1
|
Takeda Y, Ohtsu I, Suzuki T, Nakasone Y, Fushimi K, Ikeuchi M, Terazima M, Dohra H, Narikawa R. Conformational change in an engineered biliverdin-binding cyanobacteriochrome during the photoconversion process. Arch Biochem Biophys 2023; 745:109715. [PMID: 37549803 DOI: 10.1016/j.abb.2023.109715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Cyanobacteriochromes (CBCRs) derived from cyanobacteria are linear-tetrapyrrole-binding photoreceptors related to the canonical red/far-red reversible phytochrome photoreceptors. CBCRs contain chromophore-binding cGMP-specific phosphodiesterase/adenylate cyclase/FhlA (GAF) domains that are highly diverse in their primary sequences and are categorized into many subfamilies. Among this repertoire, the biliverdin (BV)-binding CBCR GAF domains receive considerable attention for their in vivo optogenetic and bioimaging applications because BV is a mammalian intrinsic chromophore and can absorb far-red light that penetrates deep into the mammalian body. The typical BV-binding CBCR GAF domain exhibits reversible photoconversion between far-red-absorbing dark-adapted and orange-absorbing photoproduct states. Herein, we applied various biochemical and spectral studies to identify the details of the conformational change during this photoconversion process. No oligomeric state change was observed, whereas the surface charge would change with a modification of the α-helix structures during the photoconversion process. Combinatorial analysis using partial protease digestion and mass spectrometry identified the region where the conformational change occurred. These results provide clues for the future development of optogenetic tools.
Collapse
Affiliation(s)
- Yuka Takeda
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Itsuki Ohtsu
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Takahisa Suzuki
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Keiji Fushimi
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, 657-0013, Japan
| | - Masahiko Ikeuchi
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan
| | - Masahide Terazima
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideo Dohra
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan; Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Rei Narikawa
- Graduate School of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
2
|
Walter M, Schubert L, Heberle J, Schlesinger R, Losi A. Time-resolved photoacoustics of channelrhodopsins: early energetics and light-driven volume changes. Photochem Photobiol Sci 2022; 22:477-486. [PMID: 36273368 DOI: 10.1007/s43630-022-00327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022]
Abstract
AbstractIn biological photoreceptors, the energy stored in early transient species is a key feature to drive the photocycle or a chain of reactions. Time-resolved photoacoustics (PA) can explore the energy landscape of transient species formed within few ns after photoexcitation, as well as volumetric changes (ΔV) of these intermediates with respect to the parental state. In this work, PA identified these important parameters for several channelrhodopsins, namely CaChR1 from Chlamydomonas augustae and CrChR2 from Chlamydomonas reinhardtii and various variants. PA has access to the sub-ns formation of the early photoproduct P1 and to its relaxation, provided that this latter process occurs within a few μs. We found that ΔVP1 for CaChR1 is ca. 12 mL/mol, while it is much smaller for CrChR2 (4.7 mL/mol) and for H. salinarum bacteriorhodopsin (HsBR, ΔVK = 2.8 mL/mol). PA experiments on variants strongly indicate that part of this large ΔVP1 value for CaChR1 is caused by the protonation dynamics of the Schiff base counterion complex involving E169 and D299. PA data further show that the energy level of P1 is higher in CrChR2 (ca. 96 kJ/mol) than in CaChr1 (ca. 46 kJ/mol), comparable to the energy level of the K state of HsBR (60 kJ/mol). Instrumental to gain these molecular values from the raw PA data was the estimation of the quantum yield (Φ) for P1 formation via transient spectroscopy; for both channelrhodopsins, ΦP2 was evaluated as ca. 0.4.
Graphical Abstract
Collapse
Affiliation(s)
- Maria Walter
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Luiz Schubert
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Joachim Heberle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Ramona Schlesinger
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area Delle Scienze 7/A, 43124, Parma, Italy.
| |
Collapse
|
3
|
Garzella F, Bianchini P, Diaspro A, Losi A, Gärtner W, Abbruzzetti S, Viappiani C. A red-green photochromic bacterial protein as a new contrast agent for improved photoacoustic imaging. PHOTOACOUSTICS 2022; 26:100358. [PMID: 35656384 PMCID: PMC9152790 DOI: 10.1016/j.pacs.2022.100358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The GAF3 domain of the cyanobacteriochrome Slr1393 from Synechocystis sp. PCC6803, binding phycocyanobilin as a chromophore, shows photochromicity between two stable, green- and red-absorbing states, characterized by relatively high photoconversion yields. Using nanosecond-pulsed excitation by red or green light, respectively, and suitable cw photoconversion beams, we demonstrate that the light-modulatable photoacoustic waveforms arising from GAF3 can be easily distinguished from background signals originating from non-modulatable competitive absorbers and scattering media. It is demonstrated that this effect can be exploited to identify the position of the photochromic molecule by using as a phantom a cylindrical capillary tube filled with either a GAF3 solution or with an E.coli suspension overexpressing GAF3. These properties identify the high potential of GAF3 to be included in the palette of genetically encoded photochromic probes for photoacoustic imaging.
