1
|
Li J, Zhang J, Zhang B, Chen G, Huang M, Xu B, Zhu D, Chen J, Duan Y, Gao W. ATF3 is involved in rSjP40-mediated inhibition of HSCs activation in Schistosoma japonicum-infected mice. J Cell Mol Med 2024; 28:e18458. [PMID: 39031798 PMCID: PMC11190947 DOI: 10.1111/jcmm.18458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 07/22/2024] Open
Abstract
Schistosomiasis is a parasitic disease characterized by liver fibrosis, a process driven by the activation of hepatic stellate cells (HSCs) and subsequent collagen production. Previous studies from our laboratory have demonstrated the ability of Schistosoma japonicum protein P40 (SjP40) to inhibit HSCs activation and exert an antifibrotic effect. In this study, we aimed to elucidate the molecular mechanism underlying the inhibitory effect of recombinant SjP40 (rSjP40) on HSCs activation. Using a cell model in which rSjP40 inhibited LX-2 cell activation, we performed RNA-seq analyses and identified ATF3 as the most significantly altered gene. Further investigation revealed that rSjP40 inhibited HSCs activation partly by suppressing ATF3 activation. Knockdown of ATF3 in mouse liver significantly alleviated S. japonicum-induced liver fibrosis. Moreover, our results indicate that ATF3 is a direct target of microRNA-494-3p, a microRNA associated with anti-liver fibrosis effects. rSjP40 was found to downregulate ATF3 expression by upregulating microRNA-494-3p in LX-2 cells. This downregulation led to the inhibition of the expression of liver fibrosis proteins α-SMA and COL1A1, ultimately alleviating liver fibrosis caused by S. japonicum.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongJiangsuPeople's Republic of China
| | - Jiali Zhang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Department of Laboratory MedicinePeople's Hospital of Haimen DistrictNantongJiangsuPeople's Republic of China
| | - Bei Zhang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Guo Chen
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Min Huang
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Boyin Xu
- Department of Infection ControlAffiliated Hospital of Nantong UniversityNantongJiangsuPeople's Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
| | - Wenxi Gao
- Department of Pathogen Biology, School of MedicineNantong UniversityNantongJiangsuPeople's Republic of China
- Laboratory Center, School of Educational SciencesNantong UniversityNantongJiangsuPeople's Republic of China
| |
Collapse
|
2
|
Gaál Z. Role of microRNAs in Immune Regulation with Translational and Clinical Applications. Int J Mol Sci 2024; 25:1942. [PMID: 38339220 PMCID: PMC10856342 DOI: 10.3390/ijms25031942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
MicroRNAs (miRNAs) are 19-23 nucleotide long, evolutionarily conserved noncoding RNA molecules that regulate gene expression at the post-transcriptional level. In this review, involvement of miRNAs is summarized in the differentiation and function of immune cells, in anti-infective immune responses, immunodeficiencies and autoimmune diseases. Roles of miRNAs in anticancer immunity and in the transplantation of solid organs and hematopoietic stem cells are also discussed. Major focus is put on the translational clinical applications of miRNAs, including the establishment of noninvasive biomarkers for differential diagnosis and prediction of prognosis. Patient selection and response prediction to biological therapy is one of the most promising fields of application. Replacement or inhibition of miRNAs has enormous therapeutic potential, with constantly expanding possibilities. Although important challenges still await solutions, evaluation of miRNA fingerprints may contribute to an increasingly personalized management of immune dysregulation with a remarkable reduction in toxicity and treatment side effects. More detailed knowledge of the molecular effects of physical exercise and nutrition on the immune system may facilitate self-tailored lifestyle recommendations and advances in prevention.
Collapse
Affiliation(s)
- Zsuzsanna Gaál
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt, 4032 Debrecen, Hungary
| |
Collapse
|
3
|
Sivapornnukul P, Khamwut A, Chanchaem P, Chusongsang P, Chusongsang Y, Poodeepiyasawat P, Limpanont Y, Reamtong O, Payungporn S. Comprehensive analysis of miRNA profiling in Schistosoma mekongi across life cycle stages. Sci Rep 2024; 14:2347. [PMID: 38281987 PMCID: PMC10822868 DOI: 10.1038/s41598-024-52835-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/24/2024] [Indexed: 01/30/2024] Open
Abstract
Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.
