1
|
Srivastava P, Tavernaro I, Scholtz L, Genger C, Welker P, Schreiber F, Meyer K, Resch-Genger U. Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies. Sci Rep 2023; 13:1321. [PMID: 36693888 PMCID: PMC9873940 DOI: 10.1038/s41598-023-28203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Ratiometric green-red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO2) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fluorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO2-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs. Fluorescence microscopy studies with the molecular and nanoscale optical probes and A549 lung cancer cells confirmed the cellular uptake of all probes and their penetration into acidic cell compartments, i.e., the lysosomes, indicated by the switching ON of the green naphthalimide fluorescence. This underlines their suitability for intracellular pH sensing, with the SiO2-based nanosensor revealing the best performance regarding uptake speed and stability.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Isabella Tavernaro
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Lena Scholtz
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.,Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Claudia Genger
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Pia Welker
- nanoPET Pharma GmbH, Robert-Koch-Platz 4, 10115, Berlin, Germany.,Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank Schreiber
- Division Biodeterioration and Reference Organisms, Federal Institute for Materials Research and Testing (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Klas Meyer
- Division Process Analytical Technology, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
2
|
Medeiros NG, Braga CA, Câmara VS, Duarte RC, Rodembusch FS. Near‐infrared fluorophores based on heptamethine cyanine dyes: from their synthesis and photophysical properties to recent optical sensing and bioimaging applications. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Natália G Medeiros
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Cláudia A. Braga
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Viktor S Câmara
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Rodrigo C Duarte
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Goncalves 9500. Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| | - Fabiano Severo Rodembusch
- Universidade Federal do Rio Grande do Sul Organic Chemistry Av. Bento Gonçalves 9500Bairro Agronomia 91501-970 Porto Alegre BRAZIL
| |
Collapse
|
3
|
Mondal R, Guin AK, Pal S, Mondal S, Paul ND. Sustainable synthesis of pyrazoles using alcohols as the primary feedstock by an iron catalyzed tandem C–C and C–N coupling approach. Org Chem Front 2022. [DOI: 10.1039/d2qo01196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report two new efficient iron-catalyzed synthetic strategies for multicomponent synthesis of tri-substituted pyrazoles using biomass-derived alcohols as the primary feedstock.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhasree Pal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Sucheta Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|
4
|
Razmienė B, Řezníčková E, Dambrauskienė V, Ostruszka R, Kubala M, Žukauskaitė A, Kryštof V, Šačkus A, Arbačiauskienė E. Synthesis and Antiproliferative Activity of 2,4,6,7-Tetrasubstituted-2 H-pyrazolo[4,3- c]pyridines. Molecules 2021; 26:6747. [PMID: 34771163 PMCID: PMC8588486 DOI: 10.3390/molecules26216747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/26/2022] Open
Abstract
A library of 2,4,6,7-tetrasubstituted-2H-pyrazolo[4,3-c]pyridines was prepared from easily accessible 1-phenyl-3-(2-phenylethynyl)-1H-pyrazole-4-carbaldehyde via an iodine-mediated electrophilic cyclization of intermediate 4-(azidomethyl)-1-phenyl-3-(phenylethynyl)-1H-pyrazoles to 7-iodo-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridines followed by Suzuki cross-couplings with various boronic acids and alkylation reactions. The compounds were evaluated for their antiproliferative activity against K562, MV4-11, and MCF-7 cancer cell lines. The most potent compounds displayed low micromolar GI50 values. 4-(2,6-Diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol proved to be the most active, induced poly(ADP-ribose) polymerase 1 (PARP-1) cleavage, activated the initiator enzyme of apoptotic cascade caspase 9, induced a fragmentation of microtubule-associated protein 1-light chain 3 (LC3), and reduced the expression levels of proliferating cell nuclear antigen (PCNA). The obtained results suggest a complex action of 4-(2,6-diphenyl-2H-pyrazolo[4,3-c]pyridin-7-yl)phenol that combines antiproliferative effects with the induction of cell death. Moreover, investigations of the fluorescence properties of the final compounds revealed 7-(4-methoxyphenyl)-2,6-diphenyl-2H-pyrazolo[4,3-c]pyridine as the most potent pH indicator that enables both fluorescence intensity-based and ratiometric pH sensing.
