1
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Camillo L, Zavattaro E, Veronese F, Gironi LC, Cremona O, Savoia P. Ex Vivo Analysis of Cell Differentiation, Oxidative Stress, Inflammation, and DNA Damage on Cutaneous Field Cancerization. Int J Mol Sci 2024; 25:5775. [PMID: 38891963 PMCID: PMC11171589 DOI: 10.3390/ijms25115775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Cutaneous field cancerization (CFC) refers to a skin region containing mutated cells' clones, predominantly arising from chronic exposure to ultraviolet radiation (UVR), which exhibits an elevated risk of developing precancerous and neoplastic lesions. Despite extensive research, many molecular aspects of CFC still need to be better understood. In this study, we conducted ex vivo assessment of cell differentiation, oxidative stress, inflammation, and DNA damage in CFC samples. We collected perilesional skin from 41 patients with skin cancer and non-photoexposed skin from 25 healthy control individuals. These biopsies were either paraffin-embedded for indirect immunofluorescence and immunohistochemistry stain or processed for proteins and mRNA extraction from the epidermidis. Our findings indicate a downregulation of p53 expression and an upregulation of Ki67 and p16 in CFC tissues. Additionally, there were alterations in keratinocyte differentiation markers, disrupted cell differentiation, increased expression of iNOS and proinflammatory cytokines IL-6 and IL-8, along with evidence of oxidative DNA damage. Collectively, our results suggest that despite its outwardly normal appearance, CFC tissue shows early signs of DNA damage, an active inflammatory state, oxidative stress, abnormal cell proliferation and differentiation.
Collapse
Affiliation(s)
- Lara Camillo
- Department of Health Sciences, University of Eastern Piedmont, Via Paolo Solaroli 17, 28100 Novara, Italy; (L.C.); (P.S.)
| | - Elisa Zavattaro
- Department of Health Sciences, University of Eastern Piedmont, Via Paolo Solaroli 17, 28100 Novara, Italy; (L.C.); (P.S.)
| | - Federica Veronese
- AOU Maggiore della Carità di Novara, c.so Mazzini 18, 28100 Novara, Italy; (F.V.); (L.C.G.)
| | - Laura Cristina Gironi
- AOU Maggiore della Carità di Novara, c.so Mazzini 18, 28100 Novara, Italy; (F.V.); (L.C.G.)
| | - Ottavio Cremona
- IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy;
- San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Paola Savoia
- Department of Health Sciences, University of Eastern Piedmont, Via Paolo Solaroli 17, 28100 Novara, Italy; (L.C.); (P.S.)
| |
Collapse
|
3
|
Costa KC, Cuelho CHF, Figueiredo SA, Vilela FMP, Fonseca MJV. Photochemoprevention of topical formulation containing purified fraction of Inga edulis leaves extract. Photochem Photobiol Sci 2023; 22:2105-2120. [PMID: 37261650 DOI: 10.1007/s43630-023-00433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
Natural antioxidants have attracted attention for their therapeutic use as photochemopreventive agents. Inga edulis leaves extract and its purified fraction have high polyphenolic content and high antioxidant capacity. In addition, they presented UV photostability and low citotoxicity in fibroblast cells. In this context, this study first aimed at development of topical formulation containing purified fraction of I. edulis extract and the evaluation of skin penetration of the compounds. Moreover, the photoprotective/photochemopreventive potential of the formulation containing I. edulis purified fraction were investigated in vitro and in vivo. The topical formulation containing 1% of the purified fraction of I. edulis increased the endogenous antioxidant potential of the skin, and vicenin-2 and myricetin compounds were able to penetrate the epidermis and dermis. Additionally, the purified fraction (25 and 50 mg/mL) showed a photoprotective effect against UVA and UVB radiation in L929 fibroblast cells. In vivo studies have shown that the formulation added with purified fraction provided an anti-inflammatory effect on the skin of animals after UVB exposure, since it was observed a reduction in MPO activity, IL-1β and TNF-α cytokines, and CXCL1/KC chemokine concentrations. In conclusion, the purified fraction of I. edulis, rich in phenolic compounds, when incorporated in topical formulation, appears as an alternative to prevent skin damages induced by UV radiation, due to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Karini Carvalho Costa
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila Helena Ferreira Cuelho
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sônia Aparecida Figueiredo
- Department of Food and Drug, School of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | | | - Maria José Vieira Fonseca
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
4
|
Oh XY, Nguyen TM, Ye E, Luo HK, Singh PND, Loh XJ, Truong VX. Visible Light Degradable Acridine-Containing Polyurethanes in an Aqueous Environment. ACS Macro Lett 2023:690-696. [PMID: 37172115 DOI: 10.1021/acsmacrolett.3c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Light degradable polymers hold significant promise in a wide range of applications including the fabrication of optically recyclable materials, responsive coatings and adhesives, and controlled drug delivery. Here, we report the synthesis of polyurethanes that can be degraded under irradiation of visible light (≤450 nm) from commercial LED (3-15 W) light sources. The photolysis occurs in an aqueous environment via photocleavage of an acridine moiety incorporated within the backbone of the polymer chains. Analysis of the quantum yield as a function of wavelength reveals highly efficient photoreactivity at up to 440 nm activation, which is red-shifted compared to the UV-vis absorbance of the chromophore. The potential of our chemical system in biomaterials is demonstrated by the fabrication of an in situ forming hydrogel that can be degraded by visible light.
Collapse
Affiliation(s)
- Xin Yi Oh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - Tuan Minh Nguyen
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
| | - He-Kuan Luo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pradeep N D Singh
- Department of Chemistry, Indian Institute of Technology (IIT), Kharagpur, West Bengal 721302, India
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Vinh Xuan Truong
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
5
|
Castañeda C, Bravo K, Cortés N, Bedoya J, de Borges WS, Bastida J, Osorio E. Amaryllidaceae alkaloids in skin cancer management: Photoprotective effect on human keratinocytes and anti-proliferative activity in melanoma cells. J Appl Biomed 2023; 21:36-47. [PMID: 37016777 DOI: 10.32725/jab.2023.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Skin cancer has high rates of mortality and therapeutic failure. In this study, to develop a multi-agent strategy for skin cancer management, the selective cytotoxicity of several alkaloid fractions and pure alkaloids isolated from Amaryllidaceae species was evaluated in melanoma cells. In addition, UVB-stimulated keratinocytes (HaCaT) were exposed to seven alkaloid fractions characterized by GC-MS, and the production of intracellular reactive oxygen species (ROS) and IL-6, were measured to evaluate their photoprotection effects. The Eucharis caucana (bulb) alkaloid fraction (20 μg/ml) had a clear effect on the viability of melanoma cells, reducing it by 45.7% without affecting healthy keratinocytes. This alkaloid fraction and tazettine (both at 2.5 μg/ml) suppressed UVB-induced ROS production by 31.6% and 29.4%, respectively. The highest anti-inflammatory potential was shown by the Zephyranthes carinata (bulb) alkaloid fraction (10 μg/ml), which reduced IL-6 production by 90.8%. According to the chemometric analysis, lycoramine and tazettine had a photoprotective effect on the UVB-exposed HaCaT cells, attenuating the production of ROS and IL-6. These results suggest that Amaryllidaceae alkaloids have photoprotective and therapeutic potential in skin cancer management, especially at low concentrations.
Collapse
|
6
|
Mueed A, Deng Z, Korma SA, Shibli S, Jahangir M. Anticancer potential of flaxseed lignans, their metabolites and synthetic counterparts in relation with molecular targets: current challenges and future perspectives. Food Funct 2023; 14:2286-2303. [PMID: 36820797 DOI: 10.1039/d2fo02208g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lignans are known dietary polyphenols found in cereals, plants and seeds. Flaxseed is one of the major sources of lignans mainly existing in the form of secoisolariciresinol diglucoside (SDG) which can be metabolised by the gut microbes into secoisolariciresinol (SECO) and mammalian lignan (enterodiol and enterolactone) that are easily absorbed through the intestines. Numerous studies reveal that flaxseed lignans (FLs) can be promising chemotherapeutics/chemopreventive agents. Their anticancer activity can occur through the induction of apoptosis, inhibition of cell proliferation, and the hindering of metastasis and angiogenesis. The anti-carcinogenesis of flaxseed lignans is achieved through multiple molecular mechanisms involving biochemical entities such as cellular kinases, cell cycle mediators, transcription factors, inflammatory cytokines, reactive oxygen species, and drug transporters. This review summarizes the bioavailability of FLs, their anticancer mechanisms in relevance to molecular targets, safety, and the scope of future research. Overall, FLs can be utilized in functional foods, dietary supplements, and pharmaceuticals for the management and prevention of cancers.