Collapse
Affiliation(s)
- Pavaret Sivapornnukul
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ariya Khamwut
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prangwalai Chanchaem
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phiraphol Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yupa Chusongsang
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Paporn Poodeepiyasawat
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology (CESM), Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
microRNAs: Critical Players during Helminth Infections. Microorganisms 2022; 11:microorganisms11010061. [PMID: 36677353 PMCID: PMC9861972 DOI: 10.3390/microorganisms11010061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
microRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression post-transcriptionally through their interaction with the 3' untranslated regions (3' UTR) of target mRNAs, affecting their stability and/or translation. Therefore, miRNAs regulate biological processes such as signal transduction, cell death, autophagy, metabolism, development, cellular proliferation, and differentiation. Dysregulated expression of microRNAs is associated with infectious diseases, where miRNAs modulate important aspects of the parasite-host interaction. Helminths are parasitic worms that cause various neglected tropical diseases affecting millions worldwide. These parasites have sophisticated mechanisms that give them a surprising immunomodulatory capacity favoring parasite persistence and establishment of infection. In this review, we analyze miRNAs in infections caused by helminths, emphasizing their role in immune regulation and its implication in diagnosis, prognosis, and the development of therapeutic strategies.
Collapse
|
5
|
Expression profiling of exosomal miRNAs derived from different stages of infection in mice infected with Echinococcus granulosus protoscoleces using high-throughput sequencing. Parasitol Res 2022; 121:1993-2008. [PMID: 35511364 DOI: 10.1007/s00436-022-07536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Echinococcosis is a worldwide zoonosis. The mechanism of the establishment, growth, and persistence of parasites in the host has not been fully understood. Exosomes are found to be a way of information exchange between parasites and hosts. They exist in various body fluids widely. There are few studies on host-derived exosomes and their miRNA expression profiles at different infection time points. In this study, BALB/c mice were intraperitoneally infected with protricercariae. Exosomes were extracted from plasma (0, 3, 9, and 20 weeks post infection), and the expression profiles of exosome miRNA in the peripheral blood of mice were determined using RNA-sequencing. Compared to the 0 week groups, 24, 35, and 22 differentially expressed miRNAs were detected in infected mouse at the three infection stages, respectively. The results showed that there were significant differences in the miRNAs of exosomes at different infection time points. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to annotate the different miRNAs. The results showed that the biological pathways of parasites changed significantly at different stages of infection, with many significant and abundant pathways involved in cell differentiation, inflammation, and immune response, such as MAPK signaling pathway, Th17 cell differentiation, Wnt signaling pathway, FoxO signaling pathway, Notch signaling pathway, etc. These results suggest that miRNA may be an important regulator of interactions between Echinococcus granulosus and host. The data provided here provide valuable information to increase understanding of the regulatory function of microRNAs in the host microenvironment and the mechanism of host-parasite interaction. This may help us to find targets for Echinococcus granulosus to escape host immune attack and control Echinococcus granulosus infection in the future.
