1
|
Xiao H, Chen W, Lu D, Shi G, Xia X, Yao S. GDF15 regulated by HDAC2 exerts suppressive effects on oxygen-glucose deprivation/reoxygenation-induced neuronal cell pyroptosis via the NLRP3 inflammasome. Toxicol Res (Camb) 2024; 13:tfae112. [PMID: 39070057 PMCID: PMC11270593 DOI: 10.1093/toxres/tfae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Background Pyroptosis, inflammation-related programed cell death mediated by NLRP3 inflammasome, is involved in the pathogenesis of cerebral hypoxic-ischemic injury. Our study aims to explore the biological role of growth differentiation factor (GDF)15 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal pyroptosis. Methods HT22 neurons were subjected to OGD/R to simulate cerebral hypoxic-ischemic injury. Cells were transfected with plasmids to overexpress GDF15, or lentiviral-based shRNAs constructs to silence GDF15. ELISA assay was used to detect GDF15, IL-1β, IL-18, and neuron specific enolase (NSE) levels. Cell pyroptosis was measured by flow cytometery. Chromatin immunoprecipitation assay was used to detect interaction of H3K27ac with GDF15 promoter. GDF15, NLRP3, Caspase-1 p20 and GSDMD-N expressions were measured by Western blotting. Results Patients with malignant middle cerebral artery infarction showed decreased GDF15, but increased IL-1β, IL-18, and NSE levels in serum compared to healthy controls. OGD/R treatment caused significant increases in the levels of IL-1β, IL-18 and NSE, percentages of pyroptotic cells, and expressions of NLRP3, Caspase-1 p20, and GSDMD in HT22 cells, which were markedly reversed by GDF15 overexpression. However, GDF15 knockdown resulted in neuronal injury similar to those observed in OGD/R treatment. The GDF15 knockdown-induced effects were counteracted by treatment with NLRP3 inhibitor. OGD/R decreased the enrichment of H3K27ac in the promoter of GDF15 to down-regulate GDF15, but was compromised by co-treatment with HDAC2 inhibitor. Conclusion Our data demonstrates that GDF15 attenuates OGD/R-induced pyroptosis through NLRP3 inflammasome. HDAC2 is involved in mediating OGD-induced GDF15 down-regulation via H3K27ac modification. GDF15 overexpression and HDAC2 inhibition hold potential as useful therapeutic strategies for neuroprotection.
Collapse
Affiliation(s)
- Hua Xiao
- Medical College of Soochow University, No. 1, Shizi Street, Gusu District, Suzhou 215000, China
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Wei Chen
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Darong Lu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Guixin Shi
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Shengtao Yao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| |
Collapse
|
2
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
3
|
Molloy EJ, Branagan A, Hurley T, Quirke F, Devane D, Taneri PE, El-Dib M, Bloomfield FH, Maeso B, Pilon B, Bonifacio SL, Wusthoff CJ, Chalak L, Bearer C, Murray DM, Badawi N, Campbell S, Mulkey S, Gressens P, Ferriero DM, de Vries LS, Walker K, Kay S, Boylan G, Gale C, Robertson NJ, D'Alton M, Gunn A, Nelson KB. Neonatal encephalopathy and hypoxic-ischemic encephalopathy: moving from controversy to consensus definitions and subclassification. Pediatr Res 2023; 94:1860-1863. [PMID: 37573378 DOI: 10.1038/s41390-023-02775-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/14/2023]
Affiliation(s)
- Eleanor J Molloy
- Discipline of Paediatrics, Trinity College Dublin, the University of Dublin, Dublin, Ireland.
- Trinity Translational Medicine Institute (TTMI), St James Hospital & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland.
- Neurodisability, Children's Hospital Ireland (CHI) at Tallaght, Dublin, Ireland.
- Neonatology, CHI at Crumlin, Dublin, Ireland.