Collapse
Affiliation(s)
- Beatričė Razmienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Eva Řezníčková
- Department of Experimental Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (E.Ř.); (V.K.)
| | - Vaida Dambrauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
| | - Radek Ostruszka
- Department of Experimental Physics, Faculty of Science, Palacký University, 17. Listopadu 12, CZ-77146 Olomouc, Czech Republic; (R.O.); (M.K.)
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacký University, 17. Listopadu 12, CZ-77146 Olomouc, Czech Republic; (R.O.); (M.K.)
| | - Asta Žukauskaitė
- Department of Chemical Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Department of Experimental Biology, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (E.Ř.); (V.K.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, CZ-77900 Olomouc, Czech Republic
| | - Algirdas Šačkus
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Eglė Arbačiauskienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (B.R.); (V.D.); (A.Š.)
| |
Collapse
|
5
|
Theoretical and experimental spectroscopic investigation of new polymethine donor-π-acceptor cyanine dyes: Synthesis, photophysical, and TDDFT studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.07.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Sar D, Srivastava I, Misra SK, Ostadhossein F, Fathi P, Pan D. Copper-Catalyzed Syntheses of Pyrene-Pyrazole Pharmacophores and Structure Activity Studies for Tubulin Polymerization. ACS OMEGA 2018; 3:6378-6387. [PMID: 30221233 PMCID: PMC6130796 DOI: 10.1021/acsomega.8b00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/05/2018] [Indexed: 05/04/2023]
Abstract
Tubulin polymerization is critical in mitosis process, which regulates uncontrolled cell divisions. Here, we report a new class of pyrene-pyrazole pharmacophore (PPP) for targeting microtubules. Syntheses of seven pyrenyl-substituted pyrazoles with side-chain modification at N-1 and C-3 positions of the pyrazole ring were accomplished from alkenyl hydrazones via C-N dehydrogenative cross-coupling using copper catalyst under aerobic condition. Tubulin polymerization with PPPs was investigated using docking and biological tools to reveal that these ligands are capable of influencing microtubule polymerization and their interaction with α-, β-tubulin active binding sites, which are substituent specific. Furthermore, cytotoxicity response of these PPPs was tested on cancer cells of different origin, such as MCF-7, MDA-MB231, and C32, and also noncancerous normal cells, such as MCF-10A. All newly synthesized PPPs showed excellent anticancer activities. The anticancer activities and half-maximal inhibitory concentration (IC50) values of all PPPs across different cancer cell lines (MCF-7, MDA-MB231, and C32) have been demonstrated. 1,3-Diphenyl-5-(pyren-1-yl)-1H-pyrazole was found to be best among all other PPPs in killing significant population of all of the cancerous cell with IC50 values 1 ± 0.5, 0.5 ± 0.2, and 5.0 ± 2.0 μM in MCF-7, MDA-MB231, and C32 cells, respectively.