Collapse
Affiliation(s)
- Francesco Garzella
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
| | - Paolo Bianchini
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Alberto Diaspro
- Nanoscopy @ Istituto Italiano di Tecnologia, Genova, Italy
- DIFILAB, Dipartimento di Fisica, Università di Genova, Genova, Italy
| | - Aba Losi
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Wolfgang Gärtner
- Institut für Analytische Chemie - Universität Leipzig, Leipzig, Germany
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Italy
| |
Collapse
|
4
|
Consiglieri E, Xu QZ, Zhao KH, Gärtner W, Losi A. The first molecular characterisation of blue- and red-light photoreceptors from Methylobacterium radiotolerans. Phys Chem Chem Phys 2020; 22:12434-12446. [PMID: 32458860 DOI: 10.1039/d0cp02014a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methylobacteria are facultative methylotrophic phytosymbionts of great industrial and agronomical interest, and they are considered as opportunistic pathogens posing a health threat to humans. So far only a few reports mention photoreceptor coding sequences in Methylobacteria genomes, but no investigation at the molecular level has been performed yet. We here present comprehensive in silico research into potential photoreceptors in this bacterial phylum and report the photophysical and photochemical characterisation of two representatives of the most widespread photoreceptor classes, a blue-light sensing LOV (light, oxygen, voltage) protein and a red/far red light sensing BphP (biliverdin-binding bacterial phytochrome) from M. radiotolerans JCM 2831. Overall, both proteins undergo the expected light-triggered reactions, but peculiar features were also identified. The LOV protein Mr4511 has an extremely long photocycle and lacks a tryptophan conserved in ca. 75% of LOV domains. Mutation I37V accelerates the photocycle by one order of magnitude, while the Q112W change underscores the ability of tryptophan in this position to perform efficient energy transfer to the flavin chromophore. Time-resolved photoacoustic experiments showed that Mr4511 has a higher triplet quantum yield than other LOV domains and that the formation of the photoproduct results in a volume expansion, in sharp contrast to other LOV proteins. Mr4511 was found to be astonishingly resistant to denaturation by urea, still showing light-triggered reactions after incubation in urea for more than 20 h. The phytochrome MrBphP1 exhibits the so far most red-shifted absorption maxima for its Pr- and Pfr forms (λmax = 707 nm and 764 nm for the Pr and Pfr forms). The light-driven conversions in both directions occur with relatively high quantum yields of 0.2. Transient ns absorption spectroscopy (μs-ms time range) identifies the decay of the instantaneously formed lumi-intermediate, followed by only one additional intermediate before the formation of the respective final photoproducts for Pr-to-Pfr or Pfr-to-Pr photoconversion, in contrast to other BphPs. The relatively simple photoconversion patterns suggest the absence of the shunt pathways reported for other bacterial phytochromes.
Collapse
Affiliation(s)
- Eleonora Consiglieri
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| | - Qian-Zhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany and State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04103 Leipzig, Germany
| | - Aba Losi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area delle Scienze 7/A, 43124 Parma, Italy.
| |
Collapse
|
5
|
Antelo GT, Sánchez-Lamas M, Goldbaum FA, Otero LH, Bonomi HR, Rinaldi J. A Spectroscopy-based Methodology for Rapid Screening and Characterization of Phytochrome Photochemistry in Search of Pfr-favored Variants. Photochem Photobiol 2020; 96:1221-1232. [PMID: 32683707 DOI: 10.1111/php.13313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/11/2020] [Indexed: 11/30/2022]
Abstract
Phytochromes are photosensitive proteins with a covalently bound open-chain chromophore that can switch between two principal states: red light absorbing Pr and far-red light absorbing Pfr. Our group has previously shown that the bacteriophytochrome from Xanthomonas campestris pv. campestris (XccBphP) is a bathy-like phytochrome that uses biliverdin IXα as a co-factor and is involved in bacterial virulence. To date, the XccBphP crystal structure could only be solved in the Pr state, while the structure of its Pfr state remains elusive. The aims of this work were to develop an efficient screening methodology for the rapid characterization and to identify XccBphP variants that favor the Pfr form. The screening approach developed here consists in analyzing the UV-Vis absorption behavior of clarified crude extracts containing recombinant phytochromes. This strategy has allowed us to quickly explore over a hundred XccBphP variants, characterize multiple variants and identify Pfr-favored candidates. The high-quality data obtained enabled not only a qualitative, but also a quantitative characterization of their photochemistry. This method could be easily adapted to other phytochromes or other photoreceptor families.
Collapse
Affiliation(s)
| | | | | | - Lisandro Horacio Otero
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina.,Plataforma Argentina de Biología Estructural y Metabolómica PLABEM, Buenos Aires, Argentina
| | | | - Jimena Rinaldi
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
6
|
Consiglieri E, Gutt A, Gärtner W, Schubert L, Viappiani C, Abbruzzetti S, Losi A. Dynamics and efficiency of photoswitching in biliverdin-binding phytochromes. Photochem Photobiol Sci 2019; 18:2484-2496. [DOI: 10.1039/c9pp00264b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full scale analysis of the kinetic processes in the μ-to-millisecond time scale for red-and far red-triggered processes in biliverdin-binding bacterial and fungal phytochromes.
Collapse
Affiliation(s)
- Eleonora Consiglieri
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| | - Alexander Gutt
- Max-Planck-Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry
- University of Leipzig
- 04103 Leipzig
- Germany
| | - Luiz Schubert
- Institute for Physical Chemistry
- Heinrich-Heine-University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Cristiano Viappiani
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| | - Stefania Abbruzzetti
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| | - Aba Losi
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| |
Collapse
|