- Paediatrics, The Coombe Hospital, Dublin, Ireland.
| | - Aoife Branagan
- Discipline of Paediatrics, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute (TTMI), St James Hospital & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
- Paediatrics, The Coombe Hospital, Dublin, Ireland
- Health Research Board Neonatal Encephalopathy PhD Training Network (NEPTuNE), Dublin, Ireland
| | - Tim Hurley
- Discipline of Paediatrics, Trinity College Dublin, the University of Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute (TTMI), St James Hospital & Trinity Research in Childhood Centre (TRiCC), Dublin, Ireland
- Health Research Board Neonatal Encephalopathy PhD Training Network (NEPTuNE), Dublin, Ireland
| | - Fiona Quirke
- Health Research Board Neonatal Encephalopathy PhD Training Network (NEPTuNE), Dublin, Ireland
- Health Research Board-Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
- School of Nursing and Midwifery, University of Galway, Galway, Ireland
| | - Declan Devane
- Health Research Board-Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
- School of Nursing and Midwifery, University of Galway, Galway, Ireland
- Evidence Synthesis Ireland, University of Galway, Galway, Ireland
- Cochrane Ireland, University of Galway, Galway, Ireland
| | - Petek E Taneri
- Health Research Board-Trials Methodology Research Network (HRB-TMRN), University of Galway, Galway, Ireland
- School of Nursing and Midwifery, University of Galway, Galway, Ireland
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Beccy Maeso
- James Lind Alliance, School of Healthcare Enterprise and Innovation, University of Southampton, Southampton, UK
| | | | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | - Lina Chalak
- Division of Neonatal-Perinatal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cynthia Bearer
- Division of Neonatology, Department of Pediatrics, Rainbow Babies & Children's Hospital, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Deirdre M Murray
- INFANT Research Centre, Cork, Ireland
- Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, Specialty of Child & Adolescent Health, Sydney Medical School, Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
- Grace Centre for Newborn Intensive Care, Sydney Children's Hospital Network, The University of Sydney, Westmead, NSW, Australia
| | - Suzann Campbell
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Sarah Mulkey
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, DC, USA
- Department of Neurology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Pierre Gressens
- Université Paris Cité, NeuroDiderot, Inserm, F-75019, Paris, France
| | - Donna M Ferriero
- Department of Pediatrics and Neurology, University of California San Francisco, Weill Institute for Neurosciences, San Francisco, CA, 94158, USA
| | - Linda S de Vries
- Department of Neonatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Karen Walker
- Department of Newborn Care, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | | | - Geraldine Boylan
- INFANT Research Centre, Cork, Ireland
- Department of Pediatrics and Child Health, University College Cork, Cork, Ireland
| | - Chris Gale
- Neonatal Medicine, School of Public Health, Faculty of Medicine, Chelsea and Westminster Campus, Imperial College London, London, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Mary D'Alton
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Alistair Gunn
- Departments of Physiology and Paediatrics, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Karin B Nelson
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, Bethesda, MD, USA
| |
Collapse
|
4
|
Narayanamurthy R, Armstrong EA, Yang JLJ, Yager JY, Unsworth LD. Administration of selective brain hypothermia using a simple cooling device in neonatal rats. J Neurosci Methods 2023; 390:109838. [PMID: 36933705 DOI: 10.1016/j.jneumeth.2023.109838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The interruption of oxygen and blood supply to the newborn brain around the time of birth is a risk factor for hypoxic-ischemic encephalopathy and may lead to infant mortality or lifelong neurological impairments. Currently, therapeutic hypothermia, the cooling of the infant's head or entire body, is the only treatment to curb the extent of brain damage. NEW METHOD In this study, we designed a focal brain cooling device that circulates cooled water at a steady state temperature of 19 ± 1 °C through a coil of tubing fitted onto the neonatal rat's head. We tested its ability to selectively decrease brain temperature and offer neuroprotection in a neonatal rat model of hypoxic-ischemic brain injury. RESULTS Our method cooled the brain to 30-33 °C in conscious pups, while keeping the core body temperature approximately 3.2 °C warmer. Furthermore, the application of the cooling device to the neonatal rat model demonstrated a reduction in brain volume loss compared to pups maintained at normothermia and achieved a level of brain tissue protection the same as that of whole-body cooling. COMPARISON WITH EXISTING METHODS Prevailing methods of selective brain hypothermia are designed for adult animal models rather than for immature animals such as the rat as a conventional model of developmental brain pathology. Contrary to existing methods, our method of cooling does not require surgical manipulation or anaesthesia. CONCLUSION Our simple, economical, and effective method of selective brain cooling is a useful tool for rodent studies in neonatal brain injury and adaptive therapeutic interventions.
