1
|
Kaple CE, Memic S, Cadnum JL, Donskey CJ. Evaluation of an automated far ultraviolet-C light technology for decontamination of surfaces and aerosolized viruses in bathrooms. Antimicrob Resist Infect Control 2024; 13:114. [PMID: 39343973 PMCID: PMC11441258 DOI: 10.1186/s13756-024-01473-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Aerosols generated during toilet flushing are a potential source for transmission of viral and bacterial pathogens in bathrooms. However, manual decontamination of bathrooms after each use is not feasible. METHODS We tested the efficacy of a wall-mounted far ultraviolet-C (UV-C) light technology that only delivers far UV-C when people are not present for decontamination of surfaces and aerosolized viral particles in an unoccupied hospital bathroom. A quantitative disk carrier test method was used to test efficacy against organisms on steel disk carriers placed in 9 sites in the bathroom with an exposure time of 45 min and 2 h; Clostridioides difficile spores were also exposed for 24 h. Efficacy against aerosolized bacteriophage MS2 was tested with a 45-minute exposure. RESULTS The far UV-C technology reduced methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), Candida auris, and bacteriophage MS2 on steel disk carriers by ≥ 1.2 log10 (range, 1.2 to 4.2 log10) at all test sites after 2 h of exposure. The technology reduced C. difficile spores by < 1 log10 after 2 h exposure, but 4 of 9 test locations had ≥ 2 log10 reductions after 24 h exposure. Aerosolized bacteriophage MS2 was reduced by 4 log10 plaque-forming units in 45 min. CONCLUSIONS The far UV-C light technology could potentially be useful for automated decontamination of air and surfaces in bathrooms in healthcare and community settings.
Collapse
Affiliation(s)
- Claire E Kaple
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samir Memic
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Department of Systems Biology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jennifer L Cadnum
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Curtis J Donskey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Infectious Diseases Section 1110W, Louis Stokes Cleveland VA Medical Center, 10701 East Boulevard, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Kaple CE, Memic S, Cadnum JL, Varghese MM, Hebrink TJ, Donskey CJ. A far ultraviolet-C light technology is effective for decontamination of items in proximity to sinks and is enhanced by a far UV-C reflective surface. Infect Control Hosp Epidemiol 2024:1-6. [PMID: 39320484 DOI: 10.1017/ice.2024.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
BACKGROUND Dispersal of gram-negative bacilli from sink drains has been implicated as a source of transmission in multiple outbreaks. METHODS In an acute care hospital, we assessed how often patient care supplies and other frequently touched items were within 1 meter of sink drains. We tested the efficacy of a ceiling-mounted far ultraviolet-C (UV-C) light technology for decontamination of sink bowls and surfaces near sinks with and without a wall-mounted film that reflects far UV-C light. RESULTS Of 190 sinks assessed, 55 (29%) had patient care supplies or other frequently touched items within 1 meter of the drain. The far UV-C technology reduced Pseudomonas aeruginosa, Enterobacter cloacae and Candida auris on steel disk carriers by ≥1.5 log10 colony-forming units (CFU) in 45 minutes. On inoculated real-world items, ≥1.9 log10 CFU reductions in P. aeruginosa were achieved on sites in line with the light source versus 0.4-1.8 log10 CFU reductions on shaded surfaces. The addition of the reflective surface significantly enhanced efficacy in shaded sites (P < 0.01). CONCLUSIONS In a hospital setting, patient care supplies and other frequently touched items were often in proximity to sinks. The far UV-C light technology could potentially be useful for sink decontamination in high-risk areas.
Collapse
Affiliation(s)
- Claire E Kaple
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Samir Memic
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Jennifer L Cadnum
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | | | | | - Curtis J Donskey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|
3
|
Brenner DJ. The public-health significance of far-UVC-induced indoor ozone and its associated secondary chemistry. Photochem Photobiol 2024; 100:1186-1190. [PMID: 38037431 DOI: 10.1111/php.13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
There has been much recent interest in whole-room far-UVC (wavelength around 222 nm) to markedly and safely reduce overall levels of airborne pathogens in occupied indoor locations. Far-UVC light produces very low levels of ozone-in real-world scenarios induced ozone levels of less than 10 ppb, and much less in moderately or well-ventilated rooms compliant with US far-UVC dose recommendations, and very much less in rooms compliant with international far-UVC dose standards. At these very low ozone levels, there is no epidemiological evidence of increased health risks from any of the very large outdoor ozone studies, whether from ozone alone or from ozone plus associated pollutants. Indoors, at the low ozone concentrations of relevance here, ozone does not react rapidly enough with preexisting airborne volatile organic compounds to compete with even extremely low levels of room ventilation, so significant ozone-induced ultrafine particle production is very unlikely. Direct measurements in real-life room scenarios are consistent with these conclusions. A potential exception is the cleaning material limonene, which has an unusually high ozone interaction cross-section; in the far-UVC context, turning off far-UVC lights during cleaning with limonene products would be reasonable.