Collapse
Affiliation(s)
- Dinabandhu Sar
- Department
of Bioengineering, Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Mills
Breast Cancer Institute and Carle Foundation Hospital, 502 North Busey, Urbana, Illinois 61801, United States
| | - Indrajit Srivastava
- Department
of Bioengineering, Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Mills
Breast Cancer Institute and Carle Foundation Hospital, 502 North Busey, Urbana, Illinois 61801, United States
| | - Santosh K. Misra
- Department
of Bioengineering, Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Mills
Breast Cancer Institute and Carle Foundation Hospital, 502 North Busey, Urbana, Illinois 61801, United States
| | - Fatemeh Ostadhossein
- Department
of Bioengineering, Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Mills
Breast Cancer Institute and Carle Foundation Hospital, 502 North Busey, Urbana, Illinois 61801, United States
| | - Parinaz Fathi
- Department
of Bioengineering, Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Mills
Breast Cancer Institute and Carle Foundation Hospital, 502 North Busey, Urbana, Illinois 61801, United States
| | - Dipanjan Pan
- Department
of Bioengineering, Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Mills
Breast Cancer Institute and Carle Foundation Hospital, 502 North Busey, Urbana, Illinois 61801, United States
- E-mail:
| |
Collapse
|
7
|
Synthesis and Optical Properties of Near-Infrared meso-Phenyl-Substituted Symmetric Heptamethine Cyanine Dyes. Molecules 2018; 23:molecules23020226. [PMID: 29364846 PMCID: PMC6017188 DOI: 10.3390/molecules23020226] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 01/09/2023] Open
Abstract
Heptamethine cyanine dyes are a class of near infrared fluorescence (NIRF) probes of great interest in bioanalytical and imaging applications due to their modifiability, allowing them to be tailored for particular applications. Generally, modifications at the meso-position of these dyes are achieved through Suzuki-Miyaura C-C coupling and SRN1 nucleophilic substitution of the chlorine atom at the meso-position of the dye. Herein, a series of 15 meso phenyl-substituted heptamethine cyanines was synthesized utilizing a modified dianil linker. Their optical properties, including molar absorptivity, fluorescence, Stokes shift, and quantum yield were measured. The HSA binding affinities of two representative compounds were measured and compared to that of a series of trimethine cyanines previously synthesized by our lab. The results indicate that the binding of these compounds to HSA is not only dependent on hydrophobicity, but may also be dependent on steric interferences in the binding site and structural dynamics of the NIRF compounds.
Collapse
|
8
|
Brown AW. Recent Developments in the Chemistry of Pyrazoles. ADVANCES IN HETEROCYCLIC CHEMISTRY 2018. [DOI: 10.1016/bs.aihch.2018.02.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Yang Y, Hu ZL, Li RH, Chen YH, Zhan ZP. Pyrazole synthesis via a cascade Sonogashira coupling/cyclization of N-propargyl sulfonylhydrazones. Org Biomol Chem 2018; 16:197-201. [DOI: 10.1039/c7ob02576a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach for the preparation of pyrazoles via a Pd(ii)/Cu(i)-catalyzed Sonogashira coupling/cyclization of N-propargyl sulfonylhydrazones has been established.
Collapse
Affiliation(s)
- Ying Yang
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Zi-Lin Hu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Ren-Hao Li
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Yi-Hui Chen
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| | - Zhuang-Ping Zhan
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- People's Republic of China
| |
Collapse
|
10
|
Jo J, Lee CH, Kopelman R, Wang X. In vivo quantitative imaging of tumor pH by nanosonophore assisted multispectral photoacoustic imaging. Nat Commun 2017; 8:471. [PMID: 28883396 PMCID: PMC5589864 DOI: 10.1038/s41467-017-00598-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/12/2017] [Indexed: 02/04/2023] Open
Abstract
Changes of physiological pH are correlated with several pathologies, therefore the development of more effective medical pH imaging methods is of paramount importance. Here, we report on an in vivo pH mapping nanotechnology. This subsurface chemical imaging is based on tumor-targeted, pH sensing nanoprobes and multi-wavelength photoacoustic imaging (PAI). The nanotechnology consists of an optical pH indicator, SNARF-5F, 5-(and-6)-Carboxylic Acid, encapsulated into polyacrylamide nanoparticles with surface modification for tumor targeting. Facilitated by multi-wavelength PAI plus a spectral unmixing technique, the accuracy of pH measurement inside the biological environment is not susceptible to the background optical absorption of biomolecules, i.e., hemoglobins. As a result, both the pH levels and the hemodynamic properties across the entire tumor can be quantitatively evaluated with high sensitivity and high spatial resolution in in vivo cancer models. The imaging technology reported here holds the potential for both research on and clinical management of a variety of cancers. Background optical absorption of several biomolecules impedes an effective in vivo pH imaging in tumors. Here, the authors developed a visible light-based in vivo pH mapping method by coupling photoacoustic imaging and pH-responsive modified nanoparticles that selectively target tumor cells.
