1
|
Lu Z, Li M, Chen M, Wang Q, Wu C, Sun M, Su G, Wang X, Wang Y, Zhou X, Ye J, Liu T, Rao H. Deep learning-assisted smartphone-based portable and visual ratiometric fluorescence device integrated intelligent gel label for agro-food freshness detection. Food Chem 2023; 413:135640. [PMID: 36758385 DOI: 10.1016/j.foodchem.2023.135640] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/17/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Here, a smartphone-assisted dual-color ratiometric fluorescence smart gel label-based visual sensing platform was constructed for real-time evaluation of the freshness of agro-food based on the biogenic amines responses. Green-emission fluorescence carbon dots (CDs) coupled with blue-emission fluorescence bimetallic metal-organic framework (Fe/Zr-MOF) obtained dual-color CDs@Fe/Zr-MOF fluorescence nanoprobe acts as the response units. With the increase of SP and HIS content, the green fluorescence of CDs was enhanced, while the blue fluorescence of Fe/Zr-MOF was quenched. Therefore, this dual-color probe achieved a clear fluorescence color response to biogenic amines. The nanoprobe possessed sensitive and color-responsive with the LODs of 0.17 μM for SP and 2.95 μM for HIS in a wide range of 0-937.5 µM, respectively. Besides, these fluorescent nanoprobes were immobilized on the hydrogel carrier, and the intelligent fluorescent hydrogel tag can be obtained after freeze-drying, which realizes the real-time qualitative monitoring of SP and HIS in pork and shrimp samples.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Mengjiao Li
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Maoting Chen
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Qirui Wang
- School of Mechanical Engineering and Electronic Information, China University of Geoscience, Wuhan 430074, PR China
| | - Chun Wu
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Mengmeng Sun
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Gehong Su
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Yanying Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen 518000, PR China
| | - Jianshan Ye
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Tao Liu
- College of Information Engineering, Sichuan Agricultural University, Xin kang Road, Yucheng District, Ya'an 625014, PR China.
| | - Hanbing Rao
- College of Science, Sichuan Agricultural University, Xin Kang Road, Yucheng District, Ya'an 625014, PR China.
| |
Collapse
|
2
|
Niu C, Yao Z, Jiang S. Synthesis and application of quantum dots in detection of environmental contaminants in food: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163565. [PMID: 37080319 DOI: 10.1016/j.scitotenv.2023.163565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.
Collapse
Affiliation(s)
- Chenyue Niu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Li D, Wang J. Semiconductor/Carbon Quantum Dot-based Hue Recognition Strategy for Point of Need Testing: A Review. ChemistryOpen 2023; 12:e202200165. [PMID: 36891621 PMCID: PMC10068770 DOI: 10.1002/open.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
The requirement to establish novel methods for visual detection is attracting attention in many application fields of analytical chemistry, such as, healthcare, environment, agriculture, and food. The research around subjects like "point-of-need", "hue recognition", "paper-based sensor", "fluorescent sensor", etc. has been always aimed at the opportunity to manufacture convenient and fast-response devices to be used by non-specialists. It is possible to achieve economic rationality and technical simplicity for optical sensing toward target analytes through introduction of fluorescent semiconductor/carbon quantum dot (QD) and paper-based substrates. In this Review, the mechanisms of anthropic visual recognition and fluorescent visual assays, characteristics of semiconductor/carbon QDs and ratiometric fluorescence test paper, and strategies of semiconductor/carbon QD-based hue recognition are described. We cover latest progress in the development and application of point-of-need sensors for visual detection, which is based on a semiconductor/carbon quantum dot-based hue recognition strategy generated by ratiometric fluorescence technology.