Collapse
Affiliation(s)
- Abdul Mueed
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zeyuan Deng
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Lin J, Lu YY, Shi HY, Lin P. Chaga Medicinal Mushroom, Inonotus obliquus (Agaricomycetes), Polysaccharides Alleviate Photoaging by Regulating Nrf2 Pathway and Autophagy. Int J Med Mushrooms 2023; 25:49-64. [PMID: 37830196 DOI: 10.1615/intjmedmushrooms.2023049657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Inonotus obliquus is a medicinal mushroom that contains the valuable I. obliquus polysaccharides (IOP), which is known for its bioactive properties. Studies have shown that IOP could inhibit oxidative stress induced premature aging and DNA damage, and delay body aging. However, the molecular mechanism of IOP in improving skin photoaging remains unclear, which prevents the development and utilization of I. obliquus in the field of skin care. In this study, ultraviolet B (UVB) induced human immortalized keratinocyte (HaCaT) cell photoaging model was used to explore the mechanism of IOP in relieving skin photoaging. Results showed that IOP inhibited cell senescence and apoptosis by reducing the protein expressions of p16, p21, and p53. IOP increased HO-1, SOD, and CAT expressions to achieve Nrf2/HO-1 pathway, thus improving antioxidant effects and preventing ROS generation. Furthermore, IOP enhanced the expression levels of p-AMPK, LC3B, and Beclin-1 to alleviate the autophagy inhibition in UVB-induced HaCaT cells. Based on these findings, our data suggested that IOP may be used to develop effective natural anti-photoaging ingredients to promote skin health.
Collapse
Affiliation(s)
- Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Yin-Ying Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Hong-Yu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Qu C, Li N, Liu T, He Y, Miao J. Preparation of CPD Photolyase Nanoliposomes Derived from Antarctic Microalgae and Their Effect on UVB-Induced Skin Damage in Mice. Int J Mol Sci 2022; 23:ijms232315148. [PMID: 36499473 PMCID: PMC9738781 DOI: 10.3390/ijms232315148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
UVB radiation is known to trigger the block of DNA replication and transcription by forming cyclobutane pyrimidine dimer (CPD), which results in severe skin damage. CPD photolyase, a kind of DNA repair enzyme, can efficiently repair CPDs that are absent in humans and mice. Although exogenous CPD photolyases have beneficial effects on skin diseases, the mechanisms of CPD photolyases on the skin remain unknown. Here, this study prepared CPD photolyase nanoliposomes (CPDNL) from Antarctic Chlamydomonas sp. ICE-L, which thrives in harsh, high-UVB conditions, and evaluated their protective mechanisms against UVB-induced damage in mice. CPDNL were optimized using response surface methodology, characterized by a mean particle size of 105.5 nm, with an encapsulation efficiency of 63.3%. Topical application of CPDNL prevented UVB-induced erythema, epidermal thickness, and wrinkles in mice. CPDNL mitigated UVB-induced DNA damage by significantly decreasing the CPD concentration. CPDNL exhibited antioxidant properties as they reduced the production of reactive oxygen species (ROS) and malondialdehyde. Through activation of the NF-κB pathway, CPDNL reduced the expression of pro-inflammatory cytokines including IL-6, TNF-α, and COX-2. Furthermore, CPDNL suppressed the MAPK signaling activation by downregulating the mRNA and protein expression of ERK, JNK, and p38 as well as AP-1. The MMP-1 and MMP-2 expressions were also remarkably decreased, which inhibited the collagen degradation. Therefore, we concluded that CPDNL exerted DNA repair, antioxidant, anti-inflammation, and anti-wrinkle properties as well as collagen protection via regulation of the NF-κB/MAPK/MMP signaling pathways in UVB-induced mice, demonstrating that Antarctic CPD photolyases have the potential for skincare products against UVB and photoaging.
Collapse
Affiliation(s)
- Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products Research and Development Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Nianxu Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Tianlong Liu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yingying He
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Natural Products Research and Development Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
- Correspondence: ; Tel.: +86-532-88967430
| |
Collapse
|
9
|
Polyphenols in Metabolic Diseases. Molecules 2022; 27:molecules27196280. [PMID: 36234817 PMCID: PMC9570923 DOI: 10.3390/molecules27196280] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols (PPs) are a large group of phytochemicals containing phenolic rings with two or more hydroxyl groups. They possess powerful antioxidant properties, multiple therapeutic effects, and possible health benefits in vivo and in vitro, as well as reported clinical studies. Considering their free-radical scavenging and anti-inflammatory properties, these substances can be used to treat different kinds of conditions associated with metabolic disorders. Many symptoms of metabolic syndrome (MtS), including obesity, dyslipidemia, atherosclerosis, elevated blood sugar, accelerating aging, liver intoxication, hypertension, as well as cancer and neurodegenerative disorders, are substantially relieved by dietary PPs. The present study explores the bioprotective properties and associated underlying mechanisms of PPs. A detailed understanding of these natural compounds will open up new opportunities for producing unique natural PP-rich dietary and medicinal plans, ultimately affirming their health benefits.
Collapse
|
10
|
Fuentes JL, Pedraza Barrera CA, Villamizar Mantilla DA, Flórez González SJ, Sierra LJ, Ocazionez RE, Stashenko EE. Flower Extracts from Ornamental Plants as Sources of Sunscreen Ingredients: Determination by In Vitro Methods of Photoprotective Efficacy, Antigenotoxicity and Safety. Molecules 2022; 27:5525. [PMID: 36080288 PMCID: PMC9458080 DOI: 10.3390/molecules27175525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Plants are sources of sunscreen ingredients that prevent cellular mutations involved in skin cancer and aging. This study investigated the sunscreen properties of the extracts from some ornamental plants growing in Colombia. The UV filter capability of the flower extracts obtained from Rosa centifolia L., Posoqueria latifolia (Rudge) Schult, and Ipomoea horsfalliae Hook. was examined. Photoprotection efficacies were evaluated using in vitro indices such as sun protection factor and critical wavelength. UVB antigenotoxicity estimates measured with the SOS Chromotest were also obtained. Extract cytotoxicity and genotoxicity were studied in human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Major compounds of the promising flower extracts were identified by UHPLC-ESI+-Orbitrap-MS. The studied extracts showed high photoprotection efficacy and antigenotoxicity against UVB radiation, but only the P. latifolia extract showed broad-spectrum photoprotection at non-cytotoxic concentrations. The P. latifolia extract appeared to be safer for human fibroblast cells and the R. centifolia extract was shown to be moderately cytotoxic and genotoxic at the highest assayed concentrations. The I. horsfalliae extract was unequivocally cytotoxic and genotoxic. The major constituents of the promising extracts were as follows: chlorogenic acid, ecdysterone 20E, rhamnetin-rutinoside, cis-resveratrol-diglucoside, trans-resveratrol-diglucoside in P. latifolia; quercetin, quercetin-glucoside, quercetin-3-rhamnoside, kaempferol, kaempferol-3-glucoside, and kaempferol-rhamnoside in R. centifolia. The potential of the ornamental plants as sources of sunscreen ingredients was discussed.
