1
|
Xiong Y, Jiang X, Lai W, Gao X, You Y, Huang Y, Li X, Zhang J, Tao S, Chen J, Zhang W, Yu N, Xu N, Liu C, Zeng W, Lv S, Wang G. Supramolecular salicylic acid combined with niacinamide in chloasma: a randomized controlled trial. Clin Exp Dermatol 2024; 49:1330-1337. [PMID: 38618759 DOI: 10.1093/ced/llae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/20/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND Chloasma is a common skin hyperpigmentation condition, with treatment options ranging from topical agents to advanced interventions such as chemical peels and laser therapy. Salicylic acid, including its supramolecular form (SSA), has shown promise in managing chloasma. However, to date, no multicentre randomized controlled trial of SSA for chloasma is available. OBJECTIVES The purpose of this study was to assess the efficacy and safety of 30% SSA combined with 10% niacinamide in treating -chloasma. METHODS This multicentre (n = 15), randomized, double-blind, parallel placebo-controlled trial (Clinical trial registration number: ChiCTR2200065346) enrolled and randomized 300 participants (1 : 1) to either 30% SSA treatment or placebo, with 150 allocated to treatment and 150 to placebo in the full analysis set, and 144 to treatment and 147 to placebo in the per-protocol set. A Visia® Skin Analysis System was used at each visit to assess the degree of improvement in chloasma lesions. The primary endpoint was the effective rate after 16 weeks, assessed using the modified Melasma Area and Severity Index (mMASI) score [(pretreatment score - post-treatment score)/pretreatment score × 100%]. RESULTS The total mMASI score, overall score on the Griffiths 10-point scale, and Griffiths 10 score for the left and the right sides of the face were significantly lower in the 30% SSA group than in the placebo group (all P < 0.001). One study of drug-related adverse events (AEs) and one study of drug-unrelated AEs were reported in the 30% SSA group. No AE was reported in the placebo group. CONCLUSIONS Among our patients, 30% SSA combined with 10% niacinamide was shown to be effective and safe for treating chloasma.
Collapse
Affiliation(s)
- Ying Xiong
- Department of Dermatology, Linyi People's Hospital, Linyi, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinghua Gao
- Department of Dermatology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan You
- Department of Dermatology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongmei Huang
- Department of Dermatology, Xining First People's Hospital, Xining, China
| | - Xueli Li
- Department of Dermatology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Junling Zhang
- Department of Dermatology, Affiliated Hospital of Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Shiqin Tao
- Department of Dermatology, Wuxi Second People's Hospital, Wuxi, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Zhang
- Department of Dermatology, Shanghai Dermatology Hospital, Shanghai, China
| | - Nan Yu
- Department of Dermatology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Nan Xu
- Department of Dermatology, Shanghai Oriental Hospital, Shanghai, China
| | - Chunling Liu
- Department of Dermatology, Weinan Central Hospital, Weinan, China
| | - Weihui Zeng
- Department of Dermatology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shichao Lv
- Department of Dermatology, Strategic Support Force Specialty Medical Center (306 Hospital of PLA), Beijing, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Zhao S, Hong Y, Liang YY, Li XL, Shen JC, Sun CC, Chu LL, Hu J, Wang H, Xu DX, Zhang SC, Xu DD, Xu T, Zhao LL. Compartmentalized regulation of NAD + by Di (2-ethyl-hexyl) phthalate induces DNA damage in placental trophoblast. Redox Biol 2022; 55:102414. [PMID: 35926314 PMCID: PMC9356100 DOI: 10.1016/j.redox.2022.102414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/16/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
Di (2-ethyl-hexyl) phthalate (DEHP) is a wildly used plasticizer. Maternal exposure to DEHP during pregnancy blocks the placental cell cycle at the G2/M phase by reducing the efficiency of the DNA repair pathways and affects the health of offsprings. However, the mechanism by which DEHP inhibits the repair of DNA damage remains unclear. In this study, we demonstrated that DEHP inhibits DNA damage repair by reducing the activity of the DNA repair factor recruitment molecule PARP1. NAD+ and ATP are two substrates necessary for PARP1 activity. DEHP abated NAD+ in the nucleus by reducing the level of NAD+ synthase NMNAT1 and elevated NAD+ in the mitochondrial by promoting synthesis. Furthermore, DEHP destroyed the mitochondrial respiratory chain, affected the structure and quantity of mitochondria, and decreased ATP production. Therefore, DEHP inhibits PARP1 activity by reducing the amount of NAD+ and ATP, which hinders the DNA damage repair pathways. The supplement of NAD+ precursor NAM can partially rescue the DNA and mitochondria damage. It provides a new idea for the prevention of health problems of offsprings caused by DEHP injury to the placenta.