Collapse
Affiliation(s)
- Daquan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Jing Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
4
|
Anusuyadevi K, Velmathi S. Design strategies of carbon nanomaterials in fluorescent sensing of biomolecules and metal ions -A review. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
5
|
Optical and Electrochemical Techniques for Point-of-Care Water Quality Monitoring: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
6
|
Chopra T, Sasan S, Devi L, Parkesh R, Kapoor KK. A comprehensive review on recent advances in copper sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Zhan X, Yu X, Li B, Zhou R, Fang Q, Wu Y. Quantifying H 2O 2 by ratiometric fluorescence sensor platform of N-GQDs/rhodamine B in the presence of thioglycolic acid under the catalysis of Fe 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121191. [PMID: 35366522 DOI: 10.1016/j.saa.2022.121191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/24/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In the presence of thioglycolic acid (TGA) and under the catalysis of Fe3+, a simple, rapid, sensitive, selective and effective ratiometric fluorescence sensor platform based on the mixed physically blue nitrogen-doped graphene quantum dots (N-GQDs) as probe signals and orange rhodamine B as internal standard signals has been constructed for analysis of H2O2 in human serum. TGA is the key factor for fluorescence response toward H2O2 by N-GQDs and the mechanism is H2O2 reacts speedily with TGA under the catalysis of Fe3+, and produces intermediate of superoxide anions (O2-), which accepts electrons from N-GQDs, and generates graphene oxide, causing the fluorescence quench of N-GQDs. Compared with N-GQDs probe, the sensitivity of the ratiometric fluorescence sensor platform of N-GQDs/rhodamine B for analysis of H2O2 has been improved by nearly 5-folds. Under the optimum conditions, Fλ=580nm/Fλ=440nm has a good linear relationship with the concentration of H2O2 and the detection limit of H2O2 is 0.46 μmol/L with 3.5% RSD. The established sensor platform has been successfully used for probing H2O2 in human serum with satisfactory results. The superior performance of the probe lies in its high selectivity and can be directly employed in detecting H2O2 in serum samples without any sample pretreatment procedures.
Collapse
Affiliation(s)
- Xin Zhan
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Benmengyang Li
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Rui Zhou
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Qingyu Fang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
8
|
Carbon Quantum Dots-Based Fluorescent Hydrogel Hybrid Platform for Sensitive Detection of Iron Ions. J CHEM-NY 2022. [DOI: 10.1155/2022/3737646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we prepared novel fluorescent carbon quantum dots/hydrogel nanocomposite material (CQDsHG) with good adsorption and stable fluorescence detection of Fe3+. The materials were subsequently characterized according to their morphological features, chemical composition, adsorption, and optical properties. The carbon quantum dots (CQDs) were prepared using a microwave-assisted hydrothermal method in no more than 15 min, and the as-prepared CQDs exhibited excellent water solubility, as well as emitted strong bright blue fluorescence with an ultrahigh quantum yield of 93.60%. The CQDs were then loaded into a hydrogel (HG) using the sol-gel method to obtain a functional CQDsHG. The CQDsHG exhibited high adsorption amounts (31.94 mg/g) and a good quenching response for Fe3+, thus, it could be used as a sensor to selectively detect Fe3+ in the linear range of 0–150 μM with a detection limit of 0.24 μM. We observed minimal difference in the fluorescence lifetimes between the CQDsHG with and without a quencher (Fe3+), with values of 5.816 ns and 5.824 ns, respectively, confirming that Fe3+ was statically quenched on CQDsHG. The results indicated that the innovative combination of CQDs and HG can improve the synergistic performance of each component for the adsorption and quantitative detection of heavy metal ions in the aqueous environment.
Collapse
|
9
|
Wu X, Meng X, Hou B, Sun Z, Zhang Y, Li M. Rapid fluorescent color analysis of copper ions on a smart phone via ratiometric fluorescence sensor. Mikrochim Acta 2022; 189:67. [PMID: 35064839 DOI: 10.1007/s00604-022-05166-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022]
Abstract
A smartphone-assisted fluorescence color sensing system for rapid, convenient, and on-site detection of copper ions was developed. The ratiometric fluorescence sensor was fabricated by using silica-coated blue-light-emitting carbon dots and surface-grafted red-light-emitting cadmium-telluride quantum dots. After exposure to Cu2+ in 20 s, the red fluorescence was quenched obviously, while the blue fluorescence remained unchanged, and the sensor color changes continuously from red to blue under the ultraviolet lamp. The concentration (50-1200 nM) of copper ions could be measured by the fluorescence spectrum (excitation at 360 nm, dual-emission at 441 and 640 nm) with a detection limit of 7.7 nM. The fluorescence colors were converted to digital RGB values to calculate the concentration of copper ions by a smartphone with a detection limit of 9.6 nM. The method was applied to detecting copper ions spiked in real samples with recovery from 97.9 to 108.0% and RSD from 3.8 to 8.9%. Thus, this convenient and practical fluorescence color sensing system presents a new strategy for rapid, sensitive, and on-site determination of copper ions in environmental or biological samples.
