1
|
Nedeljković N, Nikolić M, Čanović P, Zarić M, Živković Zarić R, Bošković J, Vesović M, Bradić J, Anđić M, Kočović A, Nikolić M, Jakovljević V, Vujić Z, Dobričić V. Synthesis, Characterization, and Investigation of Anti-Inflammatory and Cytotoxic Activities of Novel Thiourea Derivatives of Naproxen. Pharmaceutics 2023; 16:1. [PMID: 38276479 PMCID: PMC10820527 DOI: 10.3390/pharmaceutics16010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024] Open
Abstract
The objective of this study was to synthesize seven novel thiourea derivatives of naproxen (8-14), examine the anti-inflammatory activity of the newly synthesized compounds, investigate the cytotoxic potential of both sets of synthesized compounds (1-7 and 8-14), and select the most promising anti-inflammatory and antitumor drug candidates. The results of the in vivo anti-inflammatory study clearly showed that compounds 8 and 9 were capable of decreasing paw edema, as evident from a high percentage of inhibition (44.83% and 49.29%, respectively). In addition, the results of in vitro enzyme inhibition assays demonstrated that neither of the newly synthesized compounds reached 50% inhibition of 5-LOX at concentrations lower than 100 µM. In terms of antitumor potential, derivatives 3 and 8 exhibited strong cytotoxic effects on the HeLa cell line, suggesting the involvement of the extrinsic pathway of apoptosis. According to the overall results obtained for both sets of synthesized molecules, derivatives 4 and 8 can be underlined as molecules with the strongest anti-inflammatory activity, while derivatives 3 and 8 are the most promising cytotoxic agents.
Collapse
Affiliation(s)
- Nikola Nedeljković
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
| | - Miloš Nikolić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
| | - Petar Čanović
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Milan Zarić
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Radica Živković Zarić
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia;
| | - Jelena Bošković
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.B.); (Z.V.); (V.D.)
| | - Marina Vesović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
| | - Jovana Bradić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
| | - Marijana Anđić
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
| | - Aleksandar Kočović
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (N.N.); (M.V.); (J.B.); (M.A.); (A.K.)
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
| | - Marina Nikolić
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
| | - Vladimir Jakovljević
- Center of Excellence for Redox Balance Research in Cardiovascular and Metabolic Disorders, Svetozara Markovića 69, 34000 Kragujevac, Serbia; (M.N.); (V.J.)
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, 119435 Moscow, Russia
| | - Zorica Vujić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.B.); (Z.V.); (V.D.)
| | - Vladimir Dobričić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (J.B.); (Z.V.); (V.D.)
| |
Collapse
|
2
|
Tang Y, Zang H, Wen Q, Fan S. AXL in cancer: a modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res 2023; 42:148. [PMID: 37328828 DOI: 10.1186/s13046-023-02726-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023] Open
Abstract
AXL is a member of the TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases family (RTKs), and its abnormal expression has been linked to clinicopathological features and poor prognosis of cancer patients. There is mounting evidence supporting AXL's role in the occurrence and progression of cancer, as well as drug resistance and treatment tolerance. Recent studies revealed that reducing AXL expression can weaken cancer cells' drug resistance, indicating that AXL may be a promising target for anti-cancer drug treatment. This review aims to summarize the AXL's structure, the mechanisms regulating and activating it, and its expression pattern, especially in drug-resistant cancers. Additionally, we will discuss the diverse functions of AXL in mediating cancer drug resistance and the potential of AXL inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
3
|
Liu X, Zhang C, Yang WH, Li SC, Wang RF, Zhang YB, Zhang ZL. Low expression of SEMA4D as a potential predictive molecular marker of poor survival in patients with melanoma combined with liver cancer. Oncol Lett 2023; 25:160. [PMID: 36936030 PMCID: PMC10017917 DOI: 10.3892/ol.2023.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/21/2022] [Indexed: 03/09/2023] Open
Abstract
This study explored the correlation between semaphorin 4D (SEMA4D) and the prognosis and survival time of patients with melanoma combined with liver cancer. A total of 272 patients were recruited, and clinical and follow-up data were recorded. The expression levels of SEMA4D and SEMA3B were determined. Pearson's χ2 test and Spearman's rank correlation coefficient were used to analyze the relationship between prognosis and the assessed parameters of melanoma patients. Univariate and multivariate Logistic regression and Cox proportional risk regression analyses were used for further analysis. Additionally, receiver operating characteristic curve and survival curves of subjects were plotted. The Pearson's χ2 test showed that the prognosis of melanoma patients was significantly correlated with age, tumor grade, and decreased SEMA4D expression. Additionally, Spearman's correlation coefficient analysis showed that age, tumor grade, and SEMA4D expression were significantly correlated with prognosis. Univariate logistic regression analysis showed that age and tumor grade, and SEMA4D expression, were significantly correlated with prognosis. Older patients, a higher tumor grade, and lower SEMA4D expression were associated with a poorer prognosis. Multivariate logistic regression analysis showed that older patients had a poorer prognosis, and patients with lower SEMA4D expression levels had a significantly worse prognosis than patients with higher SEMA4D expression levels. Kaplan-Meier analysis showed that the survival time of older patients was lower than that of the younger patients. The survival times of patients with lower SEMA4D expression levels were significantly lower than that of patients with higher SEMA4D expression levels. Multivariate Cox regression analysis showed that the survival time of older patients was lower than that of younger patients. The survival time of melanoma patients with low SEMA4D expression was significantly lower than that of patients with higher SEMA4D expression. SEMA4D was significantly associated with melanoma, and lower SEMA4D expression was associated with a poorer survival prognosis in melanoma patients.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chong Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Wu-Han Yang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Sheng-Chao Li
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Rui-Feng Wang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yi-Bin Zhang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Zhi-Lei Zhang
- Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
- Correspondence to: Dr Zhi-Lei Zhang, Department of Hepatobiliary Surgery, The Fourth Affiliated Hospital of Hebei Medical University, 12 Chang'an District Health Road, Shijiazhuang, Hebei 050011, P.R. China, E-mail:
| |
Collapse
|
4
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|