Collapse
Affiliation(s)
- Rukhmani Narayanamurthy
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Edward A Armstrong
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Jung-Lynn Jonathan Yang
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada
| | - Jerome Y Yager
- Department of Pediatrics, Division of Pediatric Neurosciences, University of Alberta, 11405 87 Avenue, Edmonton, Alberta T6G 1C9, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, 11487 89 Avenue, Edmonton, Alberta T6G 2M7, Canada.
| |
Collapse
|
5
|
Ovcjak A, Pontello R, Miller SP, Sun HS, Feng ZP. Hypothermia combined with neuroprotective adjuvants shortens the duration of hospitalization in infants with hypoxic ischemic encephalopathy: Meta-analysis. Front Pharmacol 2023; 13:1037131. [PMID: 36686686 PMCID: PMC9853207 DOI: 10.3389/fphar.2022.1037131] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Objective: Therapeutic hypothermia (TH) is the current standard of care for neonatal hypoxic-ischemic encephalopathy (HIE), yet morbidity and mortality remain significant. Adjuvant neuroprotective agents have been suggested to augment hypothermic-mediated neuroprotection. This analysis aims to identify the classes of drugs that have been used in combination with hypothermia in the treatment of neonatal HIE and determine whether combination therapy is more efficacious than TH alone. Methods: A systematic search of PubMed, Embase and Medline from conception through December 2022 was conducted. Randomized- and quasi-randomized controlled trials, observational studies and retrospective studies evaluating HIE infants treated with combination therapy versus TH alone were selected. Primary reviewers extracted information on mortality, neurodevelopmental impairment and length of hospitalization for meta-analyses. Effect sizes were pooled using a random-effects model and measured as odds ratio (OR) or mean difference (MD) where applicable, and 95% confidence intervals (CI) were calculated. Risk of bias was assessed using the tool from the Cochrane Handbook for Systematic Reviews of Interventions. Results: The search strategy collected 519 studies, 16 of which met analysis inclusion criteria. HIE infants totaled 1,288 infants from included studies, 646 infants received some form of combination therapy, while 642 received TH alone. GABA receptor agonists, NMDA receptor antagonists, neurogenic and angiogenic agents, stem cells, glucocorticoids and antioxidants were identified as candidate adjuvants to TH that have been evaluated in clinical settings compared to TH alone. Length of hospitalization was significantly reduced in infants treated with combination therapy (MD -4.81, 95% CI [-8.42. to -1.19], p = .009) compared to those treated with TH alone. Risk of mortality and neurodevelopmental impairment did not differ between combination therapy and TH alone groups. Conclusion: Compared to the current standard of care, administration of neuroprotective adjuvants with TH reduced the duration of hospitalization but did not impact the risk of mortality or neurodevelopmental impairment in HIE infants. Meta-analysis was limited by a moderate risk of bias among included studies and small sample sizes. This analysis highlights the need for preclinical trials to conduct drug development studies in hypothermic settings to identify relevant molecular targets that may offer additive or synergistic neuroprotection to TH, and the need for larger powered clinical trials to determine the dose and timing of administration at which maximal clinical benefits are observed for adjuvant neuroprotectants.
Collapse
Affiliation(s)
- Andrea Ovcjak
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Riley Pontello
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Steve P. Miller
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, Faculty of Medicine, The University of Toronto, Toronto, ON, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Zhong-Ping Feng
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Galinsky R, Kelly S, Green E, Hunt R, Nold-Petry C, Gunn A, Nold M. Interleukin-1: an important target for perinatal neuroprotection? Neural Regen Res 2023; 18:47-50. [PMID: 35799507 PMCID: PMC9241389 DOI: 10.4103/1673-5374.341044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy. Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth. Multiple pathways are involved in the pathogenesis of perinatal inflammation. However, studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1. In this review, we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury. We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage, and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist, anakinra, as a safe and effective therapeutic intervention. We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment, and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.
