1
|
Pucci C, Martinelli C, Degl'Innocenti A, Desii A, De Pasquale D, Ciofani G. Light-Activated Biomedical Applications of Chlorophyll Derivatives. Macromol Biosci 2021; 21:e2100181. [PMID: 34212510 DOI: 10.1002/mabi.202100181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/06/2021] [Indexed: 02/01/2023]
Abstract
Tetrapyrroles are the basis of essential physiological functions in most living organisms. These compounds represent the basic scaffold of porphyrins, chlorophylls, and bacteriochlorophylls, among others. Chlorophyll derivatives, obtained by the natural or artificial degradation of chlorophylls, present unique properties, holding great potential in the scientific and medical fields. Indeed, they can act as cancer-preventing agents, antimutagens, apoptosis inducers, efficient antioxidants, as well as antimicrobial and immunomodulatory molecules. Moreover, thanks to their peculiar optical properties, they can be exploited as photosensitizers for photodynamic therapy and as vision enhancers. Most of these molecules, however, are highly hydrophobic and poorly soluble in biological fluids, and may display undesired toxicity due to accumulation in healthy tissues. The advent of nanomedicine has prompted the development of nanoparticles acting as carriers for chlorophyll derivatives, facilitating their targeted administration with demonstrated applicability in diagnosis and therapy. In this review, the chemical and physical properties of chlorophyll derivatives that justify their usage in the biomedical field, with particular regard to light-activated dynamics are described. Their role as antioxidants and photoactive agents are discussed, introducing the most recent nanomedical applications and focusing on inorganic and organic nanocarriers exploited in vitro and in vivo.
Collapse
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Chiara Martinelli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan, 20133, Italy
| | - Andrea Degl'Innocenti
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Andrea Desii
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Daniele De Pasquale
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| |
Collapse
|
2
|
Gjuroski I, Furrer J, Vermathen M. Probing the Interactions of Porphyrins with Macromolecules Using NMR Spectroscopy Techniques. Molecules 2021; 26:1942. [PMID: 33808335 PMCID: PMC8037866 DOI: 10.3390/molecules26071942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Porphyrinic compounds are widespread in nature and play key roles in biological processes such as oxygen transport in blood, enzymatic redox reactions or photosynthesis. In addition, both naturally derived as well as synthetic porphyrinic compounds are extensively explored for biomedical and technical applications such as photodynamic therapy (PDT) or photovoltaic systems, respectively. Their unique electronic structures and photophysical properties make this class of compounds so interesting for the multiple functions encountered. It is therefore not surprising that optical methods are typically the prevalent analytical tool applied in characterization and processes involving porphyrinic compounds. However, a wealth of complementary information can be obtained from NMR spectroscopic techniques. Based on the advantage of providing structural and dynamic information with atomic resolution simultaneously, NMR spectroscopy is a powerful method for studying molecular interactions between porphyrinic compounds and macromolecules. Such interactions are of special interest in medical applications of porphyrinic photosensitizers that are mostly combined with macromolecular carrier systems. The macromolecular surrounding typically stabilizes the encapsulated drug and may also modify its physical properties. Moreover, the interaction with macromolecular physiological components needs to be explored to understand and control mechanisms of action and therapeutic efficacy. This review focuses on such non-covalent interactions of porphyrinic drugs with synthetic polymers as well as with biomolecules such as phospholipids or proteins. A brief introduction into various NMR spectroscopic techniques is given including chemical shift perturbation methods, NOE enhancement spectroscopy, relaxation time measurements and diffusion-ordered spectroscopy. How these NMR tools are used to address porphyrin-macromolecule interactions with respect to their function in biomedical applications is the central point of the current review.