Collapse
Affiliation(s)
- Jorge Luis Fuentes
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Carlos Adolfo Pedraza Barrera
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | | | - Silvia Juliana Flórez González
- Grupo de Investigación en Microbiología y Genética (GIMG), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Lady Johanna Sierra
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Raquel Elvira Ocazionez
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 68000, Colombia
| | - Elena E. Stashenko
- Centro de Investigación en Biomoléculas (CIBIMOL), Universidad Industrial de Santander, Bucaramanga 680002, Colombia
- Centro de Cromatografía y Espectrometría de Masas (CROM-MASS), Universidad Industrial de Santander, Bucaramanga 68000, Colombia
| |
Collapse
|
11
|
Valorization of the Photo-Protective Potential of the Phytochemically Standardized Olive ( Olea europaea L.) Leaf Extract in UVA-Irradiated Human Skin Fibroblasts. Molecules 2022; 27:molecules27165144. [PMID: 36014384 PMCID: PMC9415354 DOI: 10.3390/molecules27165144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Leaves of Olea europaea are a by-product of the olive oil industry and a dietary supplement with acknowledged antioxidant and anti-inflammatory activity but underestimated photoprotective potential. We investigated the protective effects of the LC-PDA-MS/MS standardized ethanol-water extract of olive leaves (OLE), containing 26.2% total phenols and 22.2% oleuropein, with underlying mechanisms against the UVA-induced oxidative damage in human dermal fibroblasts. Hs68 cells were pre-treated (24 h) with OLE (2.5-25 μg/mL) or the reference antioxidants, quercetin and ascorbic acid (25 μg/mL), followed by irradiation (8 J/cm2). OLE significantly reduced the UVA-induced DNA damage and reactive oxygen species (ROS) overproduction and increased the thioredoxin reductase (TrxR) expression and post-radiation viability of fibroblasts by inhibiting their apoptosis. Both intrinsic and extrinsic apoptotic signaling pathways appeared to be inhibited by OLE, but the activity of caspase 9 was the most reduced. We hypothesized that the TrxR up-regulation by OLE could have prevented the UVA-induced apoptosis of Hs68 cells. In addition, a significant decrease in UVA-induced secretion levels of tumor necrosis factor (TNF-α) and interleukin-2 (IL-2) was shown in human lymphocyte culture in response to OLE treatment. In summary, our results support the beneficial effect of OLE in an in vitro model and indicate its great potential for use in the cosmetic and pharmaceutical industry as a topical photoprotective, antioxidant, and anti-inflammatory agent.
Collapse
|
12
|
Izquierdo-Torres E, Hernández-Oliveras A, Lozano-Arriaga D, Zarain-Herzberg Á. Obesity, the other pandemic: linking diet and carcinogenesis by epigenetic mechanisms. J Nutr Biochem 2022; 108:109092. [PMID: 35718098 DOI: 10.1016/j.jnutbio.2022.109092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022]
Abstract
Both obesity and cancer are complex medical conditions that are considered public health problems. The influence of obesity on the predisposition to develop various types of cancer has been observed in a wide variety of studies. Due to their importance as public health problems, and the close relationship between both conditions, it is important to be able to understand and associate them mechanistically. In this review article, we intend to go a little further, by finding relationships between lifestyle, which can lead a person to develop obesity, and how it influences at the cellular and molecular level, affecting gene expression to favor signaling pathways or transcriptional programs involved in cancer. We describe how products of metabolism and intermediate metabolism can affect chromatin structure, participating in the regulation (or dysregulation) of gene expression, and we show an analysis of genes that are responsive to diets high in sugar and fat, and how their epigenetic landscape is altered.
Collapse
Affiliation(s)
- Eduardo Izquierdo-Torres
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Dalia Lozano-Arriaga
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ángel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina. Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
13
|
Yang L, An L, Wang Y, Li J. Protective effect of isopsoralen on UVB-induced injury in HaCaT cells via the ER and p38MAPK signaling pathways. J Food Biochem 2022; 46:e14163. [PMID: 35415935 DOI: 10.1111/jfbc.14163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/09/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Abstract
This study investigated the protective effect of isopsoralen on UVB-induced damage in HaCaT cells and its molecular mechanism. The cytotoxicity of isopsoralen and its effects on the viability of HaCaT cells were examined using the MTT assay. The effects of UVB irradiation and isopsoralen on the intracellular glutathione (GSH-PX), superoxide dismutase (SOD), malondialdehyde (MDA), and reactive oxygen species (ROS) content were examined using commercially available assay kits. Further, the effects of UVB irradiation and isopsoralen on the levels of the inflammatory cytokines TNF-α, IL-6, and IL-1α were examined using enzyme-linked immunosorbent assay. Finally, we examined the effect of adding the estrogen receptor (ER) antagonist ICI182780,780 and the p38MAPK antagonist SB203580 on the changes in inflammatory cytokines induced by isopsoralen treatment and UVB irradiation. Isopsoralen pretreatment markedly inhibited UVB-induced reduction in the viability and proliferation of HaCaT cells. Isopsoralen also reduced UVB-induced increase in the expression of the inflammatory cytokines and the level of free radicals (ROS and MDA), and reversed the UVB-induced suppression of antioxidant activity. Additionally, inhibition of ER and p38MAPK via the addition of their respective antagonists reversed the observed anti-inflammatory effects of Isopsoralen. Isopsoralen can efficiently provide protection against UVB-induced damage in HaCaT cells brought about via oxidation and inflammatory reactions, and the underlying mechanisms involve the ER and p38MAPK pathways. Therefore, Isopsoralen could be used in therapeutic solutions for UVB-induced skin conditions. PRACTICAL APPLICATIONS: Isopsoralen shows antioxidant and anti-inflammatory effects. As natural, healthy, and effective additives, isopsoralen has been widely used in cosmetics and botanical medicine products. The results of this study reveal the molecular mechanisms underlying isopsoralen effects, showing that isopsoralen reverses the effects of UVB irradiation regulating ER and p38MAPK signaling pathways. Consequently, isopsoralen regulates the expression of ER and p38MAPK signaling pathways, thereby reducing the activation of antioxidant and anti-inflammatory activity. These findings suggest that isopsoralen can be used as the base ingredient for antiphotoaging cosmetics and botanical medicine products. This study provides both theoretical and experimental background for isopsoralen deep processing and utilization.
Collapse
Affiliation(s)
- Liu Yang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Lifeng An
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Yeqiu Wang
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Jianmin Li
- Hospital of the First Auxiliary, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
14
|
Batista CM, de Queiroz LA, Alves ÂV, Reis EC, Santos FA, Castro TN, Lima BS, Araújo AN, Godoy CA, Severino P, Cano A, Santini A, Capasso R, de Albuquerque Júnior RL, Cardoso JC, Souto EB. Photoprotection and skin irritation effect of hydrogels containing hydroalcoholic extract of red propolis: A natural pathway against skin cancer. Heliyon 2022; 8:e08893. [PMID: 35198766 PMCID: PMC8842011 DOI: 10.1016/j.heliyon.2022.e08893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/30/2021] [Accepted: 01/29/2022] [Indexed: 12/13/2022] Open
Abstract
The use of natural products in sunscreen formulations as a prophylactic measure against skin cancer is receiving special attention attributed to the photoprotective and antioxidant properties of their chemical components. In this work, we describe the development of topical hydrogel formulations containing hydroalcoholic extract of red propolis (HERP), and the evaluation of the dermal sensitizing effect of the developed products. Sunscreen formulations composed of HERP in different concentrations (1.5, 2.5 or 3.5% w/w) alone or in combination with a chemical (octyl methoxycinnamate) and/or physical (titanium dioxide) filters were developed using poloxamer 407 as gel basis. The preliminary and accelerated stability tests, texture analysis and spreadability tests were performed. All formulations revealed to be stable in preliminary stability assessment. The formulations containing HERP 1.5 and 2.5% alone or associated with the filters showed intense modifications during accelerated stability test, which were confirmed by rheological analyses. The incorporation of HERP and filters in the poloxamer hydrogel decreased the toughness of product (p < 0.05) and the formulation containing HERP alone presented the lowest adhesivity (p < 0.001). The incorporation of HERP in the hydrogel decreased the poloxamer transition temperature, showing different rheological behavior with the increase of HERP concentration. The developed formulations were stable, exhibited non-Newtonian and pseudoplastic behavior, showing in vivo skin compatibility and no skin irritancy.