Collapse
|
6
|
AlGabbani Q. Mutations in TP53 and PIK3CA genes in hepatocellular carcinoma patients are associated with chronic Schistosomiasis. Saudi J Biol Sci 2022; 29:848-853. [PMID: 35197752 PMCID: PMC8847977 DOI: 10.1016/j.sjbs.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/29/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to evaluate the genetic variation of the PIK3CA gene and the histopathological changes in liver tissue of patients with chronic Schistosomiasis to predict hepatocellular carcinoma. In this retrospective, the study samples were taken from 20 patients, divided into chronic schistosomiasis infected group of people (S) and chronic schistosomiasis uninfected group of people (C). The liver tissue biopsy samples for histological examinations were obtained only from chronic Schistosomiasis patients (n = 9). The blood samples were obtained from groups S and C for the mutational analysis of the PIK3CA and TP53 genes. The results suggest that the patients diagnosed with chronic Schistosomiasis were 9 (55%), and healthy patients without Schistosomiasis were 11 (45%). Histological results found that proliferation of fibrosis was observed in the hepatocytes of schistosomiasis patients. A total of 8 mutations (5 male, 3 female) were detected in PIK3CA and TP53 genes. Including 1634 A > G substitution mutations in PIK3CA, which was the only mutation found in males and females among the 8 mutations, accounting 22.22%. PIK3CA gene mutations were found more predominant in male groups as compared to other TP53 gene mutations. In conclusion, this study found that patients with chronic Schistosomiasis are at risk of PIK3CA gene mutations, eventually leading to hepatocytes fibrosis and liver cancer.
Collapse
Affiliation(s)
- Qwait AlGabbani
- Department of Biology, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
7
|
Masamba P, Kappo AP. Immunological and Biochemical Interplay between Cytokines, Oxidative Stress and Schistosomiasis. Int J Mol Sci 2021; 22:ijms22137216. [PMID: 34281269 PMCID: PMC8268096 DOI: 10.3390/ijms22137216] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 06/20/2021] [Indexed: 12/17/2022] Open
Abstract
The host–parasite schistosome relationship relies heavily on the interplay between the strategies imposed by the schistosome worm and the defense mechanisms the host uses to counter the line of attack of the parasite. The ultimate goal of the schistosome parasite entails five important steps: evade elimination tactics, survive within the human host, develop into adult forms, propagate in large numbers, and transmit from one host to the next. The aim of the parasitized host on the other hand is either to cure or limit infection. Therefore, it is a battle between two conflicting aspirations. From the host’s standpoint, infection accompanies a plethora of immunological consequences; some are set in place to defend the host, while most end up promoting chronic disease, which ultimately crosses paths with oxidative stress and cancer. Understanding these networks provides attractive opportunities for anti-schistosome therapeutic development. Hence, this review discusses the mechanisms by which schistosomes modulate the human immune response with ultimate links to oxidative stress and genetic instability.
Collapse
|
8
|
Mahami-Oskouei M, Norouzi B, Ahmadpour E, Kazemi T, Spotin A, Alizadeh Z, Ghorbani Sani R, Asadi M. Expression analysis of circulating miR-146a and miR-155 as novel biomarkers related to effective immune responses in human cystic echinococcosis. Microb Pathog 2021; 157:104962. [PMID: 34022359 DOI: 10.1016/j.micpath.2021.104962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/15/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022]
Abstract
Cystic echinococcosis, an important zoonotic disease, is caused by Echinococcus granulosus. MicroRNAs are a small group of single-stranded noncoding RNAs, which play an effective role in biological processes. This study aimed at comparing the expression levels of miR-146a and miR-155 in the plasma of patients with hydatidosis and healthy individuals. A group of 20 patients with hydatid cyst formed a study group and 20 healthy individuals with no known chronic diseases formed a control group. Plasma samples were collected from hydatidosis patients as well as sex- and age-matched healthy volunteers. After that, RNA extraction and cDNA synthesis were done and the expression levels of miR-146a and miR-155 were determined by quantitative real-time polymerase chain reaction (PCR) for both groups. The results indicated that the level of miR-146a increased in all patients with hydatidosis compared to the control group. Also, the level of miR-155 increased in all hydatidosis patients, but no correlation was observed in the level of miR-155 between the two groups. The results also revealed that miR-146a and miR-155 upregulation in the plasma leads to the development of novel biomarkers for echinococcosis. One of the reasons for the increase of miRNAs in hydatidosis may be their role in modulating the immune system. These miRNAs are likely to be considered as one of the most important biomarkers in determining the severity of hydatidosis.
