1
|
Peng B, Li J, Zhang H, Overmans S, Wang Y, Xu L, Jia Y, Huang B, Liu F, Liu P, Xiao M, Ye M, Xia J, Jin P. Interactions between ocean acidification and multiple environmental drivers on the biochemical traits of marine primary producers: A meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106707. [PMID: 39205357 DOI: 10.1016/j.marenvres.2024.106707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/24/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Ocean acidification (OA) interacts with multiple environmental drivers, such as temperature, nutrients, and ultraviolet radiation (UVR), posing a threat to marine primary producers. In this study, we conducted a quantitative meta-analysis of 1001 experimental assessments from 68 studies to examine the combined effects of OA and multiple environmental drivers (e.g., light, nutrient) on the biochemical compositions of marine primary producers. The results revealed significant positive effects of each environmental driver and their interactions with OA according to Hedge's d analysis. The results revealed significant positive effects of multiple environmental drivers and their interactions with OA. Additive effects dominated (71%), with smaller proportions of antagonistic (20%) and synergistic interactions (9%). The antagonistic interactions, although fewer, had a substantial impact, causing OA and other environmental drivers to interact antagonistically. Significant differences were observed among taxonomic groups: haptophytes and rhodophytes were negatively affected, while bacillariophytes were positively affected by OA. Our findings also indicated that the interactions between OA and multiple environmental drivers varied depending on specific type of the environmental driver, suggesting a modulating role of OA on the biochemical compositions of marine primary producers in response to global change. In summary, our study elucidates the complex interactions between OA and multiple environmental drivers on marine primary producers, highlighting the varied impacts on biochemical compositions and elemental stoichiometry.
Collapse
Affiliation(s)
- Baoyi Peng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jingyao Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hao Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Yipeng Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Leyao Xu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuan Jia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Bin Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Fangzhou Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peixuan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Zang S, Xu Z, Yan F, Wu H. Elevated CO 2 modulates the physiological responses of Thalassiosira pseudonana to ultraviolet radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 236:112572. [PMID: 36166913 DOI: 10.1016/j.jphotobiol.2022.112572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Diatoms account for a large proportion of marine primary productivity, they tend to be the predominant species in the phytoplankton communities in the surface ocean with frequent and large light fluctuations. To understand the impacts of increased CO2 on diatoms' capacity in exploitation of variable solar radiation, we cultured a model diatom Thalassiosira pseudonana with 400 or 1000ppmv CO2 and exposed it to high photosynthetically active radiation (PAR) alone or PAR plus ultraviolet radiation (UVR) to examine its physiological performances. The results showed that the maximum photochemical efficiency (Fv/fm) was significantly reduced by high PAR and PAR + UVR in T. pseudonana, UVR-induced inhibition on PSII activity was exacerbated by high CO2. PSII activity drops coincide approximately with PsbA content in the cells exposed to high PAR or PAR + UVR, which was pronounced at high CO2. The removal of PsbD in T. pseudonana cells declined under high CO2 during UVR exposure, limiting the repair capacity of PSII. In addition, high CO2 reversed the induction of energy-dependent form of NPQ by UVR to the increase of Y(No), indicating the severe damage of the photoprotective reactions. Our findings suggest that the adverse impacts of UVR on PSII function of T. pseudonana were aggravated by the elevated CO2 through modulating its capacity in repair and protection, which thereby would influence its abundance and competitiveness in phytoplankton communities.
Collapse
Affiliation(s)
- Shasha Zang
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China
| | - Zhiguang Xu
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China
| | - Fang Yan
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China
| | - Hongyan Wu
- School of Life Science, Ludong University, Yantai 264025, China; Key Laboratory of Marine Biotechnology in Universities of Shandong, Ludong University, Yantai 264025, China.