Collapse
Affiliation(s)
- Cinthia M. Batista
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Luma A. de Queiroz
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Ângela V.F. Alves
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Elisiane C.A. Reis
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Fagne A. Santos
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Tailaine N. Castro
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Bruno S. Lima
- Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Adriano N.S. Araújo
- Department of Pharmacy, Federal University of Sergipe, Aracaju, Sergipe, Brazil
| | - Charles A.P. Godoy
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Patricia Severino
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, 80131, Napoli, Italy
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Naples, Italy
| | - Ricardo L.C. de Albuquerque Júnior
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
| | - Juliana C. Cardoso
- Biotechnological Postgraduate Program, University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Institute of Technology and Research (ITP), University of Tiradentes (Unit), Av. Murilo Dantas 300, 49010-390, Aracaju, Brazil
- Corresponding author.
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, Braga, Guimarães, Portugal
- Corresponding author.
| |
Collapse
|
15
|
Perez M, Abisaad JA, Rojas KD, Marchetti MA, Jaimes N. Skin Cancer: Primary, Secondary, and Tertiary Prevention. Part I. J Am Acad Dermatol 2022; 87:255-268. [DOI: 10.1016/j.jaad.2021.12.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
|
16
|
Dary Gutiérrez-Castañeda L, Nova J, Irene Cerezo-Cortés M. Somatic Mutations in TP53 Gene in Colombian Patients With Non-melanoma Skin Cancer. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:107-114. [PMID: 35400008 PMCID: PMC8962838 DOI: 10.21873/cdp.10084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Non-melanoma skin cancer is the most common cancer in the world. Somatic mutations in the TP53 gene are associated with the development of this cancer. To describe mutations in exons 5-8 of the TP53 gene in a sample of Colombian patients with non-melanoma skin cancer. MATERIALS AND METHODS One hundred and fifteen patients with non-melanoma skin cancer were included. Exons 5-8 were amplified and analyzed by PCR-High Resolution Melting and Sanger sequencing. RESULTS Fifty-seven patients with basal cell carcinomas and 58 with squamous cell carcinomas were studied. 16% of patients with basal cell carcinoma and 26% of patients with squamous cell carcinoma had mutations in the TP53 gene. The most frequent mutations were substitutions, while three patients had deletions. The most frequent mutation was p.R158G. CONCLUSION The analysis showed that Colombian individuals with non-melanoma skin cancer have genetic TP53 variants different from those reported as recurrent for this disease.
Collapse
Affiliation(s)
- Luz Dary Gutiérrez-Castañeda
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - John Nova
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| | - María Irene Cerezo-Cortés
- General Dermatology Group, Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E, Bogotá, Colombia
| |
Collapse
|
17
|
Espinosa-González AM, Estrella-Parra EA, Nolasco-Ontiveros E, García-Bores AM, García-Hernández R, López-Urrutia E, Campos-Contreras JE, González-Valle MDR, Benítez-Flores JDC, Céspedes-Acuña CL, Alarcón-Enos J, Rivera-Cabrera JC, Avila-Acevedo JG. Hyptis mociniana: phytochemical fingerprint and photochemoprotective effect against UV-B radiation-induced erythema and skin carcinogenesis. Food Chem Toxicol 2021; 151:112095. [PMID: 33689855 DOI: 10.1016/j.fct.2021.112095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Skin cancer is a public health problem due to its high incidence. Ultraviolet radiation (UVR) is the main etiological agent of this disease. Photochemoprotection involves the use of substances to avoid damage caused by UV exposure. The aim of this work was to determine the phytochemical fingerprint and photochemoprotective effect against UVB radiation-induced skin damage such as erythema and carcinogenesis of H. mociniana methanolic extract (MEHm). The chemical composition of the MEHm was analysed by LC/ESI-MS/MS. Three quercetin derivatives, two pectinolides, and two caffeic acid derivatives were identified in the methanolic extract. MEHm has antioxidant effect and it is not cytotoxic in HaCaT cells. Phytochemicals from H. mociniana have a photochemopreventive effect because they absorb UV light and protect HaCaT cells from UVR-induced cell death. Also, in SKH-1 mice -acute exposure-, it decreased erythema formation, modulating the inflammatory response, reduced the skin damage according to histological analysis and diminished p53 expression. Finally, MEHm protects from photocarcinogenesis by reducing the incidence and multiplicity of skin carcinomas in SKH-1 mice exposed chronically to UVB radiation.
Collapse
Affiliation(s)
- A M Espinosa-González
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E A Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E Nolasco-Ontiveros
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - A M García-Bores
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - R García-Hernández
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E López-Urrutia
- Laboratorio de Genómica Funcional Del Cáncer, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - J E Campos-Contreras
- Laboratorio de Bioquímica Molecular, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - M Del R González-Valle
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - J Del C Benítez-Flores
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - C L Céspedes-Acuña
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Del Bio Bio, Avenida Andrés Bello, 3780000, Chillan, Chile.
| | - J Alarcón-Enos
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Del Bio Bio, Avenida Andrés Bello, 3780000, Chillan, Chile.
| | - J C Rivera-Cabrera
- Laboratorio de Cromatografía de Líquidos, Departamento de Farmacología, Escuela Médico Militar, Cda, Palomas s/n, Lomas de San Isidro, 11200, Ciudad de México, México.
| | - J G Avila-Acevedo
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| |
Collapse
|
18
|
Amador-Castro F, Rodriguez-Martinez V, Carrillo-Nieves D. Robust natural ultraviolet filters from marine ecosystems for the formulation of environmental friendlier bio-sunscreens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141576. [PMID: 33370909 DOI: 10.1016/j.scitotenv.2020.141576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 05/20/2023]
Abstract
Ultraviolet radiation (UVR) has detrimental effects on human health. It induces oxidative stress, deregulates signaling mechanisms, and produces DNA mutations, factors that ultimately can lead to the development of skin cancer. Therefore, reducing exposure to UVR is of major importance. Among available measures to diminish exposure is the use of sunscreens. However, recent studies indicate that several of the currently used filters have adverse effects on marine ecosystems and human health. This situation leads to the search for new photoprotective compounds that, apart from offering protection, are environmentally friendly. The answer may lie in the same marine ecosystems since molecules such as mycosporine-like amino acids (MAAs) and scytonemin can serve as the defense system of some marine organisms against UVR. This review will discuss the harmful effects of UVR and the mechanisms that microalgae have developed to cope with it. Then it will focus on the biological distribution, characteristics, extraction, and purification methods of MAAs and scytonemin molecules to finally assess its potential as new filters for sunscreen formulation.
Collapse
Affiliation(s)
- Fernando Amador-Castro
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Veronica Rodriguez-Martinez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramon Corona No. 2514, 45201 Zapopan, Jal., Mexico.