Collapse
Affiliation(s)
- Shuai Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yun Hong
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Yue-Yue Liang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xiao-Lu Li
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Jiang-Chuan Shen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Cong-Cong Sun
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health / Center for Water and Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Ling-Luo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jie Hu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Hua Wang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - De-Xiang Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China
| | - Shi-Chen Zhang
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei, Anhui, 230601, China
| | - Dou-Dou Xu
- Department of Pediatrics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Tao Xu
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China; School of Biology, Food and Environment, Hefei University, Hefei, 230601, China.
| | - Ling-Li Zhao
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Department of Toxicology, Anhui Provincial Key Laboratory of Population Health and Aristogenics, MOE Key Laboratory of Population Health Across Life Cycle, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
3
|
Nicotinamide and Nonmelanoma Skin Cancers. Ophthalmic Plast Reconstr Surg 2022; 38:304-305. [DOI: 10.1097/iop.0000000000002133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Boo YC. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants (Basel) 2021; 10:1315. [PMID: 34439563 PMCID: PMC8389214 DOI: 10.3390/antiox10081315] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/19/2022] Open
Abstract
Vitamin B3 (nicotinic acid, niacin) deficiency causes the systemic disease pellagra, which leads to dermatitis, diarrhea, dementia, and possibly death depending on its severity and duration. Vitamin B3 is used in the synthesis of the NAD+ family of coenzymes, contributing to cellular energy metabolism and defense systems. Although nicotinamide (niacinamide) is primarily used as a nutritional supplement for vitamin B3, its pharmaceutical and cosmeceutical uses have been extensively explored. In this review, we discuss the biological activities and cosmeceutical properties of nicotinamide in consideration of its metabolic pathways. Supplementation of nicotinamide restores cellular NAD+ pool and mitochondrial energetics, attenuates oxidative stress and inflammatory response, enhances extracellular matrix and skin barrier, and inhibits the pigmentation process in the skin. Topical treatment of nicotinamide, alone or in combination with other active ingredients, reduces the progression of skin aging and hyperpigmentation in clinical trials. Topically applied nicotinamide is well tolerated by the skin. Currently, there is no convincing evidence that nicotinamide has specific molecular targets for controlling skin aging and pigmentation. This substance is presumed to contribute to maintaining skin homeostasis by regulating the redox status of cells along with various metabolites produced from it. Thus, it is suggested that nicotinamide will be useful as a cosmeceutical ingredient to attenuate skin aging and hyperpigmentation, especially in the elderly or patients with reduced NAD+ pool in the skin due to internal or external stressors.
Collapse
Affiliation(s)
- Yong Chool Boo
- Department of Molecular Medicine, School of Medicine, BK21 Plus KNU Biomedical Convergence Program, Cell and Matrix Research Institute, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
5
|
Patton EE, Mueller KL, Adams DJ, Anandasabapathy N, Aplin AE, Bertolotto C, Bosenberg M, Ceol CJ, Burd CE, Chi P, Herlyn M, Holmen SL, Karreth FA, Kaufman CK, Khan S, Kobold S, Leucci E, Levy C, Lombard DB, Lund AW, Marie KL, Marine JC, Marais R, McMahon M, Robles-Espinoza CD, Ronai ZA, Samuels Y, Soengas MS, Villanueva J, Weeraratna AT, White RM, Yeh I, Zhu J, Zon LI, Hurlbert MS, Merlino G. Melanoma models for the next generation of therapies. Cancer Cell 2021; 39:610-631. [PMID: 33545064 PMCID: PMC8378471 DOI: 10.1016/j.ccell.2021.01.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022]
Abstract
There is a lack of appropriate melanoma models that can be used to evaluate the efficacy of novel therapeutic modalities. Here, we discuss the current state of the art of melanoma models including genetically engineered mouse, patient-derived xenograft, zebrafish, and ex vivo and in vitro models. We also identify five major challenges that can be addressed using such models, including metastasis and tumor dormancy, drug resistance, the melanoma immune response, and the impact of aging and environmental exposures on melanoma progression and drug resistance. Additionally, we discuss the opportunity for building models for rare subtypes of melanomas, which represent an unmet critical need. Finally, we identify key recommendations for melanoma models that may improve accuracy of preclinical testing and predict efficacy in clinical trials, to help usher in the next generation of melanoma therapies.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit and Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
| | - Kristen L Mueller
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA.