| |
Collapse
|
3
|
Kumar A, Nonnis S, Castellano I, AbdElgawad H, Beemster GTS, Buia MC, Maffioli E, Tedeschi G, Palumbo A. Molecular response of Sargassum vulgare to acidification at volcanic CO 2 vents: Insights from proteomic and metabolite analyses. Mol Ecol 2022; 31:3844-3858. [PMID: 35635253 DOI: 10.1111/mec.16553] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Ocean acidification is impacting marine life all over the world. Understanding how species can cope with the changes in seawater carbonate chemistry represents a challenging issue. We addressed this topic using underwater CO2 vents that naturally acidify some marine areas off the island of Ischia. In the most acidified area of the vents, having a mean pH value of 6.7, comparable to far-future predicted acidification scenarios (by 2300), the biomass is dominated by the brown alga Sargassum vulgare. The novelty of the present study is the characterization of the S. vulgare proteome together with metabolite analyses to identify the key proteins, metabolites, and pathways affected by ocean acidification. A total of 367 and 387 proteins were identified in populations grown at pH that approximates the current global average (8.1) and acidified sites, respectively. Analysis of their relative abundance revealed that 304 proteins are present in samples from both sites: 111 proteins are either higher or exclusively present under acidified conditions, whereas 120 proteins are either lower or present only under control conditions. Functionally, under acidification, a decrease in proteins related to translation and post-translational processes and an increase of proteins involved in photosynthesis, glycolysis, oxidation-reduction processes, and protein folding were observed. In addition, small-molecule metabolism was affected, leading to a decrease of some fatty acids and antioxidant compounds under acidification. Overall, the results obtained by proteins and metabolites analyses, integrated with previous transcriptomic, physiological, and biochemical studies, allowed us to delineate the molecular strategies adopted by S. vulgare to grow in future acidified environments, including an increase of proteins involved in energetic metabolism, oxidation-reduction processes, and protein folding at the expense of proteins involved in translation and post-translational processes.
Collapse
Affiliation(s)
- Amit Kumar
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Marine Research Center, Naples, Italy
- Centre for Climate Change Studies, Sathyabama Institute of Science and Technology, Chennai, India
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Milan, Italy
- CRC "Innovation for well-being and environment" (I-WE), Università degli Studi di Milano, Milan, Italy
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research Group (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Maria Cristina Buia
- Stazione Zoologica Anton Dohrn, Department of Integrative Marine Ecology, Marine Research Center, Naples, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Milan, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Milan, Italy
- CRC "Innovation for well-being and environment" (I-WE), Università degli Studi di Milano, Milan, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Department of Biology and Evolution of Marine Organisms, Naples, Italy
| |
Collapse
|
4
|
Jin P, Wan J, Zhang J, Overmans S, Xiao M, Ye M, Dai X, Zhao J, Gao K, Xia J. Additive impacts of ocean acidification and ambient ultraviolet radiation threaten calcifying marine primary producers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151782. [PMID: 34800448 DOI: 10.1016/j.scitotenv.2021.151782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/04/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ocean acidification (OA) represents a threat to marine organisms and ecosystems. However, OA rarely exists in isolation but occurs concomitantly with other stressors such as ultraviolet radiation (UVR), whose effects have been neglected in oceanographical observations. Here, we perform a quantitative meta-analysis based on 373 published experimental assessments from 26 studies to examine the combined effects of OA and UVR on marine primary producers. The results reveal predominantly additive stressor interactions (69-84% depending on the UV waveband), with synergistic and antagonistic interactions being rare but significantly different between micro- and macro-algae. In microalgae, variations in interaction type frequencies are related to cell volume, with antagonistic interactions accounting for a higher proportion in larger sized species. Despite additive interactions being most frequent, the small proportion of antagonistic interactions appears to have a stronger power, leading to neutral effects of OA in combination with UVR. High levels of UVR at near in situ conditions in combination with OA showed additive inhibition of calcification, but not when UVR was low. The results also reveal that the magnitude of responses is strongly dependent on experimental duration, with the negative effects of OA on calcification and pigmentation being buffered and amplified by increasing durations, respectively. Tropical primary producers were more vulnerable to OA or UVR alone compared to conspecifics from other climatic regions. Our analysis highlights that further multi-stressor long-term adaptation experiments with marine organisms of different cell volumes (especially microalgae) from different climatic regions are needed to fully disclose future impacts of OA and UVR.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiaofeng Wan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiale Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, China
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Xu K, Li M, Wang W, Xu Y, Ji D, Chen C, Xie C. Differences in organic carbon release between conchocelis and thalli of Pyropia haitanensis and responses to changes in light intensity and pH. ALGAL RES 2022. [DOI: 10.1016/j.algal.2021.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
6
|
Zhang Y, Gao K. Photosynthesis and calcification of the coccolithophore Emiliania huxleyi are more sensitive to changed levels of light and CO 2 under nutrient limitation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 217:112145. [PMID: 33735745 DOI: 10.1016/j.jphotobiol.2021.112145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/02/2021] [Accepted: 01/25/2021] [Indexed: 11/18/2022]