| |
Collapse
|
19
|
Farha AK, Gan RY, Li HB, Wu DT, Atanasov AG, Gul K, Zhang JR, Yang QQ, Corke H. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives. Crit Rev Food Sci Nutr 2020; 62:832-859. [PMID: 33054344 DOI: 10.1080/10408398.2020.1829541] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rutin is one of the most common dietary polyphenols found in vegetables, fruits, and other plants. It is metabolized by the mammalian gut microbiota and absorbed from the intestines, and becomes bioavailable in the form of conjugated metabolites. Rutin exhibits a plethora of bioactive properties, making it an extremely promising phytochemical. Numerous studies demonstrate that rutin can act as a chemotherapeutic and chemopreventive agent, and its anticancer effects can be mediated through the suppression of cell proliferation, the induction of apoptosis or autophagy, and the hindering of angiogenesis and metastasis. Rutin has been found to modulate multiple molecular targets involved in carcinogenesis, such as cell cycle mediators, cellular kinases, inflammatory cytokines, transcription factors, drug transporters, and reactive oxygen species. This review summarizes the natural sources of rutin, its bioavailability, and in particular its potential use as an anticancer agent, with highlighting its anticancer mechanisms as well as molecular targets. Additionally, this review updates the anticancer potential of its analogs, nanoformulations, and metabolites, and discusses relevant safety issues. Overall, rutin is a promising natural dietary compound with promising anticancer potential and can be widely used in functional foods, dietary supplements, and pharmaceuticals for the prevention and management of cancer.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Sun Yat-Sen University, Guangzhou, China
| | - Ding-Tao Wu
- Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Atanas G Atanasov
- Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Vienna, Austria.,Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Magdalenka, Poland
| | - Khalid Gul
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Rong Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiong-Qiong Yang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, China
| |
Collapse
|
20
|
Vaverková E, Neradová Richterová M, Adamcová D, Vaverková MD. Environmental changes and their impact on human behaviour - Case study of the incidence of skin cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139788. [PMID: 32531595 DOI: 10.1016/j.scitotenv.2020.139788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Climatological research over the past two decades makes it clear that the Earth's climate will change. Climate change has many, mostly adverse, effects on the human health. Environmental anthropogenic changes represent significant health risks including factors that may increase probability and seriousness of skin cancer diseases. There are many scientific studies on skin cancer but only a few of them are focused on environment changes and their influence on the behaviour of humans, which may lead to skin cancer. The goal of the research was to analyse environment changes in the city of Brno (Czech Republic) and their influence on the behaviour of people and some skin diseases. A research hypothesis was set up that total increase in the incidence of skin diseases would be monitored. 1757 patients aged 25-65 years participated in the research. The analysis was performed based on measured (mean annual temperatures, average monthly temperatures, ultraviolet index values, and numbers of sunny days and sunny hours) data in 2011-2019. In order to monitor the trend, temperature data from 1961 to 2019 were evaluated too. The analysed data indicate that the trend of average monthly and annual temperatures observed was increasing in recent years. Moreover, based on data obtained from the analysed doctor's office it was found out that the incidence of skin diseases increased in the studied period. The main reasons to increase include excessive exposure to sun, extended average age of the population, ozone layer depletion, climatic and weather changes, increased migration and behaviour of people.
Collapse
Affiliation(s)
- Eva Vaverková
- Grammar school Brno-Řečkovice, Terezy Novákové 2, 621 00 Brno, Czech Republic
| | | | - Dana Adamcová
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Magdalena Daria Vaverková
- Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic; Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland.
| |
Collapse
|
21
|
Islam SU, Ahmed MB, Ahsan H, Islam M, Shehzad A, Sonn JK, Lee YS. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms. Antioxidants (Basel) 2020; 9:E916. [PMID: 32993035 PMCID: PMC7600476 DOI: 10.3390/antiox9100916] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Human skin is continuously subjected to environmental stresses, as well as extrinsic and intrinsic noxious agents. Although skin adopts various molecular mechanisms to maintain homeostasis, excessive and repeated stresses can overwhelm these systems, leading to serious cutaneous damage, including both melanoma and non-melanoma skin cancers. Phytochemicals present in the diet possess the desirable effects of protecting the skin from damaging free radicals as well as other benefits. Dietary phytochemicals appear to be effective in preventing skin cancer and are inexpensive, widely available, and well tolerated. Multiple in vitro and in vivo studies have demonstrated the significant anti-inflammatory, antioxidant, and anti-angiogenic characteristics of dietary phytochemicals against skin malignancy. Moreover, dietary phytochemicals affect multiple important cellular processes including cell cycle, angiogenesis, and metastasis to control skin cancer progression. Herein, we discuss the advantages of key dietary phytochemicals in whole fruits and vegetables, their bioavailability, and underlying molecular mechanisms for preventing skin cancer. Current challenges and future prospects for research are also reviewed. To date, most of the chemoprevention investigations have been conducted preclinically, and additional clinical trials are required to conform and validate the preclinical results in humans.
Collapse
Affiliation(s)
- Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Haseeb Ahsan
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
- Department of Pharmacy, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mazharul Islam
- Department of Chemical Engineering, College of Engineering, Dhofar University, Salalah 2509, Oman;
| | - Adeeb Shehzad
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Jong Kyung Sonn
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea; (S.U.I.); (M.B.A.); (H.A.); (J.K.S.)
| |
Collapse
|
22
|
Loureiro JB, Abrantes M, Oliveira PA, Saraiva L. P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188438. [PMID: 32980466 DOI: 10.1016/j.bbcan.2020.188438] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
The increasing incidence of skin cancer (SC) is a global health concern. The commonly reported side effects and resistance mechanisms have imposed the pursuit for new therapeutic alternatives. Moreover, additional preventive strategies should be adopted to strengthen prevention and reduce the rising number of newly SC cases. This review provides relevant insights on the role of p53 tumour suppressor protein in melanoma and non-melanoma skin carcinogenesis, also highlighting the therapeutic potential of p53-targeting drugs against SC. In fact, several evidences are provided demonstrating the encouraging outcomes achieved with p53-activating drugs, alone and in combination with currently available therapies in SC. Another pertinent perspective falls on targeting p53 mutations, as molecular signatures in premature phases of photocarcinogenesis, in future SC preventive approaches. Overall, this review affords a critical and timely discussion of relevant issues related to SC prevention and therapy. Importantly, it paves the way to future studies that may boost the clinical translation of p53-activating agents, making them new effective alternatives in precision medicine of SC therapy and prevention.
Collapse
Affiliation(s)
- J B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Clinical Academic Center of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - P A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - L Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
23
|
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res Rev 2020; 62:101127. [PMID: 32721499 DOI: 10.1016/j.arr.2020.101127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Excessive exposure of skin to UV radiation triggers the generation of oxidative stress, inflammation, immunosuppression, apoptosis, matrix-metalloproteases production, and DNA mutations leading to the onset of photo ageing and photo-carcinogenesis. At the molecular level, these changes occur via activation of several protein kinases as well as transcription pathways, formation of reactive oxygen species, and release of cytokines, interleukins and prostaglandins together. Current therapies available on the market only provide limited solutions and exhibit several side effects. The present paper provides insight into scientific studies that have elucidated the positive role of phytochemicals in counteracting the UV-induced depletion of antioxidant enzymes, increased lipid peroxidation, inflammation, DNA mutations, increased senescence, dysfunctional apoptosis and immune suppression. The contribution of phytochemicals to the downregulation of expression of oxidative-stress sensitive transcription factors (Nrf2, NF-Kb, AP-1 and p53) and protein kinases (MSK, ERK, JNK, p38 MAPK, p90RSK2 and CaMKs) involved in inflammation, apoptosis, immune suppression, extracellular matrix remodelling, senescence, photo ageing and photo-carcinogenesis, is also discussed. Conclusively, several phytochemicals hold potential for the development of a viable solution against UV irradiation-mediated photo ageing, photo-carcinogenesis and related manifestations.
Collapse
|
24
|
Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol 2020; 144:111592. [PMID: 32702507 DOI: 10.1016/j.fct.2020.111592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Lung-cancer is the foremost cause of cancer in humans worldwide, of which 80-85% cases are composed of non-small cell lung carcinoma. All treatment decisions depend on the pattern of biomarkers selection to enhance the response to the targeted therapies. Although advanced treatments are available for lung-cancer, the disease treatment remains not adequate. There are several synthetic chemotherapeutic agents available for the treatment of lung cancer. However, due to their toxic effect, survival rate is still 15-18%. Besides, medicinal plants are a huge reservoir of natural products that provide protective effects against lung cancer. Likewise, successful studies of potential phytochemicals in targeting lung-cancer biomarkers have created a novel paradigm for the discovery of potent drugs against lung-cancer. Hence, to defeat severe toxicity and resistance towards the synthetic drugs, detailed studies are required regarding the available phytochemicals and targets responsible for the treatment of lung-cancer. The present review provides a comprehensive information about the lung-cancer biomarkers under the classification of predictive, prognostic, and diagnostic type. Moreover, it discusses and enlists the phytochemicals with mode of action against different biomarkers, effective doses in in vitro, in vivo, and clinical studies, the limitations associated with usage of phytochemicals as a drug to prevent/cure lung-cancer and the latest techniques employed to overcome such issues.