Collapse
Affiliation(s)
- Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Chang H Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Raoul Kopelman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA. .,Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
11
|
Miki K, Kojima K, Oride K, Harada H, Morinibu A, Ohe K. pH-Responsive near-infrared fluorescent cyanine dyes for molecular imaging based on pH sensing. Chem Commun (Camb) 2017. [DOI: 10.1039/c7cc03035e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
pH-Responsive near-infrared cyanine dyes were synthesized and applied as imaging probes of acidic intracellular compartments of living cells.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kentaro Kojima
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuaki Oride
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology
- Radiation Biology Center
- Kyoto University
- Yoshida Konoe-cho
- Kyoto 606-8501
| | - Akiyo Morinibu
- Laboratory of Cancer Cell Biology
- Radiation Biology Center
- Kyoto University
- Yoshida Konoe-cho
- Kyoto 606-8501
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
12
|
Guan L, Liu Q, Zhang B, Wang L. Norcyanine dyes with benzo[c,d]indolium moiety: Spectral sensitivity with pH change for fluorescence pH imaging in living cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:239-245. [PMID: 28006692 DOI: 10.1016/j.jphotobiol.2016.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/04/2016] [Accepted: 12/05/2016] [Indexed: 11/16/2022]
Abstract
Fluorescence pH imaging in living cells is a rapidly expanding research direction, however, it relies on the development of pH-sensitive fluorescent imaging agents. Here four norcyanine dyes with benzo[c,d]indolium moiety, exhibiting high spectral sensitivity with pH changes, were synthesized for fluorescence pH imaging in living cells, and characterized by 1H NMR, 13C NMR, IR, UV-Vis and HRMS. The investigation of their spectral properties in methanol and water showed that the absorption and emission maxima were in the region 488-618nm and 583-651nm, respectively, and four dyes exhibited high photostability. The pH spectral titrations showed that selective dye D1 had pH-dependent absorption spectral changes within the pH range of 2.4 to 9.4, and high fluorescent spectral sensitivity at pH5.0-8.0, with a pKa of 5.0. A cell association study indicated that dye D1 exhibited no or mild cytotoxicity at the application dose and duration, and could be accumulated in cells and mainly distributed in the cytoplasm, giving red fluorescence imaging. In particular, dye D1 could achieve pH-dependent fluorescence imaging in living cells with the increase of pH from 3.0 to 8.0, at excitation wavelength of 543nm and receiving wavelength of 655-755nm, which was valuable for studying the weak acidic, neutral and weak alkaline biological tissue compartments.
Collapse
Affiliation(s)
- Li Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Qi Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Borui Zhang
- Department of Chemistry and Biochemistry, Miami University, 651 E. High St, Oxford, OH 45056, USA
| | - Lanying Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
13
|
Funabiki K, Yagi K, Ueta M, Nakajima M, Horiuchi M, Kubota Y, Mastui M. Rational Molecular Design and Synthesis of Highly Thermo- and Photostable Near-Infrared-Absorbing Heptamethine Cyanine Dyes with the Use of Fluorine Atoms. Chemistry 2016; 22:12282-5. [DOI: 10.1002/chem.201602955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido Gifu Japan
| | - Kazutaka Yagi
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido Gifu Japan
| | - Masato Ueta
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido Gifu Japan
| | - Mitsuru Nakajima
- Yokkaichi Plant & Research Laboratories JSR Corporation; 100 Kawajiricho, Yokkaichi-shi Mie 510-8552 Japan
| | - Masako Horiuchi
- Yokkaichi Plant & Research Laboratories JSR Corporation; 100 Kawajiricho, Yokkaichi-shi Mie 510-8552 Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido Gifu Japan
| | - Masaki Mastui
- Department of Chemistry and Biomolecular Science; Gifu University; 1-1 Yanagido Gifu Japan
| |
Collapse
|
14
|
Flamholc R, Zakrzewski J, Makal A, Brosseau A, Métivier R. Synthesis, regioselective aerobic Pd(ii)-catalyzed C–H bond alkenylation and the photophysical properties of pyrenylphenylpyrazoles. Photochem Photobiol Sci 2016; 15:580-8. [DOI: 10.1039/c6pp00009f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Pd(ii)-catalyzed C–H alkenylation of a pyrenylphenylpyrazole afforded fluorophore exhibiting solvent-dependent dual emission, resulting from locally-excited (LE) and intramolecular charge transfer (ICT) excited states.