Collapse
Affiliation(s)
- Mahmoud Mahami-Oskouei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behrooz Norouzi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Spotin
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Alizadeh
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Ghorbani Sani
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
In Silico Analysis of Common Long Noncoding RNAs in Schistosoma mansoni and Schistosoma haematobium. J Trop Med 2021; 2021:6617118. [PMID: 33628277 PMCID: PMC7899772 DOI: 10.1155/2021/6617118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022] Open
Abstract
Background Schistosomiasis caused by Schistosoma parasites is one of the most common parasitic infections worldwide. Genetic regulation of the genus Schistosoma, which has different developmental stages throughout its life, is quite complex. In these parasites, thousands of long noncoding RNAs (lncRNAs) estimated to be functional were identified. Identifying the transcripts expressed in common and detecting their functions for better understanding of the role of these lncRNAs require a comparative study. Methods Assembled RNA-seq datasets belonging to S. mansoni and S. haematobium were obtained from the National Center for Biotechnology. A basic local alignment search tool (BLASTN) analysis was conducted against previously constructed lncRNA library to identify the common lncRNAs between two species. LncRNAs target genes and their gene ontology annotation was performed. Results In S. mansoni and S. haematobium, 5132 and 3589 lncRNA transcripts were detected, respectively. These two species had 694 lncRNAs in common. A significant number of lncRNAs was determined to be transcribed from sex chromosomes. The frequently expressed lncRNAs appear to be involved in metabolic and biological regulation processes. Conclusions These two species share similar lncRNAs; thus, this finding is a clue that they might have similar functions. In sexual development, they especially might play important roles. Our results will provide important clues to further studies about interactions between human hosts and parasites and the infection mechanisms of Schistosoma parasites.
Collapse
|
10
|
Guo X, Zheng Y. Profiling of miRNAs in Mouse Peritoneal Macrophages Responding to Echinococcus multilocularis Infection. Front Cell Infect Microbiol 2020; 10:132. [PMID: 32309217 PMCID: PMC7145947 DOI: 10.3389/fcimb.2020.00132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/12/2020] [Indexed: 01/02/2023] Open
Abstract
Alveolar echinococcosis (AE) is a zoonotic helminthic disease caused by infection with the larval of Echinococcus multilocularis in human and animals. Here, we compared miRNA profiles of the peritoneal macrophages of E. multilocularis-infected and un-infected female BALB/c mice using high-throughput sequencing. A total of 87 known miRNAs were differentially expressed (fold change ≥ 2, p < 0.05) in peritoneal macrophages in mice 30- and 90-day post infection compared with ones in un-infected mice. An increase of mmu-miR-155-5p expression was observed in peritoneal macrophages in E. multilocularis-infected mice. Compared with the control group, the production of nitric oxide (NO) was increased in peritoneal macrophages transfected with mmu-miR-155-5p mimics at 12 h after transfection (p < 0.001). Two key genes (CD14 and NF-κB) in the LPS/TLR4 signaling pathway were also markedly altered in mmu-miR-155-5p mimics transfected cells (p < 0.05). Moreover, mmu-miR-155-5p mimics suppressed IL6 mRNA expression and promoted IL12a and IL12b mRNA expression. Luciferase assays showed that mmu-miR-155-5p was able to bind to the 3′ UTR of the IKBKE gene and decreased luciferase activity. Finally, we found the expression of IKBKE was significantly downregulated in both macrophages transfected with mmu-miR-155-5p and macrophages isolated from E. multilocularis-infected mice. These results demonstrate an immunoregulatory effect of mmu-miR-155 on macrophages, suggesting a role in regulation of host immune responses against E. multilocularis infection.