Abstract
Photophysiological responses of phytoplankton to changing multiple environmental drivers are essential in understanding and predicting ecological consequences of ocean climate changes. In this study, we investigated the combined effects of two CO2 levels (410 and 925 μatm) and five light intensities (80 to 480 μmol photons m-2 s-1) on cellular pigments contents, photosynthesis and calcification of the coccolithophore Emiliania huxleyi grown under nutrient replete and limited conditions, respectively. Our results showed that high light intensity, high CO2 level and nitrate limitation acted synergistically to reduce cellular chlorophyll a and carotenoid contents. Nitrate limitation predominantly enhanced calcification rate; phosphate limitation predominantly reduced photosynthetic carbon fixation rate, with larger extent of the reduction under higher levels of CO2 and light. Reduced availability of both nitrate and phosphate under the elevated CO2 concentration decreased saturating light levels for the cells to achieve the maximal relative electron transport rate (rETRmax). Light-saturating levels for rETRmax were lower than that for photosynthetic and calcification rates under the nutrient limitation. Regardless of the culture conditions, rETR under growth light levels correlated linearly and positively with measured photosynthetic and calcification rates. Our findings imply that E. huxleyi cells acclimated to macro-nutrient limitation and elevated CO2 concentration decreased their light requirement to achieve the maximal electron transport, photosynthetic and calcification rates, indicating a photophysiological strategy to cope with CO2 rise/pH drop in shoaled upper mixing layer above the thermocline where the microalgal cells are exposed to increased levels of light and decreased levels of nutrients.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control and Resource Recycling, Fujian Normal University, Fuzhou, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
7
|
Zhang D, Xu J, Bao M, Yan D, Beer S, Beardall J, Gao K. Elevated CO 2 concentration alleviates UVR-induced inhibition of photosynthetic light reactions and growth in an intertidal red macroalga. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 213:112074. [PMID: 33152637 DOI: 10.1016/j.jphotobiol.2020.112074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
The commercially important red macroalga Pyropia (formerly Porphyra) yezoensis is, in its natural intertidal environment, subjected to high levels of both photosynthetically active and ultraviolet radiation (PAR and UVR, respectively). In the present work, we investigated the effects of a plausibly increased global CO2 concentration on quantum yields of photosystems II (PSII) and I (PSI), as well as photosynthetic and growth rates of P. yezoensis grown under natural solar irradiance regimes with or without the presence of UV-A and/or UV-B. Our results showed that the high-CO2 treatment (~1000 μbar, which also caused a drop of 0.3 pH units in the seawater) significantly increased both CO2 assimilation rates (by 35%) and growth (by 18%), as compared with ambient air of ~400 μbar CO2. The inhibition of growth by UV-A (by 26%) was reduced to 15% by high-CO2 concentration, while the inhibition by UV-B remained at ~6% under both CO2 concentrations. Homologous results were also found for the maximal relative photosynthetic electron transport rates (rETRmax), the maximum quantum yield of PSII (Fv/Fm), as well as the midday decrease in effective quantum yield of PSII (YII) and concomitant increased non-photochemical quenching (NPQ). A two-way ANOVA analysis showed an interaction between CO2 concentration and irradiance quality, reflecting that UVR-induced inhibition of both growth and YII were alleviated under the high-CO2 treatment. Contrary to PSII, the effective quantum yield of PSI (YI) showed higher values under high-CO2 condition, and was not significantly affected by the presence of UVR, indicating that it was well protected from this radiation. Both the elevated CO2 concentration and presence of UVR significantly induced UV-absorbing compounds. These results suggest that future increasing CO2 conditions will be beneficial for photosynthesis and growth of P. yezoensis even if UVR should remain at high levels.
Collapse
Affiliation(s)
- Di Zhang
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China
| | - Juntian Xu
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Menglin Bao
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dong Yan
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China
| | - Sven Beer
- Department of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - John Beardall
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China; School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science & College of Ocean and Earth Sciences, Xiamen University, Xiamen 361105, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
8
|
Jin P, Liu N, Gao K. Physiological responses of a coccolithophore to multiple environmental drivers. MARINE POLLUTION BULLETIN 2019; 146:225-235. [PMID: 31426151 DOI: 10.1016/j.marpolbul.2019.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification is known to affect primary producers differentially in terms of species and environmental conditions, with controversial results obtained under different experimental setups. In this work we examined the physiological performances of the coccolithophore Gephyrocapsa oceanica that had been acclimated to 1000 μatm CO2 for ~400 generations, and then exposed to multiple drivers, light intensity, light fluctuating frequency, temperature and UV radiation. Here, we show that increasing light intensity resulted in higher non-photochemical quenching and the effective absorption cross-section of PSII. The effective photochemical efficiency (Fv'/Fm') decreased with increased levels of light, which was counterbalanced by fluctuating light regimes. The greenhouse condition acts synergistically with decreasing fluctuating light frequency to increase the Fv'/Fm' and photosynthetic carbon fixation rate. Our data suggest that the coccolithophorid would be more stressed with increased exposures to solar UV irradiances, though its photosynthetic carbon fixation could be enhanced under the greenhouse condition.