Collapse
|
7
|
Fabres RB, Nunes RR, de Medeiros de Mattos M, Andrade MKG, Martini APR, Tassinari ID, Sanches EF, de Fraga LS, Netto CA. Therapeutic hypothermia for the treatment of neonatal hypoxia-ischemia: sex-dependent modulation of reactive astrogliosis. Metab Brain Dis 2022; 37:2315-2329. [PMID: 35778625 DOI: 10.1007/s11011-022-01030-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Therapeutic hypothermia (TH) is the standard treatment for neonatal hypoxia-ischemia (HI) with a time window limited up to 6 h post injury. However, influence of sexual dimorphism in the therapeutic window for TH has not yet been elucidated in animal models of HI. Therefore, the aim of this study was to investigate the most effective time window to start TH in male and female rats submitted to neonatal HI. Wistar rats (P7) were divided into the following groups: NAÏVE and SHAM (control groups), HI (submitted to HI) and TH (submitted to HI and TH; 32ºC for 5 h). TH was started at 2 h (TH-2 h group), 4 h (TH-4 h group), or 6 h (TH-6 h group) after HI. At P14, animals were subjected to behavioural tests, volume of lesion and reactive astrogliosis assessments. Male and female rats from the TH-2 h group showed reduction in the latency of behavioral tests, and decrease in volume of lesion and intensity of GFAP immunofluorescence. TH-2 h females also showed reduction of degenerative cells and morphological changes in astrocytes. Interestingly, females from the TH-6 h group showed an increase in volume of lesion and in number of degenerative hippocampal cells, associated with worse behavioral performance. Together, these results indicate that TH neuroprotection is time- and sex-dependent. Moreover, TH started later (6 h) can worsen volume of brain lesion in females. These data indicate the need to develop specific therapeutic protocols for each sex and reinforce the importance of early onset of the hypothermic treatment.
Collapse
Affiliation(s)
- Rafael Bandeira Fabres
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil.
- Postgraduate Programme in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil.
- ICBS/UFRGS - Campus Centro, Rua Sarmento Leite, 500 - 2º Andar, 90050170, Porto Alegre, RS, Brazil.
| | - Ricardo Ribeiro Nunes
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
- Postgraduate Programme in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
| | - Marcel de Medeiros de Mattos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Porto Alegre, Brazil
| | - Mirella Kielek Galvan Andrade
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
| | - Ana Paula Rodrigues Martini
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Porto Alegre, Brazil
- Postgraduate Programme in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
| | - Isadora D'Ávila Tassinari
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
- Postgraduate Programme in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
| | - Eduardo Farias Sanches
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Porto Alegre, Brazil
- Postgraduate Programme in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
| | - Luciano Stürmer de Fraga
- Department of Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
- Postgraduate Programme in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
| | - Carlos Alexandre Netto
- Postgraduate Programme in Physiology, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos, 2600, 90035-003, Porto Alegre, Brazil
- Postgraduate Programme in Neuroscience, Universidade Federal do Rio Grande do Sul (UFRGS), Sarmento Leite, 500, 90050-170, Porto Alegre, Brazil
| |
Collapse
|
8
|
Gandecha H, Kaur A, Sanghera R, Preece J, Pillay T. Nutrition and Immunity in Perinatal Hypoxic-Ischemic Injury. Nutrients 2022; 14:nu14132747. [PMID: 35807927 PMCID: PMC9269416 DOI: 10.3390/nu14132747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Perinatal hypoxia ischaemia (PHI), acute and chronic, may be associated with considerable adverse outcomes in the foetus and neonate. The molecular and cellular mechanisms of injury and repair associated with PHI in the perinate are not completely understood. Increasing evidence is mounting for the role of nutrients and bioactive food components in immune development, function and repair in PHI. In this review, we explore current concepts around the neonatal immune response to PHI with a specific emphasis on the impact of nutrition in the mother, foetus and neonate.