Collapse
Affiliation(s)
- Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, China
| |
Collapse
|
11
|
Tu H, Chen D, Cai C, Du Q, Lin H, Pan T, Sheng L, Xu Y, Teng T, Tu J, Lin Z, Wang X, Wang R, Xu L, Chen Y. microRNA-143-3p attenuated development of hepatic fibrosis in autoimmune hepatitis through regulation of TAK1 phosphorylation. J Cell Mol Med 2020; 24:1256-1267. [PMID: 31808606 PMCID: PMC6991639 DOI: 10.1111/jcmm.14750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/12/2019] [Accepted: 09/24/2019] [Indexed: 12/11/2022] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease due to autoimmune system attacks hepatocytes and causes inflammation and fibrosis. Intracellular signalling and miRNA may play an important role in regulation of liver injury. This study aimed to investigate the potential roles of microRNA 143 in a murine AIH model and a hepatocyte injury model. Murine AIH model was induced by hepatic antigen S100, and hepatocyte injury model was induced by LPS. Mice and AML12 cells were separated into six groups with or without the treatment of miRNA-143. Inflammation and fibrosis as well as gene expression were examined by different cellular and molecular techniques. The model was successfully established with the elevation of ALT and AST as well as inflammatory and fibrotic markers. Infection or transfection of mir-143 in mice or hepatocytes significantly attenuated the development of alleviation of hepatocyte injury. Moreover, the study demonstrated phosphorylation of TAK1-mediated miRNA-143 regulation of hepatic inflammation and fibrosis as well as hepatocyte injury. Our studies demonstrated a significant role of miRNA-143 in attenuation of liver injury in AIH mice and hepatocytes. miRNA-143 regulates inflammation and fibrosis through its regulation of TAK1 phosphorylation, which warrants TAK1 as a target for the development of new therapeutic strategy of autoimmune hepatitis.
Collapse
Affiliation(s)
- Hanxiao Tu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Dazhi Chen
- Department of GastroenterologyThe First Hospital of Peking UniversityBeiJingChina
| | - Chao Cai
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Qianjing Du
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Hongwei Lin
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Tongtong Pan
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Lina Sheng
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
- Department of Infectious DiseasesThe Affiliated Yiwu Central Hospital of Wenzhou Medical UniversityYiwuChina
| | - Yuedong Xu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Teng Teng
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Jingjing Tu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Zhuo Lin
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Xiaodong Wang
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Rui Wang
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| | - Lanman Xu
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
- Department of Infectious Diseases and Liver DiseasesNingbo Medical Center Lihuili HospitalNingboChina
- Department of Infectious Diseases and Liver DiseasesThe Affiliated Lihuili Hospital of Ningbo UniversityNingboChina
| | - Yongping Chen
- Department of Infectious DiseasesWenzhou Key Laboratory of HepatologyThe First Affiliated Hospital of Wenzhou Medical UniversityHepatology Institute of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
12
|
The role of microRNAs in the pathogenesis, grading and treatment of hepatic fibrosis in schistosomiasis. Parasit Vectors 2019; 12:611. [PMID: 31888743 PMCID: PMC6937654 DOI: 10.1186/s13071-019-3866-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Schistosomiasis is a prevalent parasitic disease worldwide. The main pathological changes of hepatosplenic schistosomiasis are hepatic granuloma and fibrosis due to worm eggs. Portal hypertension and ascites induced by hepatic fibrosis are usually the main causes of death in patients with chronic hepatosplenic schistosomiasis. Currently, no effective vaccine exists for preventing schistosome infections. For quite a long time, praziquantel (PZQ) was widely used for the treatment of schistosomiasis and has shown benefit in treating liver fibrosis. However, drug resistance and chemical toxicity from PZQ are being increasingly reported in recent years; therefore, new and effective strategies for treating schistosomiasis-induced hepatic fibrosis are urgently needed. MicroRNA (miRNA), a non-coding RNA, has been proved to be associated with the development of many human diseases, including schistosomiasis. In this review, we present a balanced and comprehensive view of the role of miRNAs in the pathogenesis, grading, and treatment of schistosomiasis-associated hepatic fibrosis. The multiple regulatory roles of miRNAs, such as promoting or inhibiting the development of liver pathology in murine schistosomiasis are also discussed in depth. Additionally, miRNAs may serve as candidate biomarkers for diagnosing liver pathology of schistosomiasis and as novel therapeutic targets for treating schistosomiasis-associated hepatic fibrosis.![]()