Collapse
Affiliation(s)
| | | | - Martina Vermathen
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland; (I.G.); (J.F.)
| |
Collapse
|
3
|
Marazzi M, Gattuso H, Giussani A, Zhang H, Navarrete-Miguel M, Chipot C, Cai W, Roca-Sanjuán D, Dehez F, Monari A. Induced Night Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin. J Phys Chem Lett 2019; 10:7133-7140. [PMID: 31652065 DOI: 10.1021/acs.jpclett.9b02911] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In humans, vision is limited to a small fraction of the whole electromagnetic spectrum. One possible strategy for enhancing vision in deep-red or poor-light conditions consists of recruiting chlorophyll derivatives in the rod photoreceptor cells of the eye, as suggested in the case of some deep-sea fish. Here, we employ all-atom molecular simulations and high-level quantum chemistry calculations to rationalize how chlorin e6 (Ce6), widely used in photodynamic therapy although accompanied by enhanced visual sensitivity, mediates vision in the dark, shining light on a fascinating but largely unknown molecular mechanism. First, we identify persistent interaction sites between Ce6 and the extracellular loops of rhodopsin, the transmembrane photoreceptor protein responsible for the first steps in vision. Triggered by Ce6 deep-red light absorption, the retinal within rhodopsin can be isomerized thus starting the visual phototransduction cascade. Our data largely exclude previously hypothesized energy-transfer mechanisms while clearly lending credence to a retinal isomerization indirectly triggered by singlet oxygen, proposing an alternative mechanism to rationalize photosensitizer-mediated night vision.
Collapse
Affiliation(s)
- Marco Marazzi
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , Universidad de Alcalá, Ctra , Madrid-Barcelona Km. 33,600 , E-28805 Alcalá de Henares ( Madrid ), Spain
- Chemical Research Institute "Andrés M. del Río" (IQAR) , Universidad de Alcalá , E-28871 Alcalá de Henares ( Madrid ), Spain
| | - Hugo Gattuso
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| | - Angelo Giussani
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - Hong Zhang
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | | | - Christophe Chipot
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - François Dehez
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
| | - Antonio Monari
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| |
Collapse
|
4
|
Mitchell J, Balem F, Tirupula K, Man D, Dhiman HK, Yanamala N, Ollesch J, Planas-Iglesias J, Jennings BJ, Gerwert K, Iannaccone A, Klein-Seetharaman J. Comparison of the molecular properties of retinitis pigmentosa P23H and N15S amino acid replacements in rhodopsin. PLoS One 2019; 14:e0214639. [PMID: 31100078 PMCID: PMC6524802 DOI: 10.1371/journal.pone.0214639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in the RHO gene encoding for the visual pigment protein, rhodopsin, are among the most common cause of autosomal dominant retinitis pigmentosa (ADRP). Previous studies of ADRP mutations in different domains of rhodopsin have indicated that changes that lead to more instability in rhodopsin structure are responsible for more severe disease in patients. Here, we further test this hypothesis by comparing side-by-side and therefore quantitatively two RHO mutations, N15S and P23H, both located in the N-terminal intradiscal domain. The in vitro biochemical properties of these two rhodopsin proteins, expressed in stably transfected tetracycline-inducible HEK293S cells, their UV-visible absorption, their Fourier transform infrared, circular dichroism and Metarhodopsin II fluorescence spectroscopy properties were characterized. As compared to the severely impaired P23H molecular function, N15S is only slightly defective in structure and stability. We propose that the molecular basis for these structural differences lies in the greater distance of the N15 residue as compared to P23 with respect to the predicted rhodopsin folding core. As described previously for WT rhodopsin, addition of the cytoplasmic allosteric modulator chlorin e6 stabilizes especially the P23H protein, suggesting that chlorin e6 may be generally beneficial in the rescue of those ADRP rhodopsin proteins whose stability is affected by amino acid replacement.
Collapse
Affiliation(s)
- James Mitchell
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Fernanda Balem
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kalyan Tirupula
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David Man
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Harpreet Kaur Dhiman
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Naveena Yanamala
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Julian Ollesch
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Joan Planas-Iglesias
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
| | - Barbara J Jennings
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Klaus Gerwert
- Department of Biophysics, Ruhr-University Bochum, Bochum, Germany
| | - Alessandro Iannaccone
- Retinal Degeneration & Ophthalmic Genetics Service & Lions Visual Function Diagnostic Lab, Hamilton Eye Institute, Dept. Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Judith Klein-Seetharaman
- Division of Biomedical Sciences, Medical School, University of Warwick, Coventry, United Kingdom
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|