since modification of anthracyclines can profoundly affect their pharmacological properties we attempted to elucidate the mechanism of action, and identify possible molecular targets, of bis-anthracycline WP760 which previously demonstrated anti-melanoma activity at low nanomolar concentrations. We studied the effect of WP760 on several human melanoma cell lines derived from tumors in various development stages and having different genetic backgrounds. WP760 inhibited cell proliferation (IC50 = 1-99 nM), impaired clonogenic cell survival (100 nM), and inhibited spheroid growth (≥300 nM). WP760 did not induce double-stranded DNA breaks but strongly inhibited global transcription. Moreover, WP760 caused nucleolar stress and led to activation of the p53 pathway. PCR array analysis showed that WP760 suppressed transcription of ten genes (ABCC1, MTOR, IGF1R, EGFR, GRB2, PRKCA, PRKCE, HDAC4, TXNRD1, AKT1) associated with, inter alia, cytoprotective mechanisms initiated in cancer cells during chemotherapy. Furthermore, WP760 downregulated IGF1R and upregulated PLK2 expression in most of the tested melanoma cell lines. These results suggest that WP760 exerts anti-melanoma activity by targeting global transcription and activation of the p53 pathway and could become suitable as an effective therapeutic agent.
Collapse
|
22
|
Vemurafenib resistance increases melanoma invasiveness and modulates the tumor microenvironment by MMP-2 upregulation. Pharmacol Res 2016; 111:523-533. [PMID: 27436149 DOI: 10.1016/j.phrs.2016.07.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 12/14/2022]
Abstract
The BRAF(V600E) mutation confers constitutive kinase activity and accounts for >90% of BRAF mutations in melanoma. This genetic alteration is a current therapeutic target; however, the antitumorigenic effects of the BRAF(V600E) inhibitor vemurafenib are short-lived and the majority of patients present tumor relapse in a short period after treatment. Characterization of vemurafenib resistance has been essential to the efficacy of next generation therapeutic strategies. Herein, we found that acute BRAF inhibition induced a decrease in active MMP-2, MT1-MMP and MMP-9, but did not modulate the metalloproteinase inhibitors TIMP-2 or RECK in naïve melanoma cells. In vemurafenib-resistant melanoma cells, we observed a lower growth rate and an increase in EGFR phosphorylation followed by the recovery of active MMP-2 expression, a mediator of cancer metastasis. Furthermore, we found a different profile of MMP inhibitor expression, characterized by TIMP-2 downregulation and RECK upregulation. In a 3D spheroid model, the invasion index of vemurafenib-resistant melanoma cells was more evident than in its non-resistant counterpart. We confirmed this pattern in a matrigel invasion assay and demonstrated that use of a matrix metalloproteinase inhibitor reduced the invasion of vemurafenib resistant melanoma cells but not drug naïve cells. Moreover, we did not observe a delimited group of cells invading the dermis in vemurafenib-resistant melanoma cells present in a reconstructed skin model. The same MMP-2 and RECK upregulation profile was found in this 3D skin model containing vemurafenib-resistant melanoma cells. Acute vemurafenib treatment induces the disorganization of collagen fibers and consequently, extracellular matrix remodeling, with this pattern observed even after the acquisition of resistance. Altogether, our data suggest that resistance to vemurafenib induces significant changes in the tumor microenvironment mainly by MMP-2 upregulation, with a corresponding increase in cell invasiveness.
Collapse
|
23
|
Simone BA, Dan T, Palagani A, Jin L, Han SY, Wright C, Savage JE, Gitman R, Lim MK, Palazzo J, Mehta MP, Simone NL. Caloric restriction coupled with radiation decreases metastatic burden in triple negative breast cancer. Cell Cycle 2016; 15:2265-74. [PMID: 27027731 DOI: 10.1080/15384101.2016.1160982] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Metastatic breast cancer is devastating and triple negative breast cancers (TNBC) have a higher propensity for metastasis. Improved local control upfront in this aggressive cancer could potentially decrease its propensity toward metastasis. We sought to determine if using caloric restriction (CR) as a systemic therapy, combined with radiation therapy (IR) to the primary tumor, may impact metastatic disease. METHODS An orthotopic mouse model using a highly metastatic, luciferase-tagged TNBC cell line (4T1), was used to generate palpable tumors. Mice were then treated with CR, IR, and a combination of the two. In vivo imaging was performed for metastatic evaluation. Molecular evaluation of the tumors was performed, generating a mechanistic hypothesis for CR, which was then tested with pertinent pathway inhibition in the model. RESULTS CR significantly increased the time to developing metastases, decreased the overall number and volume of lung metastases, and increased survival. CR decreased proliferation, increased apoptosis and globally downregulated the IGF-1R signaling pathway. Adding an IGF-1R/INSR inhibitor to local IR in vivo accomplished a decrease in metastases similar to CR plus IR, demonstrating the importance of the IGF-1R signaling pathway, and underscoring it as a possible mechanism for CR. CONCLUSIONS CR decreased metastatic burden and therefore may complement cytotoxic therapies being used in the clinical setting for metastatic disease. Downregulation of the IGF-1R pathway, is in part responsible for this response and modulating IGF-1R directly resulted in similar improved progression-free survival. The novel use of CR has the potential to enhance clinical outcomes for patients with metastatic breast cancer.
Collapse
Affiliation(s)
- Brittany A Simone
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Tu Dan
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Ajay Palagani
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Lianjin Jin
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Sunny Y Han
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Christopher Wright
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Jason E Savage
- b Radiation Oncology Branch , National Cancer Institute , Bethesda , MD , USA
| | - Robert Gitman
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Meng Kieng Lim
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Juan Palazzo
- c Department of Pathology , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| | - Minesh P Mehta
- d Radiation Oncology Department , Miami Cancer Institute , Miami , FL , USA
| | - Nicole L Simone
- a Radiation Oncology Department , Sidney Kimmel Medical College of Thomas Jefferson University , Philadelphia , PA , USA
| |
Collapse
|