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Niroshana Anandasabapathy
- Department of Dermatology, Meyer Cancer Center, Program in Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY 10026, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Corine Bertolotto
- Université Côte d'Azur, Nice, France; INSERM, Biology and Pathologies of Melanocytes, Team 1, Equipe Labellisée Ligue 2020, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology, and Immunobiology, Yale University, New Haven, CT, USA
| | - Craig J Ceol
- Program in Molecular Medicine and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Christin E Burd
- Departments of Molecular Genetics, Cancer Biology, and Genetics, The Ohio State University, Biomedical Research Tower, Room 918, 460 W. 12th Avenue, Columbus, OH 43210, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | - Sheri L Holmen
- Department of Surgery, University of Utah Health Sciences Center, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Florian A Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Charles K Kaufman
- Washington University School of Medicine, Department of Medicine, Division of Oncology, Department of Developmental Biology, McDonnell Science Building, 4518 McKinley Avenue, St. Louis, MO 63110, USA
| | - Shaheen Khan
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany; Member of the German Center for Lung Research (DZL), German Center for Translational Cancer Research (DKTK), partner site Munich, Munich, Germany
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium; Trace, Department of Oncology, LKI, KU Leuven, 3000 Leuven, Belgium
| | - Carmit Levy
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - David B Lombard
- Department of Pathology, Institute of Gerontology, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology and Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kerrie L Marie
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Richard Marais
- CRUK Manchester Institute, The University of Manchester, Alderley Park, Macclesfield SK10 4TG, UK
| | - Martin McMahon
- Department of Dermatology & Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Ze'ev A Ronai
- Cancer Center, Sanford Burnham Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maria S Soengas
- Spanish National Cancer Research Centre, 28029 Madrid, Spain
| | - Jessie Villanueva
- The Wistar Institute, Molecular and Cellular Oncogenesis Program, Philadelphia, PA, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, and Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Richard M White
- Department of Cancer Biology & Genetics and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iwei Yeh
- Departments of Dermatology and Pathology, University of California, San Francisco, CA, USA
| | - Jiyue Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA, USA
| | - Marc S Hurlbert
- Melanoma Research Alliance, 730 15th Street NW, Washington, DC 20005, USA
| | - Glenn Merlino
- Center for Cancer Research, NCI, NIH, 37 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Giacalone S, Spigariolo CB, Bortoluzzi P, Nazzaro G. Oral nicotinamide: The role in skin cancer chemoprevention. Dermatol Ther 2021; 34:e14892. [PMID: 33595161 DOI: 10.1111/dth.14892] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/13/2021] [Indexed: 12/28/2022]
Abstract
The incidence of skin cancer has gradually increased in the last years and exposition to ultraviolet radiation remains the main risk factor. We performed a comprehensive review on the role of nicotinamide (NAM) in the chemoprevention of skin cancers. NAM, a water-soluble form of vitamin B3, interferes with skin carcinogenesis as it regulates immunosuppressor genes such as p53 and sirtuins and restores intracellular level of NAD+, a co-enzyme essential for energy production. Efficacy and safety of NAM was evaluated in a Phase III double-blinded control-placebo study (ONTRAC), thus demonstrating that the incidence of actinic keratoses and non-melanoma skin cancers was lower in the nicotinamide group than in placebo group. Further studies showed the efficacy of NAM also in transplanted patients and among inhabitants living in arsenic contamination areas. Despite the quick response to NAM supplementation, its intake need to be carried on chronically as the efficacy seems to vanish rapidly.
Collapse
Affiliation(s)
- Serena Giacalone
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Cristina B Spigariolo
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Paolo Bortoluzzi
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianluca Nazzaro
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|