Collapse
Affiliation(s)
- Hema Gandecha
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- East Midlands Deanery, Health Education England, Leicester LE3 5DR, UK
| | - Avineet Kaur
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- East Midlands Deanery, Health Education England, Leicester LE3 5DR, UK
| | - Ranveer Sanghera
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- East Midlands Deanery, Health Education England, Leicester LE3 5DR, UK
| | - Joanna Preece
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
| | - Thillagavathie Pillay
- Department of Neonatology, University Hospitals Leicester NHS Trust, Leicester LE1 5WW, UK
- Faculty of Science and Engineering, Research Institute for Healthcare Sciences, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- College of Life Sciences, University of Leicester, Leicester LE5 4PW, UK
| |
Collapse
|
9
|
Martinello KA, Meehan C, Avdic-Belltheus A, Lingam I, Mutshiya T, Yang Q, Akin MA, Price D, Sokolska M, Bainbridge A, Hristova M, Tachtsidis I, Tann CJ, Peebles D, Hagberg H, Wolfs TGAM, Klein N, Kramer BW, Fleiss B, Gressens P, Golay X, Robertson NJ. Hypothermia is not therapeutic in a neonatal piglet model of inflammation-sensitized hypoxia-ischemia. Pediatr Res 2022; 91:1416-1427. [PMID: 34050269 PMCID: PMC8160560 DOI: 10.1038/s41390-021-01584-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/20/2021] [Accepted: 05/10/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND Perinatal inflammation combined with hypoxia-ischemia (HI) exacerbates injury in the developing brain. Therapeutic hypothermia (HT) is standard care for neonatal encephalopathy; however, its benefit in inflammation-sensitized HI (IS-HI) is unknown. METHODS Twelve newborn piglets received a 2 µg/kg bolus and 1 µg/kg/h infusion over 52 h of Escherichia coli lipopolysaccharide (LPS). HI was induced 4 h after LPS bolus. After HI, piglets were randomized to HT (33.5 °C 1-25 h after HI, n = 6) or normothermia (NT, n = 6). Amplitude-integrated electroencephalogram (aEEG) was recorded and magnetic resonance spectroscopy (MRS) was acquired at 24 and 48 h. At 48 h, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive brain cell death, microglial activation/proliferation, astrogliosis, and cleaved caspase-3 (CC3) were quantified. Hematology and plasma cytokines were serially measured. RESULTS Two HT piglets died. aEEG recovery, thalamic and white matter MRS lactate/N-acetylaspartate, and TUNEL-positive cell death were similar between groups. HT increased microglial activation in the caudate, but had no other effect on glial activation/proliferation. HT reduced CC3 overall. HT suppressed platelet count and attenuated leukocytosis. Cytokine profile was unchanged by HT. CONCLUSIONS We did not observe protection with HT in this piglet IS-HI model based on aEEG, MRS, and immunohistochemistry. Immunosuppressive effects of HT and countering neuroinflammation by LPS may contribute to the observed lack of HT efficacy. Other immunomodulatory strategies may be more effective in IS-HI. IMPACT Acute infection/inflammation is known to exacerbate perinatal brain injury and can worsen the outcomes in neonatal encephalopathy. Therapeutic HT is the current standard of care for all infants with NE, but the benefit in infants with coinfection/inflammation is unknown. In a piglet model of inflammation (LPS)-sensitized HI, we observed no evidence of neuroprotection with cooling for 24 h, based on our primary outcome measures: aEEG, MRS Lac/NAA, and histological brain cell death. Additional neuroprotective agents, with beneficial immunomodulatory effects, require exploration in IS-HI models.
Collapse
Affiliation(s)
- Kathryn A Martinello
- Institute for Women's Health, University College London, London, UK
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | | | | | - Ingran Lingam
- Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Institute for Women's Health, University College London, London, UK
| | - Mustafa Ali Akin
- Department of Paediatrics, Ondokuz Mayıs University, Samsun, Turkey
| | - David Price
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Magdalena Sokolska
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Alan Bainbridge
- Medical Physics and Biomedical Engineering, University College London NHS Foundation Trust, London, UK
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Ilias Tachtsidis
- Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Cally J Tann
- Adolescent, Reproductive and Child Health Centre, London School of Hygiene and Tropical Medicine, London, UK
| | - Donald Peebles
- Institute for Women's Health, University College London, London, UK
| | - Henrik Hagberg
- Department of Clinical Sciences, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain, Kings College London, London, UK
| | - Tim G A M Wolfs
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Nigel Klein
- Paediatric Infectious Diseases and Immunology, Institute of Child Health, University College London, London, UK
| | - Boris W Kramer
- Department of Pediatrics, University of Maastricht, Maastricht, The Netherlands
| | - Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | | | - Xavier Golay
- Institute of Neurology, University College London, London, UK
| | - Nicola J Robertson