Collapse
Affiliation(s)
- Peng Jin
- State Key Laboratory of Marine Environmental Science (Xiamen University)/College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nana Liu
- State Key Laboratory of Marine Environmental Science (Xiamen University)/College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science (Xiamen University)/College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
9
|
Xu K, Hutchins D, Gao K. Coccolith arrangement follows Eulerian mathematics in the coccolithophore Emiliania huxleyi. PeerJ 2018; 6:e4608. [PMID: 29666762 PMCID: PMC5896503 DOI: 10.7717/peerj.4608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 11/23/2022] Open
Abstract
Background The globally abundant coccolithophore, Emiliania huxleyi, plays an important ecological role in oceanic carbon biogeochemistry by forming a cellular covering of plate-like CaCO3 crystals (coccoliths) and fixing CO2. It is unknown how the cells arrange different-sized coccoliths to maintain full coverage, as the cell surface area of the cell changes during daily cycle. Methods We used Euler’s polyhedron formula and CaGe simulation software, validated with the geometries of coccoliths, to analyze and simulate the coccolith topology of the coccosphere and to explore the arrangement mechanisms. Results There were only small variations in the geometries of coccoliths, even when the cells were cultured under variable light conditions. Because of geometric limits, small coccoliths tended to interlock with fewer and larger coccoliths, and vice versa. Consequently, to sustain a full coverage on the surface of cell, each coccolith was arranged to interlock with four to six others, which in turn led to each coccosphere contains at least six coccoliths. Conclusion The number of coccoliths per coccosphere must keep pace with changes on the cell surface area as a result of photosynthesis, respiration and cell division. This study is an example of natural selection following Euler’s polyhedral formula, in response to the challenge of maintaining a CaCO3 covering on coccolithophore cells as cell size changes.
Collapse
Affiliation(s)
- Kai Xu
- College of Fisheries, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| | - David Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
10
|
Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015. Photochem Photobiol Sci 2016; 15:141-74. [PMID: 26822392 DOI: 10.1039/c6pp90004f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.
Collapse
|
11
|
Kottmeier DM, Rokitta SD, Rost B. Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi. THE NEW PHYTOLOGIST 2016; 211:126-37. [PMID: 26918275 PMCID: PMC5069628 DOI: 10.1111/nph.13885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/06/2016] [Indexed: 05/11/2023]
Abstract
A combined increase in seawater [CO2 ] and [H(+) ] was recently shown to induce a shift from photosynthetic HCO3 (-) to CO2 uptake in Emiliania huxleyi. This shift occurred within minutes, whereas acclimation to ocean acidification (OA) did not affect the carbon source. To identify the driver of this shift, we exposed low- and high-light acclimated E. huxleyi to a matrix of two levels of dissolved inorganic carbon (1400, 2800 μmol kg(-1) ) and pH (8.15, 7.85) and directly measured cellular O2 , CO2 and HCO3 (-) fluxes under these conditions. Exposure to increased [CO2 ] had little effect on the photosynthetic fluxes, whereas increased [H(+) ] led to a significant decline in HCO3 (-) uptake. Low-light acclimated cells overcompensated for the inhibition of HCO3 (-) uptake by increasing CO2 uptake. High-light acclimated cells, relying on higher proportions of HCO3 (-) uptake, could not increase CO2 uptake and photosynthetic O2 evolution consequently became carbon-limited. These regulations indicate that OA responses in photosynthesis are caused by [H(+) ] rather than by [CO2 ]. The impaired HCO3 (-) uptake also provides a mechanistic explanation for lowered calcification under OA. Moreover, it explains the OA-dependent decrease in photosynthesis observed in high-light grown phytoplankton.
Collapse
Affiliation(s)
- Dorothee M. Kottmeier
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchAm Handelshafen 1227570BremerhavenGermany
| | - Sebastian D. Rokitta
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchAm Handelshafen 1227570BremerhavenGermany
| | - Björn Rost
- Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchAm Handelshafen 1227570BremerhavenGermany
| |
Collapse
|