Collapse
|
25
|
Anwar A, Anwar H, Yamauchi T, Tseng R, Agarwal R, Horwitz LD, Zhai Z, Fujita M. Bucillamine Inhibits UVB-Induced MAPK Activation and Apoptosis in Human HaCaT Keratinocytes and SKH-1 Hairless Mouse Skin. Photochem Photobiol 2020; 96:870-876. [PMID: 32077107 DOI: 10.1111/php.13228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Ultraviolet B (UVB) radiation is known as a culprit in skin carcinogenesis. We have previously reported that bucillamine (N-[2-mercapto-2-methylpropionyl]-L-cysteine), a cysteine derivative with antioxidant and anti-inflammatory capacity, protects against UVB-induced p53 activation and inflammatory responses in mouse skin. Since MAPK signaling pathways regulate p53 expression and activation, here we determined bucillamine effect on UVB-mediated MAPK activation in vitro using human skin keratinocyte cell line HaCaT and in vivo using SKH-1 hairless mouse skin. A single low dose of UVB (30 mJ cm-2 ) resulted in increased JNK/MAPK phosphorylation and caspase-3 cleavage in HaCaT cells. However, JNK activation and casaspe-3 cleavage were inhibited by pretreatment of HaCaT cells with physiological doses of bucillamine (25 and 100 µm). Consistent with these results, bucillamine pretreatment in mice (20 mg kg-1 ) inhibited JNK/MAPK and ERK/MAPK activation in skin epidermal cells at 6-12 and 24 h, respectively, after UVB exposure. Moreover, bucillamine attenuated UVB-induced Ki-67-positive cells and cleaved caspase-3-positive cells in mouse skin. These findings demonstrate that bucillamine inhibits UVB-induced MAPK signaling, cell proliferation and apoptosis. Together with our previous report, we provide evidence that bucillamine has a photoprotective effect against UV exposure.
Collapse
Affiliation(s)
- Adil Anwar
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Hiba Anwar
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Takeshi Yamauchi
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ryan Tseng
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Lawrence D Horwitz
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zili Zhai
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mayumi Fujita
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO.,Denver Veterans Affairs Medical Center, Denver, CO
| |
Collapse
|
26
|
Rosemary Diterpenes and Flavanone Aglycones Provide Improved Genoprotection against UV-Induced DNA Damage in a Human Skin Cell Model. Antioxidants (Basel) 2020; 9:antiox9030255. [PMID: 32245070 PMCID: PMC7139908 DOI: 10.3390/antiox9030255] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Overexposure to solar ultraviolet (UV) radiation is the major cause of a variety of cutaneous disorders, including sunburn, photoaging, and skin cancers. UVB radiation (290–320 nm) causes multiple forms of DNA damage, p53 induction, protein and lipid oxidation, and the generation of harmful reactive oxygen species (ROS). In recent years, botanicals containing polyphenols with antioxidant and anti-inflammatory properties as skin photoprotective agents have emerged. This study evaluated the protective effects of two formulations against UVB-induced damage in a skin cell model. One of the formulations (F2) contained a combination of citrus and olive extracts and the other one (F1) also contained a rosemary extract. The antioxidant capacity of both formulations was estimated by different in vitro methods, and the cell viability, intracellular ROS generation, mitochondrial depolarization, and DNA damage were studied in UVB-irradiated human keratinocytes. Both formulations exerted photoprotective effects on skin cells and decreased mitochondrial depolarization and DNA damage. F1 which contained iridoids, rosemary diterpenes, glycosides and aglycones of citrus flavanones, and monohydroxylated flavones exhibited higher cellular photoprotective effects and mitochondrial membrane potential restoration, as well as an enhanced capacity to decrease DNA double strand breaks and the DNA damage response. In contrast, F2, which contained mostly iridoids, citrus flavanone aglycones, and mono- and dihydroxylated flavones, exhibited a higher capacity to decrease intracellular ROS generation and radical scavenging capacity related to metal ion chelation. Both formulations showed a similar capability to decrease the number of apoptotic cells upon UVB radiation. Based on our results and those of others, we postulate that the stronger capacity of F1 to protect against UVB-induced DNA damage in human keratinocytes is related to the presence of rosemary diterpenes and citrus flavanone aglycones. Nevertheless, the presence of the dihydroxylated flavones in F2 may contribute to inhibiting the generation of metal-related free radicals. To confirm the efficacy of these formulations as potential candidates for oral/topical photoprotection, human trials are required to circumvent the limitations of the cellular model.
Collapse
|
27
|
Skarupova D, Vostalova J, Rajnochova Svobodova A. Ultraviolet A protective potential of plant extracts and phytochemicals. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2020; 164:1-22. [PMID: 32188958 DOI: 10.5507/bp.2020.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/04/2020] [Indexed: 12/25/2022] Open
Abstract
Chronic exposure to solar radiation is related to an increased incidence of various skin disorders, including premature skin aging and melanoma and non-melanoma skin cancers. Ultraviolet (UV) photons in particular are responsible for skin damage. Solar UV photons mainly belong to UVA wavebands, however UVA radiation has been mostly ignored for a long time. At the cellular level, UVA photons mainly provoke indirect oxidative damage to biomolecules via the massive generation of unstable and highly reactive compounds. Human skin has several effective mechanisms that forestall, repair and eliminate damage caused by solar radiation. Regardless, some damage persists and can accumulate with chronic exposure. Therefore, conscious protection against solar radiation (UVB+UVA) is necessary. Besides traditional types of photoprotection such as sunscreen use, new strategies are being searched for and developed. One very popular protective strategy is the application of phytochemicals as active ingredients of photoprotection preparations instead of synthetic chemicals. Phytochemicals usually possess additional biological activities besides absorbing the energy of photons, and those properties (e.g. antioxidant, anti-inflammatory) magnify the protective potential of phytochemicals and extracts. Therefore, compounds of natural origin are in the interest of researchers as well as developers. In this review, only studies on UVA protection with well-documented experimental conditions are summarized. This article includes 17 well standardized plant extracts (Camellia sinensis (L.) Kuntze, Silybum marianum L. Gaertn., Punica granatum L., Polypodium aureum L., Vaccinium myrtillus L., Lonicera caerulea L., Thymus vulgaris L., Opuntia ficus-indica (L.) Mill., Morinda citrifolia L., Aloe vera (L.) Burm.f., Oenothera paradoxa Hudziok, Galinsoga parviflora Cav., Galinsoga quadriradiata Ruiz et Pavón, Hippophae rhamnoides L., Cola acuminata Schott & Endl., Theobroma cacao L. and Amaranthus cruentus L.) and 26 phytochemicals.
Collapse
Affiliation(s)
- Denisa Skarupova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Jitka Vostalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Alena Rajnochova Svobodova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
28
|
da Silva Fernandes A, Brito LB, Oliveira GAR, Ferraz ERA, Evangelista H, Mazzei JL, Felzenszwalb I. Evaluation of the acute toxicity, phototoxicity and embryotoxicity of a residual aqueous fraction from extract of the Antarctic moss Sanionia uncinata. BMC Pharmacol Toxicol 2019; 20:77. [PMID: 31852531 PMCID: PMC6921389 DOI: 10.1186/s40360-019-0353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Ultraviolet (UV) radiation is the main exogenous inductor of skin damage and so photoprotection is important to control skin disorders. The Antarctic moss Sanionia uncinata is an important source of antioxidants and the photoprotective activity of its organic extracts has been investigated. This study aimed to evaluate the potential photoprotection, cytotoxicity and embryotoxicity of residual aqueous fraction (AF) from the moss S. uncinata. Methods UV-visible spectrum and SPF (sun protection factor) were determined by spectrophotometry. Embryotoxicity potential was evaluated by Fish embryo-larval toxicity test using zebrafish (Danio rerio) as organism model. Cell death assays by water-soluble tetrazolium salt (WST-1) and lactate dehydrogenase (LDH) were investigated using HaCaT keratinocyte cell line cultured in monolayers and three dimensions (3D). Phototoxicity and association with UV-filters were performed by 3T3 neutral red uptake test. Results The AF showed sharp absorption bands in the UV region and less pronounced in the visible region. The SPF was low (2.5 ± 0.3), but the SPF values of benzophenone-3 and octyl-methoxycinnamate increased ~ 3 and 4 times more, respectively, in association with AF. The AF did not induce significant lethal and sublethal effects on zebrafish early-life stages. In monolayers, the HaCaT cell viability, evaluated by WST-1, was above 70% by ≤0.4 mg AF/mL after 48 and 72-h exposure, whereas ≤1 mg AF/mL after 24-h exposure. The LDH assay showed that the cell viability was above 70% by ≤0.4 mg AF/mL even after 72-h exposure, but ≤1 mg/mL after 24 and 48-h exposure. In 3D cell culture, an increased cell resistance to toxicity was observed, because cell viability of HaCaT cell by WST-1 and LDH was above ~ 90% when using ≤1 and 4 mg AF/mL, respectively. The AF demonstrated values of photo irritation factor < 2 and of photo effect < 0.1, even though in association with UV-filters. Conclusions The residual AF absorbs UV-vis spectrum, increased SPF values of BP-3 and OMC and does not induce embryotoxicity to zebrafish early life-stage. The cell death assays allowed establishing non-toxic doses of AF and phototoxicity was not detected. AF of S. uncinata presents a good potential for skin photoprotection against UV-radiation.