- Institute for Women's Health, University College London, London, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Chen X, Zhang J, Wu Y, Tucker R, Baird GL, Domonoske R, Barrios-Anderson A, Lim YP, Bath K, Walsh EG, Stonestreet BS. Inter-alpha Inhibitor Proteins Ameliorate Brain Injury and Improve Behavioral Outcomes in a Sex-Dependent Manner After Exposure to Neonatal Hypoxia Ischemia in Newborn and Young Adult Rats. Neurotherapeutics 2022; 19:528-549. [PMID: 35290609 PMCID: PMC9226254 DOI: 10.1007/s13311-022-01217-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is a major contributor to neurodevelopmental morbidities. Inter-alpha inhibitor proteins (IAIPs) have neuroprotective effects on HI-related brain injury in neonatal rats. However, the effects of treatment with IAIPs on sequential behavioral, MRI, and histopathological abnormalities in the young adult brain after treatment with IAIPs in neonates remain to be determined. The objective of this study was to examine the neuroprotective effects of IAIPs at different neurodevelopmental stages from newborn to young adults after exposure of neonates to HI injury. IAIPs were given as 11-sequential 30-mg/kg doses to postnatal (P) day 7-21 rats after right common carotid artery ligation and exposure to 90 min of 8% oxygen. The resulting brain edema and injury were examined by T2-weighted magnetic resonance imaging (MRI) and cresyl violet staining, respectively. The mean T2 values of the ipsilateral hemisphere from MRI slices 6 to 10 were reduced in IAIP-treated HI males + females on P8, P9, and P10 and females on P8, P9, P10, and P14. IAIP treatment reduced hemispheric volume atrophy by 44.5 ± 29.7% in adult male + female P42 rats and improved general locomotor abilities measured by the righting reflex over time at P7.5, P8, and P9 in males + females and males and muscle strength/endurance measured by wire hang on P16 in males + females and females. IAIPs provided beneficial effects during the learning phase of the Morris water maze with females exhibiting beneficial effects. IAIPs confer neuroprotection from HI-related brain injury in neonates and even in adult rats and beneficial MRI and behavioral benefits in a sex-dependent manner.
Collapse
Affiliation(s)
- Xiaodi Chen
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Jiyong Zhang
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yuqi Wu
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Richard Tucker
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Grayson L Baird
- Department of Diagnostic Imaging, Biostatistics Core Lifespan Hospital System, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rose Domonoske
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Adriel Barrios-Anderson
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA
| | - Yow-Pin Lim
- ProThera Biologics, Inc, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kevin Bath
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical College, New York, NY, USA
| | - Edward G Walsh
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Barbara S Stonestreet
- Department of Pediatrics, Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Women &101 Dudley Street, Providence, RI, 02905-2499, USA.
| |
Collapse
|
11
|
Bjertnæs LJ, Næsheim TO, Reierth E, Suborov EV, Kirov MY, Lebedinskii KM, Tveita T. Physiological Changes in Subjects Exposed to Accidental Hypothermia: An Update. Front Med (Lausanne) 2022; 9:824395. [PMID: 35280892 PMCID: PMC8904885 DOI: 10.3389/fmed.2022.824395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Background Accidental hypothermia (AH) is an unintended decrease in body core temperature (BCT) to below 35°C. We present an update on physiological/pathophysiological changes associated with AH and rewarming from hypothermic cardiac arrest (HCA). Temperature Regulation and Metabolism Triggered by falling skin temperature, Thyrotropin-Releasing Hormone (TRH) from hypothalamus induces release of Thyroid-Stimulating Hormone (TSH) and Prolactin from pituitary gland anterior lobe that stimulate thyroid generation of triiodothyronine and thyroxine (T4). The latter act together with noradrenaline to induce heat production by binding to adrenergic β3-receptors in fat cells. Exposed to cold, noradrenaline prompts degradation of triglycerides from brown adipose tissue (BAT) into free fatty acids that uncouple metabolism to heat production, rather than generating adenosine triphosphate. If BAT is lacking, AH occurs more readily. Cardiac Output Assuming a 7% drop in metabolism per °C, a BCT decrease of 10°C can reduce metabolism by 70% paralleled by a corresponding decline in CO. Consequently, it is possible to maintain adequate oxygen delivery provided correctly performed cardiopulmonary resuscitation (CPR), which might result in approximately 30% of CO generated at normal BCT. Liver and Coagulation AH promotes coagulation disturbances following trauma and acidosis by reducing coagulation and platelet functions. Mean prothrombin and partial thromboplastin times might increase by 40-60% in moderate hypothermia. Rewarming might release tissue factor from damaged tissues, that triggers disseminated intravascular coagulation. Hypothermia might inhibit platelet aggregation and coagulation. Kidneys Renal blood flow decreases due to vasoconstriction of afferent arterioles, electrolyte and fluid disturbances and increasing blood viscosity. Severely deranged renal function occurs particularly in the presence of rhabdomyolysis induced by severe AH combined with trauma. Conclusion Metabolism drops 7% per °C fall in BCT, reducing CO correspondingly. Therefore, it is possible to maintain adequate oxygen delivery after 10°C drop in BCT provided correctly performed CPR. Hypothermia may facilitate rhabdomyolysis in traumatized patients. Victims suspected of HCA should be rewarmed before being pronounced dead. Rewarming avalanche victims of HCA with serum potassium > 12 mmol/L and a burial time >30 min with no air pocket, most probably be futile.