Collapse
Affiliation(s)
- Xia Wu
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xufeng Meng
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Baoxiu Hou
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Zhong Sun
- Mengyin Inspection and Testing Center, Linyi, Shandong, 276000, People's Republic of China
| | - Yunyi Zhang
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| |
Collapse
|
10
|
Yang Y, Wang H, Wu Y, Yu X. Dual recognition strategy for selective fluorescent detection of dopamine and antioxidants based on graphite carbon nitride in human blood serum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120385. [PMID: 34536885 DOI: 10.1016/j.saa.2021.120385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
In this work, a strong blue-emitting fluorescent biosensor based on graphite carbon nitride nanoparticles (GCNNs) (Ex = 340 nm and Em = 435 nm) was synthesized by a facile one-step hydrothermal method. With the aid of hydrogen peroxide and horseradish peroxidase, pyrocatechol structure of dopamine (DA) was oxidized to o-quinone structure of polydopamine (PDA) by hydroxyl radical. PDA was able to rapidly and significantly quench fluorescence of GCNNs. In the meanwhile, oxidative self-polymerization from DA to PDA would be blocked by antioxidants, such as glutathione (GSH) and ascorbic acid (AA). Thus, the fluorescence of GCNNs@DA sensor would be recovered owing to the decrease of o-quinone. Based on above-mentioned dual recognition strategy of "turn-off" and "turn off-on", a fast, simple and ultrasensitive method was developed to measure DA and antioxidants. Under the optimal experimental conditions, the detection limits of DA, GSH and AA were 0.064 μmol L-1, 0.11 μmol L-1 and 0.16 μmol L-1 with relative standard deviations of 1.7%, 9.3% and 8.0%, respectively. As one of metal-free quantum dots, our GCNNs-based sensors were also successfully applied to the determination of DA as well as GSH and AA in human serum. The recoveries for the spiked samples were in the range of 93.8%-109% and 95.0%-110% of DA and antioxidants, which shows great promise to clinicalapplication.
Collapse
Affiliation(s)
- Yuning Yang
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Han Wang
- Wuhan Customs District of China, Wuhan 430020, China
| | - Yiwei Wu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Xiaoxiao Yu
- Hubei Collaborative Innovation Center for Rare Metal Chemistry, Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
11
|
Lomae A, Preechakasedkit P, Teekayupak K, Panraksa Y, Yukird J, Chailapakul O, Ruecha N. Microfluidic Paper-based Device for Medicinal Diagnosis. Curr Top Med Chem 2022; 22:2282-2313. [PMID: 36330618 DOI: 10.2174/1568026623666221103103211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The demand for point-of-care testing (POCT) devices has rapidly grown since they offer immediate test results with ease of use, makingthem suitable for home self-testing patients and caretakers. However, the POCT development has faced the challenges of increased cost and limited resources. Therefore, the paper substrate as a low-cost material has been employed to develop a cost-effective POCT device, known as "Microfluidic paper-based analytical devices (μPADs)". This device is gaining attention as a promising tool for medicinal diagnostic applications owing to its unique features of simple fabrication, low cost, enabling manipulation flow (capillarydriven flow), the ability to store reagents, and accommodating multistep assay requirements. OBJECTIVE This review comprehensively examines the fabrication methods and device designs (2D/3D configuration) and their advantages and disadvantages, focusing on updated μPADs applications for motif identification. METHODS The evolution of paper-based devices, starting from the traditional devices of dipstick and lateral flow assay (LFA) with μPADs, has been described. Patterned structure fabrication of each technique has been compared among the equipment used, benefits, and drawbacks. Microfluidic device designs, including 2D and 3D configurations, have been introduced as well as their modifications. Various designs of μPADs have been integrated with many powerful detection methods such as colorimetry, electrochemistry, fluorescence, chemiluminescence, electrochemiluminescence, and SER-based sensors for medicinal diagnosis applications. CONCLUSION The μPADs potential to deal with commercialization in terms of the state-of-the-art of μPADs in medicinal diagnosis has been discussed. A great prototype, which is currently in a reallife application breakthrough, has been updated.