Collapse
Affiliation(s)
- Andréia da Silva Fernandes
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Lara Barroso Brito
- Environmental Toxicology Research Laboratory (EnvTox), Faculty of Pharmacy, Federal University of Goiás (UFG), Goiânia, GO, Brazil
| | | | - Elisa Raquel Anastácio Ferraz
- Laboratory of Toxicology, Department of Pharmacy and Pharmaceutical Administration, Pharmacy College, Fluminense Federal University, Niteroi, RJ, Brazil
| | - Heitor Evangelista
- Laboratory of Radioecology and Global Changes, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Luiz Mazzei
- Department of Natural Products, Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Israel Felzenszwalb
- Laboratory of Environmental Mutagenesis, Department of Biophysics and Biometry, University of the State of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
29
|
Kim J, Park MK, Li WQ, Qureshi AA, Cho E. Association of Vitamin A Intake With Cutaneous Squamous Cell Carcinoma Risk in the United States. JAMA Dermatol 2019; 155:1260-1268. [PMID: 31365038 PMCID: PMC6669777 DOI: 10.1001/jamadermatol.2019.1937] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Retinoids are bioactive forms of vitamin A that are essential in the maintenance of epithelial maturation and differentiation. Synthetic retinoids are used in chemoprevention of skin cancer among high-risk populations with potential adverse effects. Epidemiologic data on vitamin A intake and risk of cutaneous squamous cell carcinoma (SCC) are limited. OBJECTIVE To examine whether vitamin A intake is associated with a reduction in SCC risk. DESIGN, SETTINGS, AND PARTICIPANTS This cohort study prospectively examined intake of vitamin A and carotenoids and SCC risk in the Nurses' Health Study (1984-2012) and the Health Professionals Follow-up Study (1986-2012). Diet was assessed repeatedly. Incident SCC was confirmed by pathologic reports. Data analysis was performed from June 21, 2017, to December 4, 2018. EXPOSURES Intakes of vitamin A, retinol, and carotenoids. MAIN OUTCOMES AND MEASURES Incident SCC. Cox proportional hazards regression models were used to compute cohort-specific hazard ratios (HRs) and 95% CIs. Pooled HRs of the cohort-specific results were calculated. RESULTS A total of 3978 SCC cases in 75 170 women in the Nurses' Health Study (mean [SD] age, 50.4 [7.2] years) and 48 400 men in the Health Professionals Follow-up Study (mean [SD] age, 54.3 [9.9] years) were documented. Higher total vitamin A was associated with a reduction in SCC risk; with quintile 1 as the reference, the pooled multivariate HRs for the increasing quintiles of vitamin A intake were 0.97 (95% CI, 0.87-1.07) for quintile 2, 0.97 (95% CI, 0.80-1.17) for quintile 3, 0.93 (95% CI, 0.84-1.03) for quintile 4, and 0.83 (95% CI, 0.75-0.93) for quintile 5 (P < .001 for trend). Higher intakes of retinol and some carotenoids were also associated with a reduction in SCC risk; the pooled HRs for the highest quintiles of intake compared with the lowest quintiles were 0.88 (95% CI, 0.79-0.97; P = .001 for trend) for total retinol, 0.86 (95% CI, 0.76-0.96; P = .001 for trend) for beta cryptoxanthin, 0.87 (95% CI, 0.78-0.96; P < .001 for trend) for lycopene, and 0.89 (95% CI, 0.81-0.99; P = .02 for trend) for lutein and zeaxanthin. The results were generally consistent by sex and other SCC risk factors. CONCLUSIONS AND RELEVANCE This study suggests that increased intake of dietary vitamin A is associated with decreased risk of incident SCC. Future studies are needed to determine whether vitamin A supplementation has a role in chemoprevention of SCC.
Collapse
Affiliation(s)
- Jongwoo Kim
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Family Medicine, Sanggye-Paik Hospital, College of Medicine, Inje University, Seoul, South Korea
| | - Min Kyung Park
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Wen-Qing Li
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown School of Public Health, Providence, Rhode Island
| | - Abrar A. Qureshi
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Eunyoung Cho
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown School of Public Health, Providence, Rhode Island
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Antioxidant and Photoprotective Activity of Apigenin and its Potassium Salt Derivative in Human Keratinocytes and Absorption in Caco-2 Cell Monolayers. Int J Mol Sci 2019; 20:ijms20092148. [PMID: 31052292 PMCID: PMC6539602 DOI: 10.3390/ijms20092148] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 02/01/2023] Open
Abstract
Ultraviolet (UV) radiation, especially types A (UVA) and B (UVB), is one of the main causes of skin disorders, including photoaging and skin cancer. Ultraviolent radiation causes oxidative stress, inflammation, p53 induction, DNA damage, mutagenesis, and oxidation of various molecules such as lipids and proteins. In recent decades, the use of polyphenols as molecules with an antioxidant and anti-inflammatory capacity has increased. However, some of these compounds are poorly soluble, and information regarding their absorption and bioavailability is scarce. The main objective of this study was to compare the intestinal absorption and biological activity of apigenin and its more soluble potassium salt (apigenin-K) in terms of antioxidant and photoprotective capacity. Photoprotective effects against UVA and UVB radiation were studied in human keratinocytes, and antioxidant capacity was determined by different methods, including trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC) assays. Finally, the intestinal absorption of both apigenins was determined using an in vitro Caco-2 cell model. Apigenin showed a slightly higher antioxidant capacity in antioxidant activity assays when compared with apigenin-K. However, no significant differences were obtained for their photoprotective capacities against UVA or UVB. Results indicated that both apigenins protected cell viability in approximately 50% at 5 J/m2 of UVA and 90% at 500 J/m2 of UVB radiation. Regarding intestinal absorption, both apigenins showed similar apparent permeabilities (Papp), 1.81 × 10-5 cm/s and 1.78 × 10-5 cm/s, respectively. Taken together, these results suggest that both apigenins may be interesting candidates for the development of oral (nutraceutical) and topical photoprotective ingredients against UVA and UVB-induced skin damage, but the increased water solubility of apigenin-K makes it the best candidate for further development.
Collapse
|
31
|
Dickinson SE, Wondrak GT. TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Curr Med Chem 2019; 25:5487-5502. [DOI: 10.2174/0929867324666170828125328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 01/16/2023]
Abstract
Background:
Exposure to solar ultraviolet (UV) radiation is a causative factor in
skin photodamage and carcinogenesis, and inflammatory dysregulation is a key mechanism
underlying detrimental effects of acute and chronic UV exposure. The health and economic
burden of skin cancer treatment is substantial, creating an increasingly urgent need for the development
of improved molecular strategies for photoprotection and photochemoprevention.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature
revealed 139 articles including our own that are presented and critically evaluated in this
TLR4-directed review.
Objective:
To understand the molecular role of Toll-like receptor 4 (TLR4) as a key regulator
of skin anti-microbial defense, wound healing, and cutaneous tumorigenic inflammation. The
specific focus of this review is on recent published evidence suggesting that TLR4 represents
a novel molecular target for skin photoprotection and cancer photochemoprevention.