Collapse
Affiliation(s)
- Lars J. Bjertnæs
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Torvind O. Næsheim
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, Cardiovascular Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eirik Reierth
- Science and Health Library, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Evgeny V. Suborov
- The Nikiforov Russian Center of Emergency and Radiation Medicine, St. Petersburg, Russia
| | - Mikhail Y. Kirov
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russia
| | - Konstantin M. Lebedinskii
- Department of Anesthesiology and Intensive Care, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Torkjel Tveita
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
12
|
Lu S, Li K, Yang Y, Wang Q, Yu Y, Wang Z, Luan Z. Optimization of an Intranasal Route for the Delivery of Human Neural Stem Cells to Treat a Neonatal Hypoxic-Ischemic Brain Injury Rat Model. Neuropsychiatr Dis Treat 2022; 18:413-426. [PMID: 35495583 PMCID: PMC9047963 DOI: 10.2147/ndt.s350586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Stem cell administration via the intranasal route has shown promise as a new therapy for hypoxic-ischemic encephalopathy (HIE). In this study, we aimed to improve the intranasal delivery of stem cells to the brain. METHODS Human neural stem cells (hNSCs) were identified using immunofluorescence, morphological, and flow cytometry assays before transplantation, and cell migration capacity was examined using the transwell assay. Cerebral hypoxia-ischemia (HI) was induced in 7-day-old rats, followed by the intranasal transplantation of CM-Dil-labeled hNSCs. We examined various experimental conditions, including preconditioning hNSCs with hypoxia, catheter method, multiple low-dose transplantation, head position, cell appropriate concentration, and volume. Rats were sacrificed 1 or 3 days after the final intranasal administration, and parts of the nasal tissue and whole brain sections were analyzed under a fluorescence microscope. RESULTS The isolated hNSCs met the characteristics of neural stem cells. Hypoxia (5% O2, 24 h) enhanced the surface expression of CXC chemokine receptor 4 (CXCR4) (9.21 ± 1.9% ~ 24.76 ± 2.24%, P < 0.01) on hNSCs and improved migration (toward stromal cell-derived factor 1 [SDF-1], 0.54 ± 0.11% ~ 8.65 ± 1.76%, P < 0.001; toward fetal bovine serum, 8.36 ± 0.81% ~ 21.74 ± 0.85%, P < 0.0001). Further improvement increased the number of surviving cell distribution with increased uniformity on the olfactory epithelium and allowed the cells to stay in the nasal cavity for at least 72 h, but they did not survive for longer than 48 h. Optimization of pre-transplantation conditions augmented the success rate of intranasally delivered cells to the brain (0-41.6%). We also tentatively identified that hNSCs crossed the olfactory epithelium into the tissue space below the lamina propria, with cerebrospinal fluid entering the cribriform plate into the subarachnoid space, and then migrated toward injured areas along the brain blood vessels. CONCLUSION This study offers some helpful advice and reference for addressing the problem of repeatability in the intranasal delivery of stem cells.