Collapse
Affiliation(s)
- Rafał Flamholc
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - Janusz Zakrzewski
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Łódź
- 91-403 Łódź
- Poland
| | - Anna Makal
- University of Warsaw
- Biological and Chemical Research Center
- 02-089 Warszawa
- Poland
| | | | | |
Collapse
|
15
|
Gorka AP, Nani RR, Schnermann MJ. Cyanine polyene reactivity: scope and biomedical applications. Org Biomol Chem 2015; 13:7584-98. [PMID: 26052876 PMCID: PMC7780248 DOI: 10.1039/c5ob00788g] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cyanines are indispensable fluorophores that form the chemical basis of many fluorescence-based applications. A feature that distinguishes cyanines from other common fluorophores is an exposed polyene linker that is both crucial to absorption and emission and subject to covalent reactions that dramatically alter these optical properties. Over the past decade, reactions involving the cyanine polyene have been used as foundational elements for a range of biomedical techniques. These include the optical sensing of biological analytes, super-resolution imaging, and near-IR light-initiated uncaging. This review surveys the chemical reactivity of the cyanine polyene and the biomedical methods enabled by these reactions. The overarching goal is to highlight the multifaceted nature of cyanine chemistry and biology, as well as to point out the key role of reactivity-based insights in this promising area.
Collapse
Affiliation(s)
- Alexander P Gorka
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | | | | |
Collapse
|
16
|
Schmitt DC, Taylor AP, Flick AC, Kyne RE. Synthesis of pyrazoles from 1,3-diols via hydrogen transfer catalysis. Org Lett 2015; 17:1405-8. [PMID: 25719568 DOI: 10.1021/acs.orglett.5b00266] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,3-Diols engage in ruthenium-catalyzed hydrogen transfer in the presence of alkyl hydrazines to provide 1,4-disubstituted pyrazoles. Regioselective synthesis of unsymmetrical pyrazoles from β-hydroxy ketones is also described.
Collapse
Affiliation(s)
- Daniel C Schmitt
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Alexandria P Taylor
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Andrew C Flick
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Robert E Kyne
- Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
17
|
Maurya HK, Gupta A. A carbanion induced synthesis of highly congested pyrazole and imidazole containing heterocycles. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.01.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Zhegalova NG, Gonzales G, Berezin MY. Synthesis of nitric oxide probes with fluorescence lifetime sensitivity. Org Biomol Chem 2013; 11:8228-34. [PMID: 24166035 PMCID: PMC3872128 DOI: 10.1039/c3ob41498a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the rationale, synthesis and evaluation of the first activatable fluorescent probe that utilizes fluorescence lifetime change for detection of nitric oxide. The new probe DAP-LT1 features a near-infrared polymethine skeleton with a diaminobenzene functionality incorporated into the meso-position. The probe is partially quenched, and upon reaction with nitric oxide shows an increase in the fluorescence lifetime from 1.08 ns to 1.24 ns.
Collapse
Affiliation(s)
- Natalia G Zhegalova
- Department of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|