Results:
Cumulative experimental evidence indicates that pharmacological and genetic antagonism
of TLR4 suppresses UV-induced inflammatory signaling involving the attenuation
of cutaneous NF-κB and AP-1 stress signaling observable in vitro and in vivo. TLR4-directed
small molecule pharmacological antagonists [including eritoran, (+)-naloxone, ST2825, and
resatorvid] have now been identified as a novel class of molecular therapeutics. TLR4 antagonists
are in various stages of preclinical and clinical development for the modulation of
dysregulated TLR4-dependent inflammatory signaling that may also contribute to skin photodamage
and photocarcinogenesis in human populations.
Conclusion:
Future research should explore the skin photoprotective and photochemopreventive
efficacy of topical TLR4 antagonism if employed in conjunction with other molecular
strategies including sunscreens.
Collapse
Affiliation(s)
- Sally E. Dickinson
- Department of Pharmacology, College of Medicine and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| | - Georg T. Wondrak
- Department of Pharmacology and Toxicology, College of Pharmacy and The University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, United States
| |
Collapse
|
32
|
Protective Effects and Mechanisms of N-Phenethyl Caffeamide from UVA-Induced Skin Damage in Human Epidermal Keratinocytes through Nrf2/HO-1 Regulation. Int J Mol Sci 2019; 20:ijms20010164. [PMID: 30621167 PMCID: PMC6337442 DOI: 10.3390/ijms20010164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
The skin provides an effective barrier against physical, chemical, and microbial invasion; however, overexposure to ultraviolet (UV) radiation causes excessive cellular oxidative stress, which leads to skin damage, DNA damage, mutations, and skin cancer. This study investigated the protective effects of N-phenethyl caffeamide (K36) from UVA damage on human epidermal keratinocytes. We found that K36 reduced UVA-induced intracellular reactive oxygen species (ROS) production and induced the expression of the intrinsic antioxidant enzyme heme oxygenase-1 (HO-1) by increasing the translocation of nuclear factor erythroid 2⁻related factor 2 (Nrf2). K36 could inhibit the phosphorylation of extracellular-signal-regulated kinase (ERK) and c-Jun N-terminal kinases (JNK) and reduce UVA-induced matrix metalloproteinase (MMP)-1 and MMP-2 overexpression; it could also elevate the expression of tissue inhibitors of metalloproteinases (TIMP). In addition, K36 ameliorated 8-hydroxy-2'-deoxyguanosine (8-OHdG) induced by UVA irradiation. Furthermore, K36 could downregulate the expression of inducible nitric oxide synthase (iNOS) and interleukin-6 (IL-6) and the subsequent production of nitric oxide (NO) and prostaglandin E₂ (PGE₂). Based on our findings, K36 possessed potent antioxidant, anti-inflammatory, antiphotodamage, and even antiphotocarcinogenesis activities. Thus, K36 has the potential to be used to multifunctional skin care products and drugs.
Collapse
|
33
|
Estrella-Parra EA, Espinosa-González AM, García-Bores AM, Zamora-Salas SX, Benítez-Flores JC, González-Valle MR, Hernández-Delgado CT, Peñalosa-Castro I, Avila-Acevedo JG. Flavonol glycosides in Dyssodia tagetiflora and its temporal variation, chemoprotective and ameliorating activities. Food Chem Toxicol 2018; 124:411-422. [PMID: 30576709 DOI: 10.1016/j.fct.2018.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 11/25/2022]
Abstract
Dyssodia tagetiflora is known as 'Tzaracata' and 'flor de muerto'. Recently, D. tagetiflora has been reported to have antioxidant activities in its polar extracts as well as insecticidal activities. Hyperoside (1), avicularin (2) and avicularin acetate (3) have been isolated previously. However, the temporary variation in glycoside flavonoids biosynthesis, as well as antibacterial and chemoprotective activities, have not been reported. The amount of 1, 2 and 3 in the different collections was characterized by HPLC-MS. Two new C-glycosides were characterized, quercetin-4'-methyl ether 6-C glucoside (A1) and quercetin-4'-methyl ether 8-C glucoside (A2), as well as [2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxochromen-3-yl]3,4,5-trihydroxyoxane-2,6-dicarboxylate (A3). This is the first report of the presence of C-C flavonoid glycosides compounds in the genus Dyssodia. Hyperoside was the majority compound at all collections. The methanolic extracts of August 2016 and October 2017 were active against Micrococcus luteus and Bacillus subtillis. The methanolic extract has chemoprotective effects because, when applied topically in SKH-1 mice, it decreases the severity of epidermal damage induced by acute exposure to ultraviolet radiation. In addition, cutaneous photocarcinogenesis was decreased in mice treated with the extract. The methanolic extract of D. tagetiflora has chemoprotective properties by decreasing the damage caused by acute and chronic exposure to UV in mice.
Collapse
Affiliation(s)
- E A Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - A M Espinosa-González
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - A M García-Bores
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - S X Zamora-Salas
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - J C Benítez-Flores
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Edo. de México, México
| | - M R González-Valle
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Edo. de México, México
| | - C T Hernández-Delgado
- Laboratorio de Farmacognosia, UBIPRO, Universidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - I Peñalosa-Castro
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México
| | - J G Avila-Acevedo
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. de los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| |
Collapse
|
34
|
The photoprotective and anti-inflammatory activity of red propolis extract in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:198-207. [DOI: 10.1016/j.jphotobiol.2018.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 01/01/2023]
|
35
|
Sharma P, Montes de Oca MK, Alkeswani AR, McClees SF, Das T, Elmets CA, Afaq F. Tea polyphenols for the prevention of UVB-induced skin cancer. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 34:50-59. [PMID: 29044724 DOI: 10.1111/phpp.12356] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/30/2017] [Indexed: 12/16/2022]
Abstract
Skin cancer is the most common type of cancer with increasing incidence rate and public health burden. Solar ultraviolet (UV) radiation causes an array of damaging cellular and molecular events that eventually lead to the development of skin cancer. Despite increased awareness about sun protection, the exposure rate remains high with less than 15% of men and 30% of women using sunscreen on a regular basis. Therefore, there is an imperative need for the development of novel preventive approaches. Skin cancer chemoprevention using phytochemicals either as dietary supplements or by topical applications has gained considerable attention due to their low toxicity, availability, and anticarcinogenic properties. Tea, the second most commonly consumed beverage in the world, is a rich source of promising phytochemicals known as polyphenols. In this review, we discuss the findings of various in vitro, in vivo and human studies signifying the chemopreventive effects of tea polyphenols against UVB-induced skin cancer. This is accomplished by exploring the role of tea polyphenols in DNA repair, inflammation, oxidative stress, signaling pathways, and epigenetics. Finally, this review discusses a variety of innovative delivery methods that enhance the photochemopreventive effects of tea polyphenols against skin cancer.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mary K Montes de Oca
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Amena R Alkeswani
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah F McClees
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tanushree Das
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
36
|
Penta D, Somashekar BS, Meeran SM. Epigenetics of skin cancer: Interventions by selected bioactive phytochemicals. PHOTODERMATOLOGY PHOTOIMMUNOLOGY & PHOTOMEDICINE 2017; 34:42-49. [DOI: 10.1111/phpp.12353] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Dhanamjai Penta
- Laboratory of Cancer Epigenetics; Department of Biochemistry; CSIR-Central Food Technological Research Institute; Mysore India
| | - Bagganahalli S. Somashekar
- Laboratory of Cancer Epigenetics; Department of Biochemistry; CSIR-Central Food Technological Research Institute; Mysore India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics; Department of Biochemistry; CSIR-Central Food Technological Research Institute; Mysore India
| |
Collapse
|
37
|
Higgins S, Miller KA, Wojcik KY, Ahadiat O, Escobedo LA, Wysong A, Cockburn M. Phytochemicals and Naturally Occurring Substances in the Chemoprevention of Skin Cancer. CURRENT DERMATOLOGY REPORTS 2017. [DOI: 10.1007/s13671-017-0190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|