Collapse
Affiliation(s)
- Siliang Lu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ke Li
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yinxiang Yang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Qian Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yu Yu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zhaoyan Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zuo Luan
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
13
|
Ogawa Y, Tanaka E, Sato Y, Tsuji M. Brain damage caused by neonatal hypoxia-ischemia and the effects of hypothermia in severe combined immunodeficient (SCID) mice. Exp Neurol 2020; 337:113577. [PMID: 33359474 DOI: 10.1016/j.expneurol.2020.113577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of brain damage in newborns. Although therapeutic hypothermia has been shown to be neuroprotective against neonatal HIE in clinical trials, its effect is not satisfactory. Cell-based therapies have attracted much attention as novel treatments for HIE. Preclinical studies on a variety of human cell transplantation methods have been performed in immunodeficient/immunosuppressed animals, such as severe combined immunodeficient (SCID) mice, which lack functional T and B lymphocytes. The detailed characteristics of neonatal HIE in SCID mice, however, have not been delineated. In preclinical studies, novel therapies for neonatal HIE should be evaluated in combination with hypothermia, which has become a standard treatment for neonatal HIE. However, the effects of hypothermia in SCID mice have not been delineated. In the present study, we compared neonatal hypoxic-ischemic (HI) brain damage in SCID mice and wild-type mice treated with or without hypothermia. Male and female mouse pups were subjected to HI insult induced by unilateral common carotid artery ligation combined with systemic hypoxia on postnatal day 12. In the first 4 h after HI insult, body temperature was maintained at 36 °C for the normothermia groups or 32 °C for the hypothermia groups. The severity of brain damage in SCID mice did not differ from that in wild-type mice based on most evaluations, i.e., cerebral blood flow, hemiparesis, muscle strength, spontaneous activity, cerebral hemispheric volume, neuropathological injury, and serum cytokine levels, although spleen weight, brain weight, leukocyte counts and the levels of some cytokines in the peripheral blood were different between genotypes. The effects of hypothermia in SCID mice were comparable to those in wild-type mice based on most evaluations. Taken together, these findings indicate that SCID mice can be used as an appropriate preclinical model for cell therapies for neonatal HIE.
Collapse
Affiliation(s)
- Yuko Ogawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan.
| | - Emi Tanaka
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Pediatrics, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal - Neonatal Care, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan.
| |
Collapse
|
14
|
Ophelders DR, Gussenhoven R, Klein L, Jellema RK, Westerlaken RJ, Hütten MC, Vermeulen J, Wassink G, Gunn AJ, Wolfs TG. Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells 2020; 9:E1871. [PMID: 32785181 PMCID: PMC7464163 DOI: 10.3390/cells9081871] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
With a worldwide incidence of 15 million cases, preterm birth is a major contributor to neonatal mortality and morbidity, and concomitant social and economic burden Preterm infants are predisposed to life-long neurological disorders due to the immaturity of the brain. The risks are inversely proportional to maturity at birth. In the majority of extremely preterm infants (<28 weeks' gestation), perinatal brain injury is associated with exposure to multiple inflammatory perinatal triggers that include antenatal infection (i.e., chorioamnionitis), hypoxia-ischemia, and various postnatal injurious triggers (i.e., oxidative stress, sepsis, mechanical ventilation, hemodynamic instability). These perinatal insults cause a self-perpetuating cascade of peripheral and cerebral inflammation that plays a critical role in the etiology of diffuse white and grey matter injuries that underlies a spectrum of connectivity deficits in survivors from extremely preterm birth. This review focuses on chorioamnionitis and hypoxia-ischemia, which are two important antenatal risk factors for preterm brain injury, and highlights the latest insights on its pathophysiology, potential treatment, and future perspectives to narrow the translational gap between preclinical research and clinical applications.
Collapse
Affiliation(s)
- Daan R.M.G. Ophelders
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ruth Gussenhoven
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Luise Klein
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Reint K. Jellema
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
| | - Rob J.J. Westerlaken
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthias C. Hütten
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jeroen Vermeulen
- Department of Pediatric Neurology, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands;
| | - Guido Wassink
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Private bag 92019, Auckland 1023, New Zealand; (G.W.); (A.J.G.)
| | - Tim G.A.M. Wolfs
- Department of Pediatrics, Maastricht University Medical Center, 6202 AZ Maastricht, The Netherlands; (D.R.M.G.O.); (R.G.); (L.K.); (R.K.J.); (R.J.J.W.); (M.C.H.)
- School for Oncology and Developmental Biology (GROW), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
15
|
Okumura A. Neuroprotection by cooling with immunomodulation: One Step further. Pediatr Int 2020; 62:769. [PMID: 32705781 DOI: 10.1111/ped.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Akihisa Okumura
- Department of Pediatrics, Aichi Medical University, Aichi, Japan
| |
Collapse
|