1
|
Siddiqui AJ, Bhardwaj J, Hamadou WS, Goyal M, Jahan S, Ashraf SA, Jamal A, Sharma P, Sachidanandan M, Badraoui R, Snoussi M, Adnan M. Impact of chemoprophylaxis immunisation under halofantrine (CPS-HF) drug cover in Plasmodium yoelii Swiss mice malaria model. Folia Parasitol (Praha) 2022; 69. [PMID: 35145048 DOI: 10.14411/fp.2022.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/28/2021] [Indexed: 11/19/2022]
Abstract
In the present study, we have investigated the role of antimalarial drug halofantrine (HF) in inducing the sterile protection against challenges with sporozoites of the live infectious Plasmodium yoelii (Killick-Kendrick, 1967) in Swiss mice malaria model. We observed that during the first to third sequential sporozoite inoculation cycles, blood-stage patency remains the same in the control and chemoprophylaxis under HF drug cover (CPS-HF) groups. However, a delayed blood-stage infection was observed during the fourth and fifth sporozoite challenges and complete sterile protection was produced following the sixth sporozoite challenge in CPS-HF mice. We also noticed a steady decline in liver stage parasite load after 3th to 6th sporozoite challenge cycle in CPS-HF mice. CPS-HF immunisation results in a significant up-regulation of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-12 and iNOS) and down-regulation of anti-inflammatory cytokines (IL-10 and TGF-β) mRNA expression in hepatic mononuclear cells (HMNC) and spleen cells in the immunised CPS-HF mice (after 6th sporozoite challenge) compared to control. Overall, our study suggests that the repetitive sporozoite inoculation under HF drug treatment develops a strong immune response that confers protection against subsequent challenges with sporozoites of P. yoelii.
Collapse
Affiliation(s)
- Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia.,Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Both authors have contributed equally to this work and share first authorship.,Corresponding author
| | - Jyoti Bhardwaj
- Indiana University, School of Medicine, Indianapolis, Indiana, United States.,Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Both authors have contributed equally to this work and share first authorship
| | - Walid Sabri Hamadou
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Manish Goyal
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sadaf Jahan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah, Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medial Sciences, University of Hail, Hail, Saudi Arabia
| | - Arshad Jamal
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Pankaj Sharma
- Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, U.S.A
| | | | - Riadh Badraoui
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
2
|
Parmar R, Patel H, Yadav N, Parikh R, Patel K, Mohankrishnan A, Bhurani V, Joshi U, Dalai SK. Infectious Sporozoites of Plasmodium berghei Effectively Activate Liver CD8α + Dendritic Cells. Front Immunol 2018; 9:192. [PMID: 29472929 PMCID: PMC5809440 DOI: 10.3389/fimmu.2018.00192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 01/23/2018] [Indexed: 11/13/2022] Open
Abstract
Immunization with radiation-attenuated sporozoites (RAS) shown to confer complete sterile protection against Plasmodia liver-stage (LS) infection that lasts about 6 to 9 months in mice. We have found that the intermittent infectious sporozoite challenge to immune mice following RAS vaccination extends the longevity of sterile protection by maintaining CD8+ T cell memory responses to LS infection. It is reported that CD8α+ dendritic cells (DCs) are involved in the induction of LS-specific CD8+ T cells following RAS or genetically attenuated parasite (GAP) vaccination. In this study, we demonstrate that CD8α+ DCs respond differently to infectious sporozoite or RAS inoculation. The higher accumulation and activation of CD8α+ DCs was seen in the liver in response to infectious sporozoite 72 h postinoculation and found to be associated with higher expression of chemokines (CCL-20 and CCL-21) and type I interferon response via toll-like receptor signaling in liver. Moreover, the infectious sporozoites were found to induce qualitative changes in terms of the increased MHCII expression as well as costimulatory molecules including CD40 on the CD8α+ DCs compared to RAS inoculation. We have also found that infectious sporozoite challenge increased CD40L-expressing CD4+ T cells, which could help CD8+ T cells in the liver through "licensing" of the antigen-presenting cells. Our results suggest that infectious sporozoite challenge to prior RAS immunized mice modulates the CD8α+ DCs, which might be shaping the fate of memory CD8+ T cells against Plasmodium LS infection.
Collapse
Affiliation(s)
- Rajesh Parmar
- Institute of Science, Nirma University, Ahmedabad, India
| | - Hardik Patel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Naveen Yadav
- Institute of Science, Nirma University, Ahmedabad, India
| | - Ritika Parikh
- Institute of Science, Nirma University, Ahmedabad, India
| | - Khyati Patel
- Institute of Science, Nirma University, Ahmedabad, India
| | | | | | - Urja Joshi
- Institute of Science, Nirma University, Ahmedabad, India
| | | |
Collapse
|
3
|
Tu W, Rao S. Mechanisms Underlying T Cell Immunosenescence: Aging and Cytomegalovirus Infection. Front Microbiol 2016; 7:2111. [PMID: 28082969 PMCID: PMC5186782 DOI: 10.3389/fmicb.2016.02111] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/13/2016] [Indexed: 01/03/2023] Open
Abstract
The ability of the human immune system to protect against infectious disease declines with age and efficacy of vaccination reduces significantly in the elderly. Aging of the immune system, also termed as immunosenescence, involves many changes in human T cell immunity that is characterized by a loss in naïve T cell population and an increase in highly differentiated CD28- memory T cell subset. There is extensive data showing that latent persistent human cytomegalovirus (HCMV) infection is also associated with age-related immune dysfunction in the T cells, which might enhance immunosenescence. Understanding the molecular mechanisms underlying age-related and HCMV-related immunosenescence is critical for the development of effective age-targeted vaccines and immunotherapies. In this review, we will address the role of both aging and HCMV infection that contribute to the T cell senescence and discuss the potential molecular mechanisms in aged T cells.
Collapse
Affiliation(s)
- Wenjuan Tu
- Faculty of ESTeM, Health Research Institute, University of Canberra Canberra, ACT, Australia
| | - Sudha Rao
- Faculty of ESTeM, Health Research Institute, University of Canberra Canberra, ACT, Australia
| |
Collapse
|
4
|
Matz JM, Kooij TWA. Towards genome-wide experimental genetics in the in vivo malaria model parasite Plasmodium berghei. Pathog Glob Health 2015; 109:46-60. [PMID: 25789828 DOI: 10.1179/2047773215y.0000000006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Plasmodium berghei was identified as a parasite of thicket rats (Grammomys dolichurus) and Anopheles dureni mosquitoes in African highland forests. Successful adaptation to a range of rodent and mosquito species established P. berghei as a malaria model parasite. The introduction of stable transfection technology, permitted classical reverse genetics strategies and thus systematic functional profiling of the gene repertoire. In the past 10 years following the publication of the P. berghei genome sequence, many new tools for experimental genetics approaches have been developed and existing ones have been improved. The infection of mice is the principal limitation towards a genome-wide repository of mutant parasite lines. In the past few years, there have been some promising and most welcome developments that allow rapid selection and isolation of recombinant parasites while simultaneously minimising animal usage. Here, we provide an overview of all the currently available tools and methods.
Collapse
|