Collapse
Affiliation(s)
- David J Brenner
- Center for Radiological Research, Columbia University, New York, New York, USA
| |
Collapse
|
4
|
Memic S, Kaple CE, Cadnum JL, Donskey CJ. Evaluation of an Automated Wall-mounted Far Ultraviolet-C Light Technology for Continuous or Intermittent Decontamination of Candida auris on Surfaces. Pathog Immun 2024; 9:156-167. [PMID: 38779368 PMCID: PMC11110956 DOI: 10.20411/pai.v9i1.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Background Technologies that provides safe and effective decontamination of surfaces and equipment between episodes of manual cleaning could be an important advance in efforts to prevent transmission of the emerging fungal pathogen Candida auris. Methods We tested the efficacy of a novel wall-mounted far ultraviolet-C (UV-C) light technology that delivers far UV-C, when people are not detected within the field of illumination, against C. auris isolates from clades I, II, III, and IV using a quantitative disk carrier test method. In an equipment room, we examined the efficacy of the technology in reducing an isolate of C. auris from clade IV inoculated on multiple sites on portable devices. Results The far UV-C technology reduced isolates from all 4 clades of C. auris by >3 log10 colony-forming units (CFU) aſter an 8-hour exposure on steel disks. For the clade IV isolate, similar reductions were achieved on glass and plastic carriers. In the equipment room, the technology reduced C. auris inoculated on multiple sites on portable equipment by >2 log10 CFU in 4 hours. Conclusions The far UV-C technology could be useful for decontamination of surfaces and equipment between episodes of manual cleaning. Additional studies are needed to evaluate the use of the technology in clinical settings.
Collapse
Affiliation(s)
- Samir Memic
- Department of Systems Biology, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Claire E. Kaple
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Jennifer L. Cadnum
- Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| | - Curtis J. Donskey
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Geriatric Research, Education, and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, Ohio
| |
Collapse
|
5
|
Buonanno M, Kleiman NJ, Welch D, Hashmi R, Shuryak I, Brenner DJ. 222 nm far-UVC light markedly reduces the level of infectious airborne virus in an occupied room. Sci Rep 2024; 14:6722. [PMID: 38509265 PMCID: PMC10954628 DOI: 10.1038/s41598-024-57441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 03/18/2024] [Indexed: 03/22/2024] Open
Abstract
An emerging intervention for control of airborne-mediated pandemics and epidemics is whole-room far-UVC (200-235 nm). Laboratory studies have shown that 222-nm light inactivates airborne pathogens, potentially without harm to exposed occupants. While encouraging results have been reported in benchtop studies and in room-sized bioaerosol chambers, there is a need for quantitative studies of airborne pathogen reduction in occupied rooms. We quantified far-UVC mediated reduction of aerosolized murine norovirus (MNV) in an occupied mouse-cage cleaning room within an animal-care facility. Benchtop studies suggest that MNV is a conservative surrogate for airborne viruses such as influenza and coronavirus. Using four 222-nm fixtures installed in the ceiling, and staying well within current recommended regulatory limits, far-UVC reduced airborne infectious MNV by 99.8% (95% CI: 98.2-99.9%). Similar to previous room-sized bioaerosol chamber studies on far-UVC efficacy, these results suggest that aerosolized virus susceptibility is significantly higher in room-scale tests than in bench-scale laboratory studies. That said, as opposed to controlled laboratory studies, uncertainties in this study related to airflow patterns, virus residence time, and dose to the collected virus introduce uncertainty into the inactivation estimates. This study is the first to directly demonstrate far-UVC anti-microbial efficacy against airborne pathogens in an occupied indoor location.
Collapse
Affiliation(s)
- Manuela Buonanno
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA.
| | - Norman J Kleiman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA
| | - David Welch
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| | - Raabia Hashmi
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| | - Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th St., New York, NY, 10032, USA.
| |
Collapse
|
6
|
Rufyikiri AS, Martinez R, Addo PW, Wu BS, Yousefi M, Malo D, Orsat V, Vidal SM, Fritz JH, MacPherson S, Lefsrud M. Germicidal efficacy of continuous and pulsed ultraviolet-C radiation on pathogen models and SARS-CoV-2. Photochem Photobiol Sci 2024; 23:339-354. [PMID: 38308169 DOI: 10.1007/s43630-023-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/12/2023] [Indexed: 02/04/2024]
Abstract
Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.
Collapse
Affiliation(s)
- Anne Sophie Rufyikiri
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Rebecca Martinez
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Philip W Addo
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Bo-Sen Wu
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mitra Yousefi
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Danielle Malo
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Medicine, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
| | - Valérie Orsat
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Silvia M Vidal
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Human Genetics, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Jörg H Fritz
- Dahdaleh Institute of Genomic Medicine and McGill University Research Centre on Complex Traits, Life Sciences Complex, McGill University, 3649 Promenade Sir William Osler, Montreal, QC, H3G 0B1, Canada
- Department of Microbiology and Immunology, McGill University, 3775 Rue University, Montreal, QC, H3A 2B4, Canada
| | - Sarah MacPherson
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Mark Lefsrud
- Department of Bioresource Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|