Collapse
Affiliation(s)
- Atchara Lomae
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Pattarachaya Preechakasedkit
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Kanyapat Teekayupak
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Yosita Panraksa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, United States of America
| | - Jutiporn Yukird
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nipapan Ruecha
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Soi Chula 12, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| |
Collapse
|
12
|
Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. BIOSENSORS 2021; 11:316. [PMID: 34562906 PMCID: PMC8464915 DOI: 10.3390/bios11090316] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The fast detection of trace amounts of hazardous contaminations can prevent serious damage to the environment. Paper-based sensors offer a new perspective on the world of analytical methods, overcoming previous limitations by fabricating a simple device with valuable benefits such as flexibility, biocompatibility, disposability, biodegradability, easy operation, large surface-to-volume ratio, and cost-effectiveness. Depending on the performance type, the device can be used to analyze the analyte in the liquid or vapor phase. For liquid samples, various structures (including a dipstick, as well as microfluidic and lateral flow) have been constructed. Paper-based 3D sensors are prepared by gluing and folding different layers of a piece of paper, being more user-friendly, due to the combination of several preparation methods, the integration of different sensor elements, and the connection between two methods of detection in a small set. Paper sensors can be used in chromatographic, electrochemical, and colorimetric processes, depending on the type of transducer. Additionally, in recent years, the applicability of these sensors has been investigated in various applications, such as food and water quality, environmental monitoring, disease diagnosis, and medical sciences. Here, we review the development (from 2010 to 2021) of paper methods in the field of the detection and determination of toxic substances.
Collapse
Affiliation(s)
- Mohammad Mahdi Bordbar
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| | - Azarmidokht Sheini
- Department of Mechanical Engineering, Shohadaye Hoveizeh Campus of Technology, Shahid Chamran University of Ahvaz, Dashte Azadegan 78986, Iran;
| | - Pegah Hashemi
- Research and Development Department, Farin Behbood Tashkhis Ltd., Tehran 16471, Iran;
| | - Ali Hajian
- Institute of Sensor and Actuator Systems, TU Wien, Gusshausstrasse 27-29, 1040 Vienna, Austria;
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran 19945, Iran;
| |
Collapse
|
13
|
Fan J, Zhang S, Li F, Yang Y, Du M. Recent advances in cellulose-based membranes for their sensing applications. CELLULOSE (LONDON, ENGLAND) 2020; 27:9157-9179. [PMID: 32934443 PMCID: PMC7483080 DOI: 10.1007/s10570-020-03445-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 05/13/2023]
Abstract
ABSTRACT In recent years, sensing applications have played a very important role in various fields. As a novel natural material, cellulose-based membranes with many merits can be served as all kinds of sensors. This review summarizes the recent progress of cellulose membranes as sensors, mainly focusing on their preparation processes and sensing properties. In addition, the opportunities and challenges of cellulose membrane-based sensors are also prospected. This review provides some references for the design of cellulose membrane materials for sensing applications in the future.
Collapse
Affiliation(s)
- Jiang Fan
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Fei Li
- The Second Kindergarten, Economic and Technological Development Zone, Xi’an, 710021 People’s Republic of China
| | - Yonglin Yang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Min Du
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Key Laboratory of Paper Based Functional Materials of China National Light Industry, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| |
Collapse
|