Collapse
|
13
|
Zhu D, Yang C, Shen P, Chen L, Chen J, Sun X, Duan L, Zhang L, Zhu J, Duan Y. rSjP40 suppresses hepatic stellate cell activation by promoting microRNA-155 expression and inhibiting STAT5 and FOXO3a expression. J Cell Mol Med 2018; 22:5486-5493. [PMID: 30091834 PMCID: PMC6201359 DOI: 10.1111/jcmm.13819] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/12/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023] Open
Abstract
Activation of hepatic stellate cells (HSCs) is the central event of the evolution of hepatic fibrosis. Schistosomiasis is one of the pathogenic factors which could induce hepatic fibrosis. Previous studies have shown that recombinant Schistosoma japonicum egg antigen P40 (rSjP40) can inhibit the activation and proliferation of HSCs. MicroRNA‐155 is one of the multifunctional noncoding RNA, which is involved in a series of important biological processes including cell development, proliferation, differentiation and apoptosis. Here, we try to observe the role of microRNA‐155 in rSjP40‐inhibited HSC activation and explore its potential mechanisms. We found that microRNA‐155 was raised in rSjP40‐treated HSCs, and further studies have shown that rSjP40 enhanced microRNA‐155 expression by inhibiting STAT5 transcription. Up‐regulated microRNA‐155 can down‐regulate the expression of FOXO3a and then participate in rSjP40‐inhibited expression of α‐smooth muscle actin (α‐SMA) and collagen I. Furthermore, we observed microRNA‐155 inhibitor could partially restore the down‐regulation of FOXO3a, α‐SMA and collagen I expression in LX‐2 cells induced by rSjP40. Therefore, our research provides further insight into the mechanism by which rSjP40 could inhibit HSC activation via miR‐155.
Collapse
Affiliation(s)
- Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Chunzhao Yang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Pei Shen
- Laboratory Medicine Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, China
| | - Li Zhang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Jinhua Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
14
|
Cabantous S, Hou X, Louis L, He H, Mariani O, Sastre X, Daujat-Chavanieu M, Li Y, Dessein A. Evidence for an important role of host microRNAs in regulating hepatic fibrosis in humans infected with Schistosoma japonicum. Int J Parasitol 2017; 47:823-830. [PMID: 28739251 DOI: 10.1016/j.ijpara.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that repress the translation of target gene transcripts. They have been implicated in various activities such as cell proliferation, survival, differentiation, migration and metabolism. We report here the first known miRNome and transcriptome analysis of human livers displaying advanced fibrosis due to Schistosoma japonicum infection. We present evidence that hsa-miR-150-5p, hsa-miR-10a-5p, hsa-miR-199a-3p, hsa-miR-4521, hsa-miR-222/221, hsa-miR-663b and hsa-miR-143-3p (associated without correction) play an important role in hepatic fibrosis by acting on metabolism, organization of the extracellular matrix proteins, lipid mobilization and limitation of oxidative damage stress.
Collapse
Affiliation(s)
- Sandrine Cabantous
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR906, GIMP, Labex ParaFrap, Aix-Marseille Université, 13005 Marseille, France.
| | - Xunya Hou
- Hunan Institute of Parasitic Diseases, Yueyang, China
| | - Laurence Louis
- INSERM UMR910, GMGF, Aix Marseille Université, 13005 Marseille, France
| | - Hongbin He
- Hunan Institute of Parasitic Diseases, Yueyang, China
| | | | | | | | - Yuesheng Li
- Queensland Institute of Medical Research, Brisbane, Australia
| | - Alain Dessein
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR906, GIMP, Labex ParaFrap, Aix-Marseille Université, 13005 Marseille, France.
| |
Collapse
|
15
|
Britton C. microRNAs-key players in host-parasite interactions. Parasite Immunol 2017; 39. [DOI: 10.1111/pim.12418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Affiliation(s)
- C. Britton
- Institute of Biodiversity, Animal Health and Comparative Medicine; College of Medical, Veterinary and Life Sciences; University of Glasgow; Glasgow UK